Totally Umbilic Riemannian Foliations

GRANT CAIRNS

1. Introduction

On a Riemannian manifold, a foliation with leaves of dimension p=2is
said to be totally umbilic if its leaves are totally umbilic submanifolds. An
obvious example is that of Euclidean space E”, minus one point, foliated by
concentric spheres. Further examples are provided by fotally geodesic foli-
ations —that is, foliations whose leaves are totally geodesic submanifolds.
Whereas totally geodesic foliations have received a good deal of attentionin
the literature (see the references in [6]), there are surprisingly few works on
totally umbilic foliations (see nevertheless [18], [3], [4], [11]).

Considering the foliation F of E”\{%} by concentric spheres, one will
notice that it can be made totally geodesic by suitably changing the metric.
Indeed, E™ \ {%} is diffeomorphic to $"~! x R via the obvious map that sends
the leaves of F to the submanifolds S”~!x {pf}. A foliation F is said to be
umbilicalisable [7] (resp. geodesible) if there exists a Riemannian metric on
the ambient manifold for which F is totally umbilic (resp. totally geodesic).
It is not hard to construct umbilicalisable foliations that are not geodesible.
One obstruction is that a totally geodesic foliation is necessarily harmonic;
that is, its leaves are minimal submanifolds. A foliation F is said to be faut
if there exists a Riemannian metric on the ambient manifold for which F
is harmonic. Clearly, a foliation is totally geodesic if and only if it is to-
tally umbilic and harmonic for the same metric. It is less obvious that a taut
umbilicalisable foliation is necessarily geodesible. In his thesis [7], Carriére
made the following conjecture.

CONJECTURE 1 (Carriere). Every codimension-1 taut umbilicalisable foli-
ation on a compact manifold is geodesible.

Carriére proved this conjecture for codimension-1 Riemannian foliations.
In this paper we consider the case of Riemannian foliations of arbitrary co-
dimension. Recall that a foliation F on a manifold M is Riemannian (see
[20], [17], [13]) if there exists a Riemannian metric g on the transverse bun-
dle TM/TF for which the leaves are locally equidistant. This amounts to
saying that for a codimension-g foliation F defined by local submersions
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w;: U; CM — RY, the restriction of g to U; is the pull-back by =; of a Rie-
mannian metric on R?, The hypothesis that a foliation be Riemannian is of
course quite restrictive, and in fact the results of this paper are false without
it. Moreover, the study of the Riemannian case has little bearing on the gen-
eral setting of Conjecture 1, which necessitates an investigation of quite dif-
ferent phenomena (see [7]). The point in examining the case of Riemannian
foliations is simply that they are now quite well understood (see [17]) and
the tautness of these foliations has received a good deal of attention (see the
survey article [21]). It is known, for instance, that the basic cohomology of
a taut Riemannian foliation verifies Poincaré duality (the basic cohomology
is the cohomology of the basic forms, which are the differential forms that
are locally the pull-backs of forms on the local quotient manifold R?). Car-
ri¢ére gave an example in his thesis of a Riemannian foliation whose basic
cohomology does not satisfy Poincaré duality, and made the following con-
jecture.

CONJECTURE 2 (Carri¢re). A Riemannian foliation on a compact mani-
Jold is taut if and only if its basic cohomology verifies Poincaré duality.

This conjecture has been proven in a number of particular cases (see [21]).
In this paper we show that Conjecture 1 holds for Riemannian foliations of
arbitrary codimension by showing that Conjecture 2 is true for umbilicalis-
able foliations. Before stating our result, let us recall yet another set of defi-
nitions. A foliation on a Riemannian manifold is said to be isoparametric
[13] if its leaves are isoparametric submanifolds. This amounts to saying that
its mean curvature 1-form is basic (see §2). A foliation is fense if it is isopara-
metric for some choice of Riemannian metric [14]. Finally, for convenience,
let us say that a foliation is cohomologically taut if its basic cohomology
verifies Poincaré duality.

THEOREM 1. Let F be an umbilicalisable Riemannian foliation on a com-
pact connected manifold M. Then F is tense, and the following conditions
are equivalent:
(i) Fis cohomologically taut;

(ii) Fis taut;

(iii) F is geodesible.
Moreover, if F does not satisfy these conditions then there is a Riemannian
metric on M for which F is totally umbilic and isoparametric, and for which
the leaves of F have zero (intrinsic) sectional curvature. Furthermore, there
is an open dense subset of M that is saturated by simply connected leaves.

This theorem has a number of corollaries. Let F and M be as in the state-
ment of the above theorem. One has the following.

COROLLARY 1. If the first betti number of M is zero then F is geodesible.

COROLLARY 2. If F has dense leaves then F is geodesible.
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COROLLARY 3. If Fis not geodesible then F has polynomial growth, and
so the structural Lie algebra of F is nilpotent.

The most striking consequence of Theorem 1 occurs in codimension 2 (all
codimension-1 Riemannian foliations on compact manifolds are taut). Be-
fore presenting our result, let us give an example of an umbilicalisable Rie-
mannian foliation that is not geodesible. Consider a 2-dimensional vector
subspace V of E3. Let I" be a cocompact discrete subgroup of E3 and sup-
pose that A4 is an affine transformation of E? of the form A:x - B(x)+c,
where ¢ € E? and B is a special linear matrix that preserves both I" and V and
induces in V a similarity transformation with homothetic proportionality con-
stant not equal to 1. The foliation F;, of E? defined by V and its translations
is I'-invariant, and hence induces a foliation F, on the quotient manifold
N=E/T. Clearly 4 induces a diffeomorphism ¢ of N, and since A4 leaves
Fy invariant, ¢ leaves F invariant. We now suspend ¢ in the standard man-
ner. Let the group Z of integers act on the manifold N X R in the following
way: If reZ, xe N, and feR, set r(x,t)=(¢"(x), t+r). The quotient of
NXR by this action of Z is a compact manifold that we denote M. The
foliation of N X R whose leaves are of the form Ly X {+}, where Ly is a leaf
of Fy, is invariant under Z and hence induces a foliation F,, on M. By con-
struction, Fy is Riemannian and umbilicalisable. It is easy to show that F,
is not cohomologically taut (see Example (iii) in §3) and hence not geodes-
ible by Theorem 1.

THEOREM 2. Let F be an umbilicalisable Riemannian foliation on a com-
pact connected manifold M. If F has codimension 2 and is not geodesible,
then M has dimension 4 and there is a finite cover (M, F) of (M, F) and
a diffeomorphism from one of the spaces My to M which conjugates F,
with F.

The paper is organized as follows. In the next section we recall the facts
about Riemannian and umbilicalisable foliations needed for the proofs of
our results. In Section 3 we give a number of examples, and Section 4 con-
tains the proofs of our results. Theorem 1 is an application of the theorems
of Lelong-Ferrand [15], Obata [19], and Alekseevskii ([1], [2]), according
to which the round sphere S” and the Euclidean space E” are the only Rie-
mannian #-manifolds that possess conformal transformations which are not
isometries for any choice of metric. Our use of this theorem employs the
techniques of Molino’s theory of Riemannian foliations [17] and of Kamber
and Tondeur’s work on the basic cohomology of tense Riemannian folia-
tions [14]. Theorem 2 is proven directly using Theorem 1 and Molino’s the-
ory, though the general philosophy comes from Ghys’ classification of co-
dimension-1 totally geodesic foliations [12].

In all of the following, unless otherwise stated, F is an umbilicalisable
Riemannian foliation, with leaves of dimension p =2, on a compact con-
nected manifold M. Since the problems are unaltered by taking finite covers,
we assume that M and F are orientable. Everything is supposed C™.
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2. Preliminaries

The Riemannian metric g on the manifold M is bundle-like for the foliation
F if
(2.1) (Lzg)(X,Y)=0

for all vector fields Z tangent to F and for X and Y perpendicular to F, where
Ly is the Lie derivative with respect of Z. By definition, F is Riemannian if
there exists a bundle-like metric for F. According to [3], F is totally umbilic
with respect to g if

2.2) (Lx8)(Z,W)=MX)g(Z, W)

for all vector fields X perpendicular to F and for Z and W tangent to F, where
A(X) is a function on M depending only on X. In this case, F is fotally geo-
desic with respect to g if A(X') =0 for all vector fields X perpendicular to F,
that is, if

(2.3) (Lxg)(Z,W)=0

for all vector fields X, Z, and W as above.

Let » be the volume form along the leaves of F determined by g and a
choice of orientation of F; thus » is a p-form on M, where p is the dimen-
sion of the leaves of F. The Riemannian metric g determines a natural posi-
tive definite symmetric 2-form {-, -) on the complex of differential forms on
M. The mean curvature I-form « [14] of F is defined by

(X) = 0 if X is tangent to F,
: B (Lyv,v) if X is perpendicular to F.

F is harmonic if k=0. F is isoparametric if k is a basic 1-form —that is, if
Lzx =0 for all vector fields Z tangent to F.

One will notice that the conditions for F to be totally umbilic, totally geo-
desic, harmonic, or isoparametric depend only on the metric along the leaves
of F and on the orthogonal decomposition TM = TF@®TF* of the tangent
bundle. On the other hand, the condition that g be bundle-like depends only
on the Riemannian metric on the quotient bundle 7M/TF. So if F is Rie-
mannian and umbilicalisable (resp. geodesible, resp. taut, resp. tense) then
there exists a bundle-like metric on M with respect to which F is totally um-
bilic (resp. totally geodesic, resp. harmonic, resp. isoparametric).

Recall that a vector field X on M is foliate for F if L, X is tangent to F
for all vector fields Z tangent to F. One says that F is transversally parallel-
izable if there exists g linearly independent foliate vector fields X}, ..., X,
perpendicular to F, where ¢ is the codimension of F.
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THEOREM 2.1 [17]. If g is bundle-like for the foliation F on the compact
manifold M then F lifts to a natural foliation F} on the positive orthonor-
mal transverse frame bundle E} of F, and one has:

(i) the leaves of F} are the linear holonomy covers of the leaves of F;
(ii) F} is transversally parallelizable.

THEOREM 2.2 [17]. If Fis transversally parallelizable then the closures of
its leaves are the fibres of a locally trivial fibration w,: M — W. The fibration
7y, is called the basic fibration and W is called the basic manifold.

Note that if F has a transverse parallelism {X),..., X ] then every vector
field perpendicular to F can be written as a function linear combination of
the foliate vector fields X;. So in order to establish that F is totally umbilic
(resp. totally geodesic) it suffices to verify Equation (2.2) (resp. (2.3)) for the
vector fields X=X;, i=1,...,q. Let {¢!},-.r be the 1-parameter groups of
transformations of M associated to the vector fields X;. Since X; is foliate,
the maps ¢! respect F. Equations (2.2) and (2.3) can be reinterpreted in the
following way.

LEMMA 2.3 [3]. Fis totally umbilic (resp. totally geodesic) if and only if
the maps ¢, (teR, i=1,...,q) induce conformal (resp. isometric) diffeo-
morphisms between the leaves of F.

By Theorem 2.1, the above lemma can be applied to the foliation F}. The
connection with F is given by the following.

LEMMA 2.4. F}lisumbilicalisable (resp. geodesible, resp. taut, resp. tense)
if and only if Fis.

Proof. We will only treat the umbilicalisability condition, the other cases
being perfectly analogous.

First suppose that F is totally umbilic with respect to the Riemannian met-
ric g on M. The Levi-Civita connection [17] w on the positive orthonormal
transverse frame bundle E} defines a natural decomposition TE+=V@® H of
the tangent space, where V is the vertical bundle of the natural projection
pr: E}— M and H is the horizontal bundle associated to w. One obtains a
Riemannian metric g} on E+ by imposing that this decomposition be orthog-
onal, by lifting g from M to H, and by transporting to V a bi-invariant met-
ric on the structure group SO(q, R) of the fibration pr. One can easily verify
(locally) that F} is totally umbilic with respect to gt

Conversely, if F7 is totally umbilic with respect to some Riemannian met-
ric & on E}, then averaging g by the action of the SO(g, R) on E} one ob-
tains a SO(q, R)-invariant metric ' on E}. Consequently g’ projects to a
Riemannian metric g’ on M. One easily verifies that, since F} is SO(q, R)-
invariant, F; is also totally umbilic with respect to 3’ and that hence F is
totally umbilic with respect to g’. ]
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REMARK. It is equally clear that there exists a Riemannian metric on M
for which F is totally umbilic and isoparametric if and only if there exists a
similar metric for F}.

3. Examples

We give five examples. The first two are well-known geodesible Riemannian
foliations. For more general constructions of geodesible foliations see [6].
Examples (iii) and (iv) give umbilicalisable Riemannian foliations that are
not geodesible. The last example, drawn from [7], gives a non-Riemannian
umbilicalisable foliation for which the results of Theorem 1 do not hold.

(i) Let G be a connected Lie group and let H be a connected subgroup of
the centre of G. Consider a uniform lattice I"' in G. The foliation of G by the
cosets of H is clearly I'-invariant and hence defines a foliation F on the quo-
tient space G/I'. One can easily verify that F is Riemannian and geodesible.

(ii) Let B and N be two compact Riemannian manifolds and let
¢: 7 (B)— Isom(N)

be a homomorphism from the fundamental group of B to the group of iso-
metries of N. Suspending ¢, one obtains a fibre bundle over B with typical
fibre N and, transverse to the fibre, a natural foliation which is both Rie-
mannian and geodesible.

(iii) We now give an explicit example of the type of foliation F; consid-
ered in the Introduction. The task is to exhibit a matrix B having the re-
quired properties.

Consider a cubic polynomial

PO\ =N +iN+ -1

with integer coefficients i and j, and suppose that P has only one real root u.

For example,
PO\ =N —6N+12\—1.

Let us suppose that u > 0, x5 1, as in the case of the above polynomial. Re-
writing P in the form

PO\)=A—p) N2 =2ap™ A +p7h),

one obviously has |a| < 1. Now consider the matrix

U 0 0
B=|0 a/Np bNu|,
0 —b/Np a/Vu

where b =+/1—a?. Then P is the characteristic polynomial of 4. Clearly B
leaves the subspaces V'=R{(0, 1, 0), (0,0,1)} and W =R{(1, 0,0)} invariant,
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and induces in V a similarity transformation. It remains to show that B leaves
invariant a uniform lattice in E3. Pick any vector X in the complement of
VUW in E>. One easily sees that the vectors X, BX, and B2X are linearly
independent. Furthermore, by the Cayley-Hamilton theorem,

B3X=X—-iBX—jB*X.

So since i and j are integers, the lattice I" in E? generated by the vectors X,
BX, and B2X is clearly B-invariant.

Let (M, Fy) be the foliation constructed from B using the method de-
scribed in the Introduction. It is easy to verify that F, is Riemannian, tense,
and umbilicalisable. To see that F is not geodesible, notice that for the ob-
vious choice of Riemannian metric, the mean curvature 1-form « is nowhere
zero. It follows that « is not an exact form. Indeed, if x = df for some func-
tion f on M, then, since M is compact, f must have a maximum value and
so k would be zero at any point where this maximum was attained. Since « is
not exact, it follows from [14] that F is not geodesible (see also Lemma 4.4
below).

(iv) The construction of a nongeodesible totally umbilic Riemannian foli-
ation of codimension 2 given in the Introduction can be obviously general-
ized to higher codimensions. An example of the codimension-3 case is ob-
tained by repeating the above construction for the matrix

21 00
B=llOO
0 0 2 1
0 01 1

(v) [7] Let V be a vector subspace of E” of dimension p > 2, and let £ be
the foliation of E"\ {0} by V'\{0} and the translations of V. Consider the
action of Z on E” \ {0} generated by a dilation with proportionality constant
different than 1. The quotient M of E”\ {0} by this action is diffeomorphic
to S”"~!x S! and since £ is Z-invariant, it induces a foliation F on M. Clearly
F has compact leaves, diffeomorphic to S”~!x S!, and leaves that are diffeo-
morphic to R?. F is totally geodesic with respect to the metric g induced on
E"\ {0} by the standard metric on E”. So ¥ is totally umbilic with respect to
the conformally equivalent metric g’ defined by

’ gx n

g&=—, xeE"\{0].
Xl

Since the action of Z respects g’, one obtains a Riemannian metric on M

with respect to which F is totally umbilic. F is not taut by [22], and so F does

not verify the results of Theorem 1 since the universal covers of its compact

leaves are not conformally flat.



152 GRANT CAIRNS

4. Proofs

Proof of Theorem 1. Let F be a foliation satisfying the hypotheses of Theo-
rem 1, and suppose that F is totally umbilic with respect to the bundle-like
metric g. As we saw in Section 2, the lift F} of F to the positive orthonormal
transverse frame bundle E}- of F is transversally parallelizable, and F} is to-
tally umbilic with respect to the lifted metric g}. So we first consider trans-
versally parallelizable foliations.

LEMMA 4.1. If F is transversally parallelizable and F is not geodesible,
then each leaf of F is conformally equivalent to the Euclidean space E?.

Proof. By Lemma 2.3, for every foliate vector field X perpendicular to F,
the 1-parameter group {¢,};r of transformations of M associated to X re-
spects the foliation F and induces conformal diffeomorphisms between its
leaves. So the leaves of F are conformally equivalent. If & is the set of all the
conformal diffeomorphisms induced between the leaves by the maps ¢, as-
sociated to the different foliate vector fields X perpendicular to F, then &
acts transitively on the set of leaves and F is totally geodesic with respect to
g if and only if all the elements of & are isometries (by Lemma 2.3).

Let L be a leaf of F. According to the theorems of Lelong-Ferrand [15],
Obata [19], and Alekseevskii ([1], [2]), L is necessarily one of the following
three types.

(i) L is inessential; that is, the group of conformal transformations of
L acts on L by isometries for some Riemannian metric g; on L.
(ii) L is conformally equivalent to the round sphere S”.
(iii) L is conformally equivalent to the Euclidean space E”.

Suppose that L is of type (i). We claim that F is geodesible. We define a
new Riemannian metric g’ on M by changing g only along the leaves of F. If
L’ is another leaf of F, there exists an element ¢ of ® such that ¢(L)=L".
We define a Riemannian metric on L’ by pushing forward g; by ¢. The met-
ric obtained on L’ is independent of the choice of ¢. Indeed, if ¢,y € ® and
¢(L)=y(L)=L’, then ¢ ~loy is a conformal transformation of L and hence
an isometry with respect to g;. Consequently ¢ and y induce the same met-
ric on L’. Proceeding in this manner for all the leaves one obtains a Rie-
mannian metric gr along the leaves of F. The new Riemannian metric g’ on
M is then obtained by replacing g along the leaves by g. By construction,
g’ is smooth. Furthermore, the elements of ¢ now clearly act by isometries
between the leaves, and hence F is totally geodesic with respect to g’.

It remains to prove that if L is of type (ii) then F is geodesible. But if L
is of type (ii) then the leaves of F are all diffeomorphic to S” and so they
are the fibres of a fibre bundle B. The orthogonal vector bundle F+ of F
is a connection for this bundle with structure group a group of conformal
transformations. Because this group deformation retracts to a group H of
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isometries, B has a connection with structure group H. Thus F is geodesible
(see [20]). O

If F}is not geodesible then, according to Lemma 4.1, the leaves of F} are
conformally equivalent to EP. We now show that these conformal equiva-
lences can be effected simultaneously by changing the metric g} on E}.

LEMMA 4.2. If F is transversally parallelizable and F is not geodesible,
then there is a Riemannian metric on M for which F is totally umbilic and
for which the leaves of F are isometric to Euclidean space E”.

Proof. We start by considering an arbitrary fibre N of the basic fibration
7 M — W. The foliation Fj, induced on N by F is clearly totally umbilic for
the metric gy induced on N by g. Let A be the (finite-dimensional) vector
space of linearly independent foliate vector fields on N perpendicular to Fy,.
If X is an element of A, let {¢;*},.r be the 1-parameter group of transfor-
mations of N associated to X. Consider the map

V:NXA->N
(X, X) e o (x).

The maps ¢;* respect the foliation Fy, and locally ¥ projects to the exponen-
tial map on the local quotient manifold. The space A has a norm |- | induced
by the Riemannian metric g5. Because N is compact there exists e >0 such
that, for all points x in N, the restriction of the map y,: X e A - ¥(x, X) to
the open ball B(e) = {X € A/ | X| < €} is injective. If one likes, € is the “trans-
verse injectivity radius” of Fj.

Let L be a leaf of Fy. By Lemma 4.1, L is conformally equivalent to E”.
Let g; be the flat metric on L induced by this equivalence. We now define
a metric g, along the leaves of F), by using ¥. First note that the image of
L X B(e) under ¥ is a saturated open subset of N. So, because L is dense,
V(L X B(e)) =N. Thus, for any leaf L’ of F), there exists X € B(e) such that
¢{*(L)=L’. We transport g; from L to L’ by the map ¢i'. To see that this
is well defined, note that if ¢{*(L) = ¢{(L) where X, Y € B(e), then ¢ =
(¢¥) o ¢{*is a conformal diffeomorphism of L. We claim that if X Y then
¢ has no fixed point. Indeed, if ¢(x) =x for some x € L then one would
have ¢{*(x) = ¢¥(x) and hence ¥, (X) = ¢, (Y). So, since ¥, is injective, one
would have X =Y. Consequently if ¢ is not the identity map then it is an
orientation-preserving conformal diffeomorphism of L = E” having no fixed
point. So ¢ is a translation and hence ¢{f and ¢! induce the same metric on
L’. We thus obtain a new Riemannian metric g5 along the leaves of Fj,. Re-
placing the original metric along the leaves by g, one obtains a new metric
gn on N with respect to which (by construction) F), is totally geodesic, and
its leaves are isometric to E”.

Having changed the Riemannian metric on an arbitrary fibre N, we now
change the Riemannian metric in a saturated open neighbourhood of N in
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M. The procedure is essentially the same as that used above for N. If r is the
dimension of the basic manifold W, choose r foliate vector fields X, ..., X,
on M such that at every point on N the vector fields X}, ..., X, are linearly
independent and perpendicular to N. For each i € {i, ..., r} let {¢!}, g be the
1-parameter group of transformations of M associated to X;. Consider the
map

P NXR - M

F(X Fy ey ) 2 B D7 B (X).

The vector fields X; project by 7, to vector fields on W which are linearly in-
dependent at 7, (V). It follows that for sufficiently small ¢ > 0, ® induces a
diffeomorphism from the open set Nx {# € R"/|¢] < ¢} onto its image U, say,
in M. Clearly U is saturated with respect to the fibres of 7, and the maps

¢ N->M
x—d(x,1)

send the leaves of Fp conformally to the leaves of . Now use & to replace
the Riemannian metric along the leaves of the restriction of F to U by the Rie-
mannian metric induced from the Riemannian metric g constructed above
on the leaves of F). Let g{; be this new Riemannian metric on U. By con-
struction, g and g{; differ only along the leaves of F, and on the leaves the
two metrics are conformally equivalent. Moreover, with respect to g;;, the
leaves are isometric to E”.

Now choose a set {N;};, of fibres of 7, such that the corresponding set
{U;}; e s of open neighbourhoods constructed above covers M. For each j € J,
let g; denote the Riemannian metric g¢;, on U; constructed above. The sets
Uj; are saturated by the fibres of n;, and of course their images V; in W cover
W. Choose a locally finite subcover {V}}; . x of this cover and let { f;};cx be
a partition of unity subordinate to {V}};cx. Then {fiom,}icx is a partition
of unity of M subordinate to {U;};  x. Gluing together the Riemannian met-
rics g, with this partition of unity, one obtains a new Riemannian metric g’
on M. Since g’ and the original metric g give the same orthogonal decompo-
sition TM = TF @ TF* of the tangent bundle, and since the metrics along the
leaves are conformally equivalent, F is also totally umbilic with respect to
g’. By construction, the leaves of F, equipped with the metric induced by g’,
are isometric to E”. [

We can now prove that F is tense. In fact, one has the following.

LEMMA 4.3. There exists a Riemannian metric on M for which F is iso-
parametric and totally umbilic.

Proof. By Lemma 2.4 and the Remark that follows it, we may assume that
F is transversally parallelizable. Now if F is geodesible there is nothing to
prove. So by Lemma 4.2 we may assume that the leaves of F are isometric to
E”. Let X be a foliate vector field perpendicular to the leaves of F, and let
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{#,},<r be the 1-parameter group of transformations of M associated to X.
Let » be the volume form along the leaves of F determined by the Riemann-
ian metric and a choice of orientation. Since the maps ¢, induce conformal
diffeomorphisms between the leaves of F, for each f € R we have ¢7(») = \,»,
where the function X\, is constant on the leaves of F. So Ly v = uv, where p =
d\,/dt is also a basic function on M. It follows immediately that the mean
curvature 1-form of F is basic and so F is isoparametric. [

By Lemma 4.3, we may assume that the mean curvature 1-form « of F is
basic. By [14], « is thus closed and hence defines a basic cohomology class
[kle H)}(M, F).

LEMMA 4.4. F is geodesible if [k]=0.

Proof. Suppose that k =df, where f is a basic function. Now replace g by a
conformally equivalent Riemannian metric g’ such that the volume form »’
along the leaves of F determined by g’ is v’ =exp(—f)», where » is the vol-
ume form along the leaves determined by g. One calculates easily (see [14])
that the mean curvature 1-form of F with respect to g’ is zero and so F is
harmonic with respect to g’. Then, since F is clearly totally umbilic with re-
spect to g’, it is consequently totally geodesic. O

It is well known that if F is taut then F is cohomologically taut (see [21]),
and that if F is geodesible then F is obviously taut. The following lemma
completes the set of equivalences.

LEMMA 4.5. If F is cohomologically taut then F is geodesible.

Proof. By Lemma 4.3, we may assume that F is totally umbilic and iso-
parametric with respect to the metric g. Thus, according to [14], if F is co-
homologically taut then [«] =0 and so F'is geodesible by Lemma 4.4. [

To complete the proof of Theorem 1 it remains to consider the case where F
is not geodesible. Apply Lemma 4.2 to the foliation F} and note that the
leaves of F;} cover those of F. Taking a metric on E; for which the leaves of
F} are isometric to E? and averaging this metric by the action of the struc-
ture group of the fibration p: E} — M, one obtains the desired metric on M.
Furthermore, the leaves of F7 are the holonomy covers of the leaves of F, by
Theorem 2.1, and so by [9] M has an open dense subset saturated by simply
connected leaves. This completes the proof of Theorem 1. O

Proof of Corollary 1. Corollary 1 follows immediately from Theorem 1 and
[5]. Alternatively, one can use Lemma 4.4 and the fact that H}(M, F) in-
jects into H(M). O

REMARK. If F is not geodesible then, by Lemma 4.2, there exists a Rie-
mannian metric on E+ for which F} is totally umbilic and isoparametric and
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for which the leaves of F} have zero sectional curvature. Furthermore, as
we saw in the proof of Lemma 4.2, the restriction of F to the fibres of the
basic fibration 71,: E} - W3 of F} is then totally geodesic. So the mean
curvature 1-form «}- of F}is zero on the fibres of w+,. This has two obvious
consequences:
(i) We may choose a metric on M such that the mean curvature 1-form «
of F is zero on the closures of the leaves of F.
(ii) «} is the pull-back to E} of a closed 1-form on W}. So, as in Lemma
4.3, Flis geodesible if the first betti number of the basic manifold W7}
is zero.

Proof of Corollary 2. This follows immediately from Lemma 4.3 and part
(i) of the above Remark. O

Proof of Corollary 3. This follows immediately from Theorem 1 and [8].
O

Proof of Theorem 2. The topology of F is largely determined by the struc-
tural algebra of F [16]. If F has codimension 2 then this algebra has dimen-
sion s < 3. If s =0, the leaves of F are compact and hence F is taut (see [21])
and therefore geodesible by Theorem 1. If s =2 or 3, then the leaves of F are
dense and so F is geodesible by Corollary 2. If s =1, there are two possi-
bilities: Either the closures of the leaves of F define a codimension-1 Rie-
mannian foliation on M, or F has one or two compact leaves and the rest
of the leaf closures have codimension 1. We claim that in the second case F
is geodesible. Indeed, if s =1, the basic manifold W7} of F} has dimension 2,
The positive orthogonal transverse frame bundle E} is a S'-bundle over M,
and the action of S! on E} induces an action of S! on W3} [17]. The compact
leaves of F correspond to the fixed points of this action. So if F has one or
two compact leaves, the action of S! on W} has one or two fixed points. But
the only 2-manifolds that admit an S action with isolated fixed points are S*
and the projective space RP?%. So H!(W}) =0 and consequently F is geo-
desible by part (ii) of the Remark following the proof of Corollary 2.

We have thus shown that if F is not geodesible, the closures of the leaves
of F define a codimension-1 Riemannian foliation F;, on M. Passing to the
transverse orientation cover of Fj if necessary, we may assume that F is
transversally parallelizable and that the leaves of F, are the fibres of a locally
trivial fibration m, of M over S! (see [17]). Then, by Theorem 1, we may as-
sume that F is isoparametric and that its leaves are isometric to E”.

Let X be the unit vector field orthogonal to Fj,. It is clear that X is foliate
both for F and for F,. Consider the 1-parameter group {¢,} associated to X.
Let N be an arbitrary fibre of 7, and let s be the smallest positive number
such that ¢,(N) = N. Then M is clearly diffeomorphic to the suspension of
¢, via the map

SINXR/(x,t) ~(ds(x), t+5) > M
tx, t] = s (x).
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We will show that ¢, is the map ¢ in the statement of Theorem 2. In partic-
ular, we need to show that ¢, lifts to a linear map on E?.

Now, as we saw in the proof of Lemma 4.2, the restriction F of F to N is
a totally geodesic Riemannian foliation of codimension 1 whose leaves are
isometric to E”. Consequently N has zero sectional curvature. Since, by hy-
pothesis, M is oriented, so too is F} and consequently N is also oriented. So
N is a torus E? /T, where I' is a group I' of Euclidean translations of E*!
with p +1 generators. Choose x € N and let ¢ be a translation of NV such that
V(x) = ¢s(x), where ¢, is as in the previous paragraph. Of course the map
Y ~l¢,, = p say, respects Fyy and induces conformal maps between the leaves
of Fy. Since p fixes x, p induces a map on the set of paths in NV based at
x and hence defines a diffeomorphism 8 of the universal cover E?*! of N.
We claim that 3 is linear. Indeed, let W denote the vector space of Killing vec-
tor fields of N. Let Y be an element of W and let {{,},cr be its associated I-
parameter subgroup. Of course ¢{; is an isometry for all # and the 1-parameter
subgroup of the pushed-forward vector field p,Y is {p°¢;op "'}, cr. Because
p induces conformal maps between the leaves of Fy, so for all ¢, pot,op ™
induces isometries between the leaves of Fy. It follows that since the leaves
of Fy are dense in N, po{,op~!is an isometry of N for all ¢. Hence p,Y is
an element of W. Thus the push-forward map p, defines an isomorphism of
W. Consequently 3 is affine and hence linear. Moreover, since p is necessar-
ily volume preserving, 8 is special linear.

Let ¥ denote the vector subspace of E?*! covering the leaf of Fy passing
through x. Then 8 induces a similarity transformation in V, and clearly F},
is the projection in N of the foliation F; on E?*! defined by V and its trans-
lates. Notice that the homothetic proportionality constant of the map in-
duced by B in V is not equal to one, for otherwise one could choose a Rie-
mannian metric on M for which the mean curvature 1-form of F would be
identically zero and hence F would be geodesible.

In order to complete the proof of Theorem 2 it remains to show that M
has dimension 4—in other words, that p =2. First notice that 8 induces a
conformal transformation in the hyperspace V, so 8 has p eigenvalues «,
..., o, with the same absolute value, r say, with r 1. Clearly 8 has one other
eigenvalue, o, say, which is real and not equal to r, as (8 is special linear.
Notice as well that since 8 preserves a uniform lattice in E?*!, the charac-
teristic polynomial of 8 has integer coefficients.

We will employ the following result of Epstein.

THEOREM 4.6 [10]. Let ay+ayx+ --- +a,x* be an irreducible (over Q)
polynomial with integer coefficients and roots oy, ..., oy. Let o= +++ =
|otg 1| # |k |- Then k <3.

In order to apply this theorem it remains to show that the characteristic poly-
nomial of g is irreducible over Q. First note that, if Z is an eigenvector of
corresponding to the exceptional eigenvalue o, then the leaves of the lin-
ear foliation F, on N determined by Z are dense in N. Indeed, p preserves
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the leaf L of F, passing through x, and so p preserves the closure L of L.
If U is the vector subspace of E”*! covering L, then 3 preserves U; since the
diffeomorphism of L induced by p is volume preserving, the restriction of 3
to U is special linear. It follows that U=E?”*! and consequently L = N.

Now, arguing as in [10], let f be a polynomial with integer coeflicients and
suppose that o, is a root of f. Then f(8)Z =0. The transformation f(3)
induces a smooth map from N to N that is constant on the leaf L of F, and
hence, as L is dense in NN, constant on N. Thus f(8) =0, and consequently
every eigenvalue of 3 is a root of f. It follows that the characteristic poly-
nomial of 3 is irreducible over Q.

We can thus apply Theorem 4.6 to the characteristic polynomial of g,
whence p+1=<3. But by hypothesis p=2 and so p =2 and M has dimen-
sion 4. This completes the proof of Theorem 2. O
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