Solution Operators for Partial Differential
Equations in Weighted Gevrey Spaces

MICHAEL LANGENBRUCH

The existence of continuous linear right inverses for concrete linear oper-
ators has recently been studied by many authors ([10], [8], [6], and the liter-
ature cited there). These results are mainly based on the general splitting
theorem of Vogt for exact sequences of power series spaces of infinite type
[15, Thm. 7.1], while the nonexistence of a continuous linear right inverse is
often proved by the noncompatibility of certain linear topological invariants
(such as (DN) and (£)), which were developed in the recent study of the
structure of nuclear (F)-spaces ([14], [15]).

In this paper, partial differential equations in (weighted) spaces of ultra-
distributions of Roumieu type are considered. These spaces locally are iso-
morphic to a power series space of finite type. So one has to consider exact
sequences of power series spaces of finite type, which need not be split, con-
trary to the infinite type case [14].

To obtain splitting theorems for these sequences, one has to fix a special
norm system (defining the topology) such that any linear mapping of the ex-
act sequence (or used in the proofs) shifts the counting of this norm system
at most by a multiplicative constant. In other words, one has to work with
graded (F)-spaces and tame linear maps. The necessary tools and a basis free
version of the tame splitting theorem of Vogt ([13], [11]) for tame exact se-
quences of power series spaces of finite type are contained in the first section.

The weighted spaces and the assumptions used in this paper are as follows:
(1) W(x):= ¥ W(xl),

i=N
where W, e C![0, ) and w;:= W} is increasing from 0 to o on [0, o©);

(2) w; (1) = o(W;(1)%);
3 Wiow; 1(21) = o(Wiew; (1)),
where 6 =(6;);<n>1. Let
Dk (£1+1/n)W(x)
IY(+W):= {fe C*RN)| pE(f):= S;JI;: | f(x,);-kkak l <o

for some n= 1} .
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Let P(D) be a r Xs system of partial differential operators with constant
coefficients (on R™) and let Q(D) be the matrix of relations implied by
P(D). Then the main result of this paper is the following (Theorem 4.2).

THEOREM. Let W satisfy (1)-(3). Then P(D) has tame linear right inverses

R_:Ker Q(D)NT(—W) - T¥(—~W)$
and
R :Ker Q(D)N(I(W),) — (TUW)})".

This implies that hypoelliptic systems have continuous linear right inverses
in the weighted space of C*-functions

CP(W):= {fe C=(R™) | sup|D*f(x)e~1+/MW*)| < o for any ne N}.
k<n
X
This improves on results obtained in [5]. Notice that C{°(W) is not isomor-
phic to a power series space.

The steps in the proof of the main theorem are similar to those in [6], with
the technical complication that any linear isomorphism used in the proof
must be a tame isomorphism. A tame isomorphic sequence space represen-
tation and a tame Paley-Wiener-type theorem is proved for the weighted
Gevrey spaces in Sections 2 and 3. The final step in the proof is a tame ver-
sion of the Ehrenpreis principle, which is obtained for these spaces in Sec-
tion 4.

1. Tameness

The notion of a graded (F)-space was used (e.g. in [1]) in connection with
the Nash-Moser inverse function theorem. It means that the counting of
a system of 0-neighbourhoods (defining the topology) is fixed. To simplify
later notation, we will always use [1,) as an index set for the system of
0-neighbourhoods.

1.1. DEFINITION. (a) A grading of a (FS)-space is a fixed decreasing sys-
tem {U,|n=1} of absolutely convex closed 0-neighbourhoods defining the
topology of E. (E, U,) is called a graded (FS)-space (g-(FS)-space).

(b) A grading of a (DFS)-space E is a fixed increasing system {B, |n=1} of
absolutely convex closed bounded sets absorbing each bounded set. (E, B,;)
is called a graded (DFS)-space (g-(DFS)-space).

Subspaces and quotients of a graded space E are always considered with the
canonical grading induced by the grading of E. (The quotient grading of a
g-(DFS)-space absorbs each bounded set, by Theorem 8 in [4].) The strong
dual E} of a g-(FS)-space (E, U,) will always be considered as a g-(DFS)-
space with the dual grading

B,:=Ul:={x'e E'||{x’, x)| <1 for any x € U,}.
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Let o« =(«,) be an increasing unbounded sequence of positive numbers.
The power series space of finite type

Ag(a):= {(c )€ CN ()= l jle /"< e for any nzl}

will always be considered with the gradmg defined by the norms | |,,.

1.2. DEFINITION. (a) Let (E, UF) and (F, UF) be g-(FS)-spaces and let
T: E— F belinear. T is called linearly tame (or tame, for short) if and onlyif

3Cvn=C1iC;: T(UE)c C,UF.

(b) Let (E, BE) and (F, BF) be g-(DFS)-spaces and let T': E — F be linear.
T is called tame if and only if

3Cvn=C3iC,;: T(BF)c C,BE,.

Tame maps (between g-(FS)- or g-(DFS)-spaces) are continuous. With the
conventions from above, a linear map T: (E, UF) - (F, UF) is tame be-
tween two g-(FS)-spaces (E, UE) and (F, UF) if and only if the transpose
T': (F}, By - (E}, BE') is tame for BI'=(UF)? and BE'= (UF)°.

Two graded spaces E and F are tamely isomorphic (t-isomorphic) if and
only if there is a linear isomorphism 7': E— F such that 7 and T~! are
tame. A linear mapping 7T: E— F is tamely open (t-open) if and only if
T-!:T(F)— E/Ker T is tame. A sequence

0> EHFI4 G0

of graded spaces E, F, and G is called tamely exact (t-exact) if and only if
the sequence is exact and i is a t-isomorphism onto the subspace i(E) CF
and G is t-isomorphic to the quotient F/i(E) of F.

1.3. DEFINITION. Let (E, U,) be a g-(FS)-space with corresponding semi-

norms | |,-
(a) £e (DN), if and only if
33=1,C=1vn=CaC, m:| |,=C,| |YCP| |L-1/Cm
(b) E€ (Q), if and only if
VvpaD=pvn=D,k=13C,vt>0:U,,Ct/"U,+ tIC}/nU.

The classes (DN), and (), are the appropriate t-isomorphic invariant spe-
cializations of the linear topological invariants (DN) and (Q) introduced by
Vogt [14]. (DN), is inherited to subspaces and (), to quotients (with their
canonical gradings!). The class (DN), is used in [8] to show the nonexistence
of extension operators for certain classes of ultradifferentiable functions of
Roumieu type.
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1.4. LEMMA. (a) A g-(FS)-space (E,U,) € (Q),, if the g-(DFS)-space
(E’, B,) satisfies (with B,:=UY):

vpaD=pvn=D,k=13C,Vt>0: B, /t"Y"NB,1'~/"/C,C B, .
(b) Ag(a) € (DN),N(Q),.
Proof. Part (a) follows from the bipolar theorem.

(b) Ao(x) € (DN), by Holder’s inequality ((2.2) in [8]). (a) implies that
Ag(a) € (Q), if the following holds:

(*) Vp Vn,k=1vt>0:sup|c;|ev/ ") <1,

if sup;|c;| max{e%/*¢V/n, e%i/p/1-1/my < 1,
Fix n, p, k, and ¢. Then (*) is trivial if # <e%/P. For ¢t > e%/P we have

|Cj|eaj/(np) < e W/(p)=1/k) 1/n < g—ejfk < 1 n

The significance of the classes (@), and (DN), comes from the following
tame version of the basic Theorem 1.6 in [14].

1.5. THEOREM. The following are equivalent for a g-(FN)-space E:

(1) E is t-isomorphic to Ay(a) for some sequence o;
(ii) E is t-isomorphic to a complemented subspace of Ay(B) for some

sequence (3;
(iii) Ee(DN),N(Q),.

Proof. “(i)=(ii)” is evident.

“(il) = (iii))” We may assume that E is a complemented subspace of
(A¢(B), U,) via a projection I1. E€ (DN), by Lemma 1.4(b). Lemma 1.3(b)
and the continuity of IT imply, for V;:=U,NE,

vp Bp', C2,D2p’ vYn ZD, k EIk’, C], C3 vVi>0:
Vap=T1(V,,p) C tY"TI(Uy) + CIL(U, )/t =V C C3t/"Vi+ C,C, W, /1~ V7

“(iii) = (1)” This follows by an improved version of the Mitiagin-Henkin
procedure (see [14, §1]).

(@) (22), implies the existence of a bounded set B C E such that the follow-
ing holds for the dual “norms”

| %71 7:=sup{[<x, x| | x| =1}
(see [14, Lemma 1.4]):
(1.1) VpIDVnz=D3Cy: |x'|3pa= Cy(|x'|B) '~ (| x" ;)"

The proof of Satz 1.6 in [14] shows the existence of a Hilbert space (Ew, ¢ , Yoo)
such that

(1.2) E, is continuously embedded in E,
(1.2%) EpCE, and | |o=| 5.
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(DN), and (1.1)-(1.2") imply the existence of 8, C, and D(é) such that
@, vn=C3C: | 1= Cll IV 1
=G 1779 1570
(@), vn=D3Cs: | |3p,=< Cs(| [)V"(| %)~
We may thus apply the proof of Satz 1.1 in [14] to obtain sequences
{exlkeN}JCE and f{¢;|keN}CE’

such that

(1.3) x= ¢p(x)e (inkE)
(1.4) locls=1/ar,  |orlo=
and

(1.5) lexls= ax, lexlo=1,

where (a,) € N, /7 is decreasing.
(b) Let T: E — w be defined by T(x):=(¢,,(x)),en. Then T is a t-isomor-
phism from E onto Ay(«), where «,:=max(0,In(1/a,)).

Proof. (1.3), («),, and (1.5) show the tameness of 7L
jx,= 2|¢k(x)| lexln=C> 2|¢k(X)| lexld " e~
=G, %’d’k(x)' a;/ "9 = Cy| T(X)| e
where | |2 is the canonical nth norm in Ay(a).
(w); and (1.4) imply:
[6xlipn= C3(6el 1) (164l %) !~ = C5(1/a,) /™

and therefore

T = Sloxlal"< C; (; a;/‘z"))uxn . 0

Combining Theorem 1.5 with the splitting theorem of Vogt for t-exact se-
quences of power series spaces of finite type ([13], see also [11]), we obtain
the following basic theorem.

1.6. THEOREM. Let E,F, G be g-(FN)-spaces and let
0—>ELHFL4H G0

be a t-exact sequence. Let E, G € (2),N(DN),. Then the sequence is t-split;
that is, q has a tame right inverse.

Proof. E and G are t-isomorphic to some Ay(a) (resp. Ag(B)) by Theorem
1.5. So the resulting sequence

0 — Ag(ar) > F 9 Ay(B)— 0
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is t-exact, and § has a tame right inverse R (see [13]), which immediately
gives a tame right inverse R for gq. LJ

2. Weighted Gevrey Classes of Roumieu Type

For i< N let
2.1 W(x):= Ll)xlw,-(t)dt with 0<e<w; e C([0, ©)).
Let
x-£= Y x;§ for x,teCVN
and let =

k®:= T kp* for k,5eRY.
i=sN

2.1. DEFINITION. Let W(x):=2;-nW;(x;)and let 6 =(6;); < With §;>1
for i< N.

Dk (—1+1/n)W(x)
(@) Do(—w):= {fe C>(RM)| p; (f):= sup | f(x,);.kkak | <

for some n=> 1} .

Dk (1+1/n)W(x)
(b) TO(W) = [fecw(RN)lpn<f)==§ug' L <o

for some n= 1].
The spaces I'*(+ W) will always be equipped with the above gradings.

We will consider partial differential equations in I'®(— W) and (W), in
Section 4. It is shown in the present section that I'*(+ W)} e (DN),N(2),.
To simplify notation, only functions of one variable will be considered in
the remaining part of this section.

We first construct special cut-off functions (see also [7, Lemma 1.2.] and
[9, p. 103ff]).

2.2. LEMMA. Let 6>1. Then there is C> 0 such that for j >0 there are
0=<pu;e C*(R) such that the following hold:

S,uj(t)dt=1 and supp p;C [—j/64, j/64];

. P _ ¢ C/(nj V/6-D)
VnZCECIVj.supk,xWS J—_e m .
Proof. This is evident for j >1. Let j<1. Let pg:=[1/jY0®"D], ky:=512/;
and

_ [ 256p,/i for p=p,,

koi=
0 {128-25“175/(6—1) for p> py.
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Let
k,/2 for |x|<1/k,,
$ = P p
p(¥) {0 for |x|>1/k,,

and let yo:=®* P and ¢,:=y,_,*®, for p=1. &, and ¥, are nonnega-
tive and § ®,(x) dx=[y,(x) dx=1for p=0.

supp ¥, C {x||x| =2/ko+ io) l/kp}c[—j/64,j/64]
p=1

by the choice of k,. ¥,€ C#(R) and

1¥52) 0 = 194 o0 = Kl Yol o = 256K,/

for 0<a<pand Ky:=1, K,:=11}-1k,.

So, a subsequence of ¥, converges in C*(R) to a function ;e C*(R),
and |p{”]., <256K,/j for a>0.

Let I=a=< p,. Then

Ka [(C/(l’l_] 1/(5—-1)))0]53 eac/(njll(é-—l)).

<
(na)da al

Let a> p,y. Then
Ka <e¢SC/(nj1/(5_1)) (Ka/KpO)

(ng)oe — (na)dl@a—pro)
< eéc/(”f 1/(6-1))

for n=(128-2%"Y(6—1))/%. The lemma follows immediately. O

We will frequently use special cut-off functions defined by {g;} in the fol-
lowing way: We suppose that

2.2) w(t)=o(W(1)°),

so there is a strictly positive increasing and unbounded function ge C(R)
such that

(2.3) g(t)=0(t5) and w(t)=<g(W()).
Let A(¢):=g(¢)/t®"L Then
2.4) h(t) = o(t).

For y>0let >0 be defined by
(2.5) W(y)=W(y)+h2W(y)).

7 is well defined and 7> y, as w= W’ and h are positive. Let e(y):=7—.
Let ®, denote the convolution of a characteristic function with g, where
t=yort=Jorlet &, be the sum of two such functions. We also suppose that
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(2.6) supp ®,C 1=y, yl.
Let & or ~ be the Fourier transform defined by f(z):= (. f, e ~™*"%).

2.3. LEMMA. Let &, @, be defined as above and let W satisfy (2.1) and
(2.2). Then aA>1Vn>A IC,vy=AvVfeT¥R):

—~ A \%
sup|f®,(z) el < C, Suplf(k)(x)leAW(x)/n(_) S p¥Inz g
zeC xel, nk I,
k
Proof. (a)

B k
@7 Vtzeazsup(ia> se5’1/5/6=5u13(i5> _tsup( { >k.
ren\ K k=1\K keN\K°

Combining this with Lemma 2.2, we get for |z| = C;(n)

1/8 /\k 2e
sup|f<1> 78, (2) e < sup |(f®)" ’(z)( )

keN kné
Z
d4e \*| . )
SCz(r‘?)s e*™2 dx sup f(k’(x)(ke> o C/ne()/®=D)

Iy xel, )

keN

(b) By (2.4),
(2-8) W(F)<2W(§)<4W(y) forlarge y.
L 1 _ h2W () i

€3) J—y  WNWO)+hQW(»)—W-{W(») hW ()

TG M {6 WP
= hQW()) T hQW ()

for some 7 < J by the mean value theorem, (2.3), and (2.8). Similarly,
1/e(7) < QW (5)°~ = (4w(y))°~L

The conclusion follows (at first for |z| = C;(n)) by (2.8), since W is increas-
ing. ]

.9)

2.4. THEOREM. Let W satisfy (2.1) and (2.2). Then
I+ W)je (DN), N (D),

and T+ W)}, is nuclear.

Proof. (a) With A(¢)=g(¢)/t®! as in (2.3) and with large C, let x,:=0,
x;:=C, and W(x,,,)=W(x,)+h(2W(x,)) for r=1 (i.e., x,,=X,; see
(2.5)). x, is strictly increasing and unbounded (otherwise x =lim x, exists,
and W(x)=1lim W(x,, ;)= W(x)+h(2W(x)), hence h(2W(x))=0, a con-
tradiction).

For negative r, x, is defined by x,:= —x_,. Let e(r) := e(x,) :=X|| 41— X|}-
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(b) Let I,:=(x,, X,,,)and I_,:=—1_, for re N (Iy:=(—x,, X3)). Let xp,
be the characteristic function of M CR. For r =1, let ., be defined as in
Lemma 2.2. Let (I) ‘=XB *,LLG(,.), (I) —q)r+] (pr, and q)_r(t) = ( t) =
&, (¢), where B,:=(—, X +e(r)/2) (®o(2):=d,(|])). (®,|reZ}isareso-
lution of the identity subordinate to {/,|r € Z}, which satisfies the assump-
tions of Lemma 2.3. These are also satisfied by

Y_pi=y= XBy* Re(r+1)~ XB.* Pe(ry»

where B :=(—o0, x,+¢(r)/16) and B} := (—o, x, 1+ 9¢(r+1)/16) for r=1.
Yo I'd(—x,, x,) is chosen to be 1 on supp ®,. ¥, =10n a neighbourhood of
supp ®, for reZ.

(c) Let S, f:= f(- —x) for fe C°(R). Let «;: C°(R) » s ®, o and
k3 : 5@, 0 — C°(R) be defined by

1 Wor
() ——(—)( _x,<f@,))*(2w7—f5)e-w‘ ,)>( .

KE()) (D)= T, S, T emist e W e
r s

and

for v(r) = x|, 42— X ;=e(r+1)+e(r). It is easily seen that k;" is defined and
Kk oki is the identity on C®(R).
(d) Let
A={(cs)| sup ey |els/ v G/m
(s,r)eZXxZ
= q,((cs)) <o for some n=1}.

To show that «{": T'¥(+ W) — A and «; : A— I'*(+ W) are tame, we use the
following consequences of (2.5) and (2.4):

W(X,-+2) = (1 + l/n) W(xr) + Cla

(2.10) vnaC vr: —Wi(x,) =(=1+1/n)W(x,.,)+C;.

Lemma 2.3 implies

£ W(x, )+ [s/y(N/ 3+ W(x,))/n

gn(ki (f))—sup — '(f ke (2”) e
v(r)

A ok
< C2 sup Suplf(k)(x)’( k) e(t1+(A+2)/n)W(x)

r xel
< CyPnjcar(S)-
Lemma 2.2 and (2.7)-(2.10) imply

D (k3 () < 3 Dy (Y, €2 C =57 D) ¢ e FW D)

s, r

2 \%k 2 k 2 \%k
=Y sup|¢ P — ] su (— — AW/ <
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< C; 3 eBCWON+Cis/3(r) Vo) n ¢ |

S, r
= C4 Qn/C’((Csr)) .

The final estimate follows, as

—(Wi 1/6
@.11) exp( ( (xr)+nlS/7(f’)| )>el‘.
Proof.
hQ2wW hQ2W W
e(ry=%x%—x,< (2W(xp) < (W (x,)) < (x) for large r
w(7) € 6
by (2.1) and (2.4). For large r, (2.8) implies that
1 2
>
v(r)  Wi(x,)
and that
17 2s |V W(x,)
W LI > |s|v@e ¢ X
The conclusion follows, as
e Mg 3 L - yam S"’“ e~ WX/ gy
r r e(r) Xr

< S°° e —WX/(4n) gy < oo
0
by (2.8) and (2.9).

(e) ki ok, is a (tame) projection in A onto a subspace E, which is t-iso-
morphic to I'?(+ W) via («) 7| g= k,| . As A is t-isomorphic to Ao(a) for
some a, we get I'’(+ W) e (DN),N(Q),. I'®(+ W)} is nuclear, as A is nuclear
by the Grothendieck-Pietsch criterion (see (2.11)). O

In fact, I'(+ W) is t-isomorphic to

A= {(csr) eCZx2|y |cs,|e(|5|l/5+W(’))/":—_— q,(c,,) <o for some n= 1} ,

S, r

but we will not need this in the subsequent sections. (For an indication of
the proof see Proposition 1.5 and Theorem 1.6 in [6].)
In the literature it is usually assumed that I'®(+ W) is stable for shifts,

that is,
(2.12) W(t+1)=o0(W(t)).

This implies that W(t) <e' for large .
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Condition (2.2) is much weaker than (2.12). It does not imply a priori
bounds for the growth of W (see §4, where we give simple examples of
weight functions that satisfy any of the conditions needed in this paper).

3. Fourier Transformation

It is shown in this section that the Fourier transformation is a tame isomor-
phism of I'*(— W)}, (and I"*(W)) onto certain spaces of entire functions de-
fined below. Moreover, special plurisubharmonic (psh.) functions (needed
to apply the fundamental principle of Ehrenpreis) may be constructed in a
tame way.

Let U* be the Young conjugate of a convex function U defined by

U*(y):= sup y-x—U(x).
xeRFK

Let
o
G.1) Wi(t):= SO w.(7) dr,

where w; e C[0, o) is increasing and bijective on [0, o).

3.1. DEFINITION. Let W(¢)= I, W;(¢;) satisfy (3.1).
(@)
K_i=(f€ 3(CN) |g; (f)=sup| fz)e~ /MM Umaleln) < o0
) for any n=1j.
(b)
3¢, = {f € J(CN) | g,(f):=sup| f(z) e~ U+ (ma el /n| < o
) for some n=1j.

Again, for the sake of simplicity, only functions of one variable are con-
sidered in this section.

3.2. PROPOSITION. The Fourier transformation is a t-isomorphism be-
tween

(@) T%W) and 3C,;
(b) T(—W)}, and 3C_, if W also satisfies (2.2).

Proof. (a) With A:=2e/8, by (2.7) we have

@.(f) = Cy(n) sup| f(z)| e~ VMW Am2)| 21k ( 4 /(nk))®*
k,z

=< Cipya() [ eV dx < Cy poya ()

for A;=max{A, 2}. The Fourier inversion formula implies
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PO = 5 [ fe+ind 5+ in ket a
2w

for any y, € R. Choose y, such that x- y,— (1+1/n) W(x) = (1+1/n) W)*(y,).
Then

Pl £) = Cx(nysup [| (g +iy|edi+in na=wsymmr o g
X

= Cu4quya,(f)

for A,=max(2é/e,1), by (2.7).
(b.i) The canonical grading of I'’(— W)}, is defined by

|75 =sup{KT, /3| | p; (f)=1} for TeT-W)j.
With A =max(1, 6/e) and
f(x)=exp(—ixz—|z|/Y/n—((1—1/n)W)*(Im 2))
we get, from (2.7),
(3.2) Pra(f)=<1 and q;(f’)=§lenél<T,fz>l =<|T|7a-

Hence the Fourier transform is tame from I'*(— W)} into JC_.
(b.ii) For ge 3C and fe T'§(R) we define

v 1 ~
(H(g), /Y= 5= S 2(x) f(x) dx.
T JR

H(g) is defined (e.g., by part (a)) since I'S(R) is contained in I'*(W) and
H(g) is linear on I'}(R). Choose a partition of unity {®,|r e Z} as in part
(b) of the proof of Theorem 2.4. This implies, for any y,e R, that
[KH(g), /)| 1
= ZKH(), fé)|= - X
r ™ r
(3.3)

1 /\ 7y * .
= gq,m_(g) Se—IXIW/n dx 3, sup| f®,(x+ iy,) e A=2/mW) Gr)g2lx+iy,|Vo/n)
r X

N
[ gtx+iv) T (x+i9) ax

< Ci(n) g, (&) Prjaay(S) T SI eXrdx e =2/MWY 0 (=AM,
r

by Lemma 2.3 and (2.10). The sum is finite if 4 =3 and if we choose y, for
|r| = 1 such that sup ¢, xy,=—|x,y,| and
—|x | H((A=2/m)W)*(y,) = —(1-2/n) W(x,).
Let

E;:={feT%—=W)| lim sup|f®(x)e VMW /(nk)®| =0

|x| > &
for some n=1}
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with the norm p; . Then H(g) defines continuous linear forlns H,(g) on
E,NT§(R) for any n, which may be uniquely extended to H,(g) € E;, as
I'j(R) C E, is dense in E,. More precisely:

3.4) vn=13C: ®,c C®,NTYR)"",

where ®,, is the unit ball in E,,.

{H,(g)|n=1)} define a continuous linear mapping H(g) on ind lim E,,,
which is t-isomorphic to I'*(— W). (3.3) and (3.4) then show that A is tame
from 3C_ into ['*(—W)j,

(b.iii) H is bijective and H ~!is the Fourier transform.

Proof. Let
~ < 1 N
(3.5) 0=(H(®), /=5 | 8(x) (x) dx
™

for any fe I'§(R). Then (3.5) also holds for any f e I'®(x?/2), as both sides
of (3.5) are continuous on I'®(x?%/2), which contains I'§(R) as a dense sub-
space. As e~*fe 3¢5 (x¥2) (:= F(I'*(x?¥/2)) for any fe [$(R)), we have

0= S(g(x)e"xz) f(x)dx forany feT4(R).

As gze"xzeLz(R) and as F(I'§(R)) is dense in L*(R), this shows that
ge * " =0a.e. and g(z)=0, as g is entire. So, H is injective.
To show the surjectivity of H, we only have to show that
ﬁ°§ - Idl“s(—W);,

on the dense subspace D(R) of I'°(— W);,. But this is just Parseval’s formula:

o~ v 1 A -
HoF(0), [y =5 | $(x) fx) dx = o(x) f(x) ax
™

for € D(R) and feT¢(R).
Thus the proposition is completely proved. il

In particular, the inductive (resp. projective) limits defining JC, (resp. JC_)
are compact.

Let LI (z):=((1+1/n)W)*(Imz) ¥ |z|1/5/n (these are the weights on 3C.).
The proposition below contains the technical tools needed to apply the fun-
damental principle (or, at least, the division-and-extension theorem [2]).

3.3. PROPOSITION. (a) VC,n3C;:
(i) supp,<c Ly(z+n)+Cln(1+|z]|?) < Ly,(z) + Cy;
(i) supj,<cLa(z+n)+Cln(1+|z|*) <L; (z)+C;.
(b.1) L, issubharmonic (sh.) for any n=1.

(b.ii) Let (2.2) be valid. There is & > 0 such that for any n =1 there are
C; > 0and sh. functions h, such that L, ;»(z) < C1+ h,(2) < C, L g,(2)-
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Proof. (a.i) The only nontrivial estimate is seen as follows:

((A+2/m)W)*(t+ 1)< ((1+1/n) W(x)—C|x|)*(¢)
= Ci+((1+1/@2n))W)*(¢)
for |7| < C by (3.1). (a.ii) follows similarly.
(b.i) (1—1/n)W)*(Im z) is continuous and is the supremum of the sh.
functions x-Im z— (1—1/n) W(x). Hence it is sh. [3, Thm. 3.6.2]. |z|/¥/n s

also sh. [3, §1.6]. Thus L, is sh.
(b.ii) For fixed n=1and re N let x, and y, be defined by y,=1,

(1+1/m)W)*(y)=((A+2/m)W)* (¥ 41)s
and
x,=w= (¥, /(1+1/n)).
Let y(r):=%,—x,, where %, is defined by (2.5). Then
W(%,) = W(x,)+h2W(x,)).
¥, is strictly increasing to oo, as y = 0 is the only solution of
(A+1/2r)W)*(y) =(A+1/m)W)*(»).
With p. () as in Lemma 2.2, we take

1

Vri= ¥(r)

—(1+1 w .
I*L'y(r)*X(B,.e 1+ /n) (x,)’

v(r) 3y(r) ]

4 ,xr+ 4

Lemma 2.3, (2.10), and (2.11°) imply (f=1):
|9, (z)|e!#"//164m < C| W (E/(16m)+|%, Im 2| = (1+1/m) W(x,)

®,: [x+

< Cye~ WG/ @m+((1+1/(16n)W)*(Im2)
That is,
(3.6) In| ¥, (2)| < Cy+ Lisan(z) — W(x,)/(2n).
Let |[Rez|<1/y(r) and y,,;=Im z=y, for re N. Then

)u"y(r)<' v )> (z)

V2 .
S;(r/ e“’yzdy| ¥(r) ——=cos(1/2) e*r’r;

¥, (z)| = e~ 1+ /mWxp) | %, ()]

|X(Br(z)| > eXr.yr

1‘7(0(’ ﬂr)) (z )) 7(r)/32ﬂ7(,)(x— 76(;)>cos(xRez) dx =cos(1/2).

The choice of x, and y, implies, for |Rez|<1/y(r)ad y,;1=Imz=y,:
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|¥,(2)| = Cpe*r?r= A+ UmWx) = C,el+Y/mW) ()

3.7) = C, e U+NW) 0rit) 5 C, o1 +2/mW)*(Im2)

By §1.6 of [3],
Vrs(@) =[P 2~/ v ()| = |s/v(N)]n
is sh. for r,se€Z. Let h,(z):=sup, s{V¥,s(z), ¥;s(—2)}. Then
¥rs(2) < Cot Ligan(2—5/v(r)) = |s/v ()| n—W(x,)/(2n)
< Cy+ Ligan(2) — (W(x,) +|s/v(r)|/%)/(2n).
For z e C (with Im z=1) there is r € N (and then s € Z) such that

(3.8)

Yra=zIlmz=y, and |Rez—s/y(r)|<1/v(r).
(3.7) implies:

B (z) =In|§,(z—s/y(r)| = |s/v(r)|¥n
(3.9) > Cy+((142/n)W)*(Im 2) —|s/v(r)|V¥/n
= C3+L,(2).

The supremum defining 7/, is locally finite by (3.8). Hence £,(z) is contin-
uous and sh. by Theorem 1.6.2 in [3]. 4, satisfies the desired estimates for
|Im z| = 1. We may now take A, as the supremum of 4, and

{In|$(z—s)|—|s|¥¥n|seZ},
where ¢ € y§(R) is fixed such that |¢(z)| =1 for |z]| <1. O

Notice that the difference of L/, and L g, may be very small (for large W').
It is, however, sufficient to correct the nonsubharmonicity of —|z|"¥n.

4. Tame Right Inverses for Systems of Partial
Differential Operators

We may now apply the tame splitting theorem of Section 1 and the struc-
tural results of Sections 2 and 3 to obtain tame right inverses for systems of
partial differential operators with constant coeflicients in the graded spaces
(T'%(W)})¢ and I'®(— W)S. The main tool is a tame version of the fundamen-
tal principle (see Proposition 4.1 below), whose proof was prepared in Sec-
tion 3.

Let R(D) be an rXxs system of partial differential operators with con-
stant coefficients, and let {(d;, V})|j=1,...,J} be a Noetherian operator for
‘R(—z) (see [2]), with linear differential operators 3;(z, D;) (of size 1Xs)
with polynomial coefficients and algebraic varieties V; contained in the char-
acteristic variety of R:

Vz:={ze C"¥|rank ‘R(—z) < s}.
Let p be defined by
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p(f):= (ajfle)jsJ for fe Je(CN)s.
The range of p is denoted by

30(Ve) = {(f,-)e I (V) | o(f)=(f;) for some fe JC(CN)S},

j=<J
3¢, (Vo) = ((f}) € (V) | |(f})] :=max sup | f;(z)e Ln?)| < oo

Jj=J zeV;
for some n=1},
and
3C_(Vr):={(/;) € (V) | I(S)l »=max sup|fj(z)e "n@)| <o
J=J zeV;

forany n=1},

where L (z):=((1+£1/n)W)*(Im z) ¥ |z|"/%/n are the weights defining also
JC. (see 3.1). IC . (V) carry their natural projective (resp. inductive) topology.

4.1. PROPOSITION. Let W satisfy (3.1) and (2.2).
(@) I, (Vr) (and 3C_(VRy)) are g-(DFS)-spaces (resp. g-(FS)-spaces)
with the gradings defined by | | ;.
(b) p is a t-isomorphism (1) from (IC.)/'R(—z)(3C.)" onto IC.(Vg)
and (I1) from (3C_)*/'R(—z)(3C_)" onto IC_(Vy).

Proof. “(b)=(a)” piscontinuous from (JC, )*onto JC, (V) by (b). Hence
‘R(—z)(3C,) =Kerp is closed in (JC,)% and (3C.)%/'R(—z)(3C.)" are
(FS)-spaces (resp. (DFS)-spaces). Applying (b) (and Theorem 8 of [4]) again,
this implies that the projective (resp. inductive) spectra defining JC, (V%) are
compact. This proves (a).

(b.1.i) We first show that p: (3C,)*— JC, (Vy) is tame:

lo(/)2,=max sup |aj(z,Dz)f(z)e_L2n(Z)'
isJ zeV;

<C, sup |[(1+]z])C1f(z+n)e LD < Cyq,(f)
zeCN
|nl=Cy
for some C; > 0 by Proposition 3.3(a)(i), as d; are differential operators with
polynomial coefficients.

(b.1.ii) The division-and-extension theorem (D/E theorem, see [2, p. 240])
implies that ‘R(—2z)(3C.) CKer pN(3C,)°. Conversely, let geKerp and
q,(g) <. Choose a psh. function 4, and C; >0 according to Proposition
3.3(b)(ii) such that

(41) _C2_L2(Bn(z)5_Cl_hn(z)s_l‘n(z)-

Then

sup h,(z+n1)+CIn(2+|z]*) < Cj+ L4g,(z)
Inl=C

by Proposition 3.3(a)(i).
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Now the D/E theorem implies the existence of v € JC(CY)’, with

g="R(—z)v and qug,(v)<Cy sup |g(z)|e "9 < Csq,(g).

zeCN

So Ker pN(3C,)*='R(—2z)(3C,)" and p induces a tame (injective) mapping
P (3CL)YR(—=2)(3C ) — 3C (VR).

(b.Liii) For (f;)e 3C,(Vz) with |(f;)],=<1, we may choose fe JC(CV)
such that p(f)=(f;). Using A, as in (4.1) and the D/E theorem, one shows
the existence of ge JC(CY) such that p(g)=p(f) = (f;) and

d4gn(8) < Csmax sup|d;(z, D,) f(z)|e "2
isJ zeV;

= G|l n-

Hence p, is surjective and (p, ) ~!is tame. This proves (b.I).
(b.I1.1) It is proved above that p: (3C_)*— JC_(V%) is tame. Similarly,

4.2) 'R(—z)(3C_) CKer pN(I_)*
and
4.3) 4, (‘R(—=2) f) = Ciaq5,(f).

Using Proposition 3.3 and the D/E theorem, one gets the following. First,
3B vnaC,vgeKer p 3h,e JC(CN),

4.4) g='R(—z)h, and g, (h,)=<Ciqg,(g).
Next, 3B vn3C, V(f;) € 3C_(Vy) 3g, € 3C(CV),
(4.5) p(g)=(f;) and q;(g,)=<C|(f)lzn-

Let 3C_j:={fe I3C(CM)|q, (f) <}. Then
(4.6) 3B: 3C_ isdensein JC_g 4 for the norm gy.

(Use convolution and multiplication with Fourier transforms of cut-off func-
tion g€ v{.)
Combining (4.2)-(4.6), we have:

365 g, aiNKer pC 'R(—2) 30"  C R(—2) (3€T) %
C ('R(—z)3") % c (3¢5 NKer p) .

So, 3CZNKer p is dense in (JC_g qx)*MNKer p in the topology of (3C_)°.
The Mittag-Lefller procedure and (4.5) show that,

3@, VrIC V(f;) € IC_(Vg) 3ge(IC_)°,
p():=(f;) and g, (g,)=Ci|[(/Nzyn-
p_:3C% /(Ker pN3ICE)— JC_(Vy) is a t-isomorphism.
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(b.IL.ii) It remains to show that ‘R(—z)(3JC_)" contains (JC_)*NKer p.
Proof. We must show that
(%) ‘R(—z)h=¢g
is solvable with Ae (JC_)’, if p(g)=0and ge (IJC_)".
() If ‘R(—z) is injective on C[z]’, then ‘R(—z) is injective on JC(CN)”
and (4.4) holds with A=A, for any n, so he (3C_) and ‘R(—z)h=g.
(B) If ‘R(—z) f=0 for some 0 fe C[z]’, then there is a r; X r matrix Q
of polynomials such that ‘R(—z) f=0 for fe C[z]"if and only if f=
‘O(—2z)g for some ge C[z]".
Then {(’RJ-, C™)|j=s} is a Noetherian operator for '0(—2), wherg R; are
the columns of R. The argument in (b.i) is now applied (with {(’Rj, CcNy
instead of p and ‘Q(—z) instead of ‘P(—z)) to show that (*) is solvable as
desired. O

Let P(D) be a r X s system of partial differential operators with constant co-
efficients (on RY), and let Np be the kernel of P(D) (e.g., in the hyperfunc-
tions). Let Q(D) be the matrix of relations implied by P(D) (i.e., ‘P(—z) f=0
for fe C[z]"if and only if f='Q(—z)g for some ge C[z]"1). O may be 0.

The main result of this paper is now concerned with the following two
sequences:

@.7) 0> NpNT(—W)*— (- W) LLL NyNT¥H~W) — 0;
4.8)  0—NpN(T2(W)p) — (T8W)5) EE Ny N (W )}) — 0.
Let W(t):=3;<n Wi(¢;) and

[t
G.1) W(t) = SO wi(7) dr,

where w; e C[0, o) is increasing and bijective on [0, ), where

2.2) w; (1) = o(W;(1)%),

and where W;ow;~!is stable; that is,

4.9) 3C: Wiow; 1(2¢) = CWiow;}(t) for large ¢.

4.2. THEOREM. Let W satisfy (3.1), (2.2) and (4.9). Then the sequences

(4.7) and (4.8) are t-exact and split tamely; that is, P(D) has tame right in-
verses

R_:NyNI'(—W)" > T —W)*;
R : NoN(T(W)p) = (TW),)°.

Proof. (a) The gradings of I'*(+ W) are fixed in Definition 2.1. T'%(+ W)},
carry the canonical dual grading defined by

x f(k)(x)e(ltl/n)W(x)
pi(Ty=sup KT, Pl ot f) =sup L0l <)
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We consider the sequences of (FN)-spaces

0— (2= W)3) /i Q(—=DY (T (= W)j)1 2Dy (Pd(—w)p)°
*10 L (D3(=W)3)"/'P(=D) (T~ W }3) = 0
@.8) 00— N,N(TW)},) — (TW)5) s EEL (T(W)},) ' NNg— 0.
These are t-exact (by Proposition 3.2) if and only if

(4.11) "P(—2): (3€.)/'Q(—2) (3C)"1 —(3C.)°

is a t-isomorphism (into (J3C.)°).

Let O# 0. Then we already noticed that {(‘Pj, C¥)|j=s}is a Noetherian
operator for ‘Q(—z) and that (4.11) is valid by Proposition 4.1. If O=0,
then an r X r submatrix of ‘P(—z) is nonsingular, ‘P(—z) is injective on
(3C.)", and we may use Cramer’s rule and the Malgrange-Ehrenpreis lemma
to show that ‘P(—z) is t-open. ‘P(—z) is obviously tame (see 4.1). So t-
exactness of (4.10) and (4.8) is proved and we may also skip the closure in
(4.10).

(b) (4.9) implies the following (W;=: W). (i)

(1/C)(Cy— C)Wew (1) =A< (CW)* (1) — (C, W)* (1)
< C(C,—C)Wow (1) + A

for any 1/2<C,;< C,=<2 and some A. Also, (ii)
W)+ Wew1(1)/(Cn)—A,<((1-1/n)W)*(¢)

(4.12) S W*t)+ CWoew™(t)/n+A,;
@.13) WH(t)—CWew N (t)/n—A, < ((1+1/n)W)*(¢)

' <W*(t)—Wew™N(t)/(Cn)+A,
for n=2.

Proof. W*(t)={§w~\(7)dr, as W satisfies (3.1). (4.9) implies:

S wl(t/Cy)

(CIY ()= (Co W) (t) = (Cow(7)—Cyw(7)) dr

C,

=(C,—C)Wew~l(t/C,)) = —=—— —G L Wow (1) - A;

w~l(/Cy)
@y - =" (Cown - Cowr) dr

=(C,—CY)Wew~l(t/Cy)
< C(C,— C)Wow™l(£) + A.
This proves (i). (ii) follows by choosing C;=1—1/nand C,=1 (resp. C;=1
and C,=1+1/n).
(c) We now consider (4.10). F‘s(—W)f,e (DN),N(2), by Theorem 2.4.
Hence,
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(T¥(=W)3)/'Q(—=D)(I'*(—W);) 1€ (DN),N(),,
as (4.10) is tame and as (), is inherited to quotients. Similarly,
(T(—=W)3)Y/'P(—DYI(—W);) € (D),

(3C_)3%/'P(—z)(3C_)" is t-isomorphic (via p) to F_(Vp), where JC_(Vp) is
the space JC_(Vp) equipped with the grading defined by
(/)] := max suplfj(z)e":ﬂz’l,
' Jj=J zeV;
where

L, (z):==w*(Imz)+ %( Y Wiew (Im z;) + |z|‘/‘5).
i=N
Indeed, 3_(Vp) and 3C_(Vp) are t-isomorphic by (4.12). (DN), is now eas-
ily proved for JC_(¥p) (and hence for (I'(—W)3)%/‘P(—D)(I'*(—=W)3)").

Theorem 1.6 now implies that (4.10) is (t-) split, so (4.7) is also split and
P(D) has a continuous linear right inverse, which is automatically tame
([14, 5.1] and [8, (1.1)]), as all spaces are t-isomorphic to duals of power
series spaces of finite type.

(d) We now consider (4.8). NpN (I‘5(W);))se (DN), (and NpN (I3wW)H,) e
(DN),N(2),), being a subspace (and a quotient) of some product of I'*(W)j,.
(NpN(I%(W)}3)%) is t-isomorphic to (3C,)%/'P(—z)(3C,)", which is t-iso-
morphic (via p) to 3~C+(Vp), where the grading of 3C, (Vp) is defined by

I(f])lnzz max sup I-f]'(z)e_i:"(z)l,
j=J zeV;

where

_ 1
L. (z):=w*Imz)— 71-[ S Wew; Y(Im z,-)+|z|‘/5].
i=N

JC . (Vp) is t-isomorphic to JC, (Vp) by (4.13). Using JC,.(Vp), one proves
as in Lemma 1.4. that (NpN(I'%(W);)) € (2),. Theorem 1.6 now implies
the existence of a tame right inverse for P(D). O

Condition (4.9) is satisfied, for example, in the following cases (W := W;):

(i) W satisfies (3.1) and 2w(¢) < w(Ct) < C'w(t) for some C >1 and
large ¢; _ )
(ii) W(t)=exp(W(t)), where W satisfies (3.1).

It was shown in Remark 3.6 of [6] that, for any G satisfying (3.1), there is
W satisfying (3.1) such that:

Gty=W()=G(t+C)+1 for some C>0 and large ¢;
w(t)<W(¢)¢ for any e¢>1 and large .

So, any continuous function is bounded by some function satisfying the as-
sumptions of Theorem 4.2. So no a priori bounds on the growth of W are
implied by these assumptions (see also the final remarks of Section 2).
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Notice that these assumptions are stable for taking compositions in the
following sense: WV satisfies (3.1), (2.2), and (4.9) if W and V satisfy (3.1)
and (4.9), if V satisfies (2.2), and if W satisfies w(¢) = O(W(¢)%/t°).

We now give some simple explicit examples.

4.3. EXAMPLES. The following functions satisfy the assumptions of The-
orem 4.2 (for any 6> 1):

@ W)=t*(Int)b a>1,8=0

(b) W(t)=eWD* a>1

(c) W(t)y=e'S, a>0

(d) W(t)=k-fold composition of e’*, «a>0, k=1.

Let W satisfy the assumptions of Theorem 4.2. If P is hypoelliptic, then the
solution spaces of P(D) in I'¢(W)}, and in
CP(W):=(fe C*RM)| p,(f):=sup|fP(x)e”I+/MV D] <0

J<n
for any n=1}

coincide algebraically and topologically if
(4.14) e>0-p,

where p is the index of hypoellipticity. In fact, C;°(W) is a localizable ana-
lytically uniform space [5, Lemma 2.2b] and, on the characteristic varicty
of P, the weight systems determining JC, and the Fourier transform of
C°(W); are equivalent by (2.2), (4.13), and (4.14).

Notice that C{°(W) is isomorphic to the 7 tensor product of a power
series space of finite type with (s), and hence C{°(W) is not a power series
space. The kernel N,NC°(W)* is however isomorphic to a power series
space of finite type if (3.1), (4.9), and a condition weaker than (2.2) are
satisfied [5]. Theorem 4.2 now implies the following improvement of this
result.

4.4. COROLLARY. Let the assumption of Theorem 4.2 be satisfied ( for
some 6) and let P be hypoelliptic.

(@) N,N(C(W))*® is t-isomorphic to some Ay(ay,) (for the grading de-

fined by p,).
(b) P has a continuous linear right inverse R: C{>(W) NNg— CP(W)°.

Proof. (a) For fe C{°(W) and p,, as in 2.1 we get:
i) =sup (KA, ]| Pu(@) <1y < [ e~ HYMWI| £(x)] dx
= P2a(f) S e~ WG gy,
So Id: NpNCP(W)S— NpN(I'{(W)p)* is tame. As NpN(CP(yW))® and

NpN(I'(yW)3)° coincide topologically for v =1, we obtain, for p,, .,:=p,
in CyP(vyW),
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vnaAm: P,(f) < Pan 141/ ) = C1Pm 1414 ) = C1 P2, (f).

Thus NpNCP(W)* and NpN(I'Y(W)})° are t-isomorphic and (a) follows
from the proof of Theorem 4.2.

(b) Let R, : NoN(I'(W)p)" — (L(W)}p)° be aright inverse of P(D) (from
Theorem 4.2). Then (Id — R-P(D)) is a continuous projection in (I'{(W)3)°
onto NpN(T'“(W))’=NpNCP(W)*. So, m:=(Id—ReP(D))|cpuw)s is a
continuous projection in C{°(W)* onto NpNC{°(W)5. This proves (b). [l
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