Restriction to Transverse Curves of
Some Spaces of Functions in the Unit Ball

JOAQUIM BRUNA & CARMEN CASCANTE

Introduction

Let B denote the unit ball in C”, and S its boundary. Let 2#*(B) denote the
space of bounded pluriharmonic functions in B, and let H “(B) be the sub-
space of 7”(B) of holomorphic functions. Also, for a <1, we consider the
algebra Lip,(B) of holomorphic functions in B, satisfying a Lipschitz con-
dition of order oo with respect to the Euclidean metric.

In this paper we deal with restrictions of these spaces to closed curves
I' C S. Here we will summarize the main results of the paper and introduce
at the same time some of the required notations.

We will work with a simple (without intersections) periodic transverse
curve, y: R— S of class Cl. Recall that a curve is transverse if, for every
t in R, vy'(¢) does not lie in the complex-tangent space P, at the same
point. Analytically this condition is equivalent to the relation Im ()~ (¢) #
0 (whereas Rey’(¢)y(#) =0, simply because v is on S). By choosing the re-
parametrization s(¢) = [’ |Im y'(x)y(x)|dx, a <t < b, where a and b satisfy
v(a) =~v(b), we obtain a parametrization such that v'(£)y(¢) =i. With an
appropriate dilation, we will suppose from now on that the curve is 2x-
periodic, and there exists A > 0 such that, for all ¢, y’(¢)v(¢) = \i. In the fol-
lowing we will write I for [—m, 7], and " =y([—, 7]).

We also consider the Koranyi pseudodistance d(z, w)=|1—Zw|, where
zw=2; z;w;. This defines a pseudodistance only on S, but we will consider
it defined as well when one of the two variables is not in S.

In one complex variable, Fatou’s theorem gives sense to the space 2% |1 of
boundary values of bounded harmonic functions, and the use of the Poisson
transform shows that this space equals L*(T).

In several complex variables, a result of Nagel, Rudin, and Wainger (see
[5] and [6]) states a Fatou type theorem implying the existence at almost
every point of a C! transverse curve of the radial limit of a bounded holo-
morphic function; in fact, it proves the existence of a stronger kind of limit,
the restricted K-limit. It is easy to see that the Nagel-Rudin-Wainger theo-
rem holds for bounded pluriharmonic functions so that the space 2% r is
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well defined. On the other hand, in [1] a pluriharmonic Poisson kernel re-
lated to transverse curves is introduced. This kernel has in a certain sense the
same behavior as the classical Poisson kernel in one complex variable. These
two facts will be used in Section 1 to prove the following theorem.

THEOREM A. The space h® v has finite codimension in the space of
bounded functions in T'.

In Section 1 we introduce the auxiliary results needed for the following sec-
tions. Most of the results of that section are in [1], but the curves considered
there are more regular than the curves we are dealing with, so it will be nec-
essary to prove the assertions for our more general class of curves.

In Section 2 we study spaces of holomorphic functions. In one complex
variable it is well known that the space Re H* 7, consisting of boundary
values of real parts of bounded holomorphic functions in D, is the space of
real bounded functions on T with bounded conjugate. We will see that, in
general, we have Theorem B.

THEOREM B. The space Re H* | has finite codimension in the space of
real bounded functions in I' with bounded conjugate.

We will also establish a similar characterization of the space of restrictions
to the curve of real parts of Lipschitz functions, showing (provided v is of
class C?) the next theorem.

THEOREM C. The space Re Lip,|r, where o <1, has finite codimension in
the space of real functions in T that satisfy a Lipschitz condition of order o.

As final remarks on notation, we denote by C an arbitrary constant that may
change from one occurrence to another, and we write x << y or x =0(y) if
there exists M >0suchthatx<Myandx=y if x <<y and y<x. The con-
jugate of a function f on [—, 7] will be denoted by f.

The theorem of Nagel, Rudin, and Wainger [6] holds not only for curves
of class C!, but for curves which are only continuous and rectifiable. A nat-
ural question that remains to be studied is whether or not our results extend
to this more general class of curves.

1. Preliminary results. The space 2%

As we have said in the summary, in this section we will collect the auxiliary
results and prove Theorem A. First we give another proof of the Nagel-
Rudin-Wainger theorem in order to obtain more information about the
boundary values of a bounded holomorphic function on a transverse curve.
We will need some definitions that can be found in [7].

DEFINITION. For £€ 8, a &-curve is a continuous map o: [0, 1) = B such
that lim,_,; o(¢) = &. A E-curve is special if it satisfies
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o) —(a()EE]

lim - =0
t—1 I_IU(t)Elz

and it is restricted if it satisfies

M=O(1) if 0<t<l.
1—|o(2)E]

A function f: B — C has restricted K-limit L at ¢ if lim,_,; f(o(¢))=L for
every restricted £-curve.

’

THEOREM 1 [5;6]. Let v:[—m, ] = C be a simple periodic transverse
curve of class C'. Then: (a) If f € H*(B) then the restricted K-limit of f at
v(t) exists a.e. t € I. Denoting this restricted K-limit by f*, ﬁe\f/* is bounded
in I. (b) If f € h®(B) then the restricted K-limit of f at y(t) exists a.e. t in 1.

Proof of Theorem 1. For part (a), given fe H*(B), let us consider (as in
[5]) the composition F= f- P, where ® is the “quasianalytic” disc constructed
there. That is, ®: D — Bis a C! function in D satisfying:
(i) ®(e”)=+(¢) for tel;
(ii) ®(z)eBif zeD; and _
(iii) for every t €1, the curve T, defined by I',(r) = ®(re') is a “special”
approach curve to the point y(¢) € S.

The function F satisfies:

(iv) |3F(z)|=0((1—|z|)"/?).
What we are going to do now is to “correct” F, in order to obtain a bounded
holomorphic function in D. We need the following.

THEOREM 2. Let f be a C' function on D such that | f(z)|= O((1—|z|)*™ 1),
where 0 < a < 1. Then there exists a function u € Lip (D) such that du(z) =
f(z) for all z in D.

Proof of Theorem 2. Let us introduce the operator given by

1 ¢ =& £
M@= 50 )y T g g O

&).

As is well known, this operator also solves the d-equation, and we will prove
that

(1) u(z)=T,f(z)
is in Lip, (D).
Let 21,2, be in D and let 6 =|z;—z,|. From the equality
{ 1 _ 1 } _ (@=2) 1+~ E(z1+2,))
(I-Ez))(¢—z1) (1-£22)(§—22) (1—£z))(§—22) (1 —£25)(§—23)

and from the definition of 77, we deduce that it is enough to show that
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1— 2 1 2_F
@ “‘ (A=[&)A+|E|"—E(z1+22)) £&) dm()| = 0.

D (1-Ez)((—z1)(1—£22) (§—22)

Since
1+|£P—E(z+22) = 1—|EP+ E(E—z)) + E(E—23),

(2) will be deduced from

(=& 18| i
3 — — d =0(6*"),
©) I, 1—Eoi|[—2)||1—Ey|[E—zp] {8V =00
(1—|£]2)|f(£)| _1
4 h - d =0(6% ),
()d SD [1—£z;||1—£2,||£— 23] mE=06""
an .
(1-]E|2)|f(f)| _1
5 - —d =0(6% ).
®) by =Falle—an i8] 7O =00

Before proving these estimates, we need a technical lemma about the Kor-
anyi pseudodistance.

LEMMA 1. Letz,Ee€D. Then
(6) N1—Ez|=(1—|&))+|z—£|.

Proof of Lemma 1. The upper estimate is obvious. For the estimate from
below, since |1—£z|=1—|£| the lemma will follow if we prove (6) in the case
|z—&|=C(1—|£]) for some C. From the inequality

11-Ez| = |E—z]|£] - (1-|¢]*),

we have that if C=1 and |¢|= 1, then |1-£z|= L |t —z| - (2/C) |t —z| =
Y|E—z|+(1—|%|). Finally, if || <1, then both quantities of (6) do not van-
ish, and (6) is then obvious. ]

Following with the proof of Theorem 2, we will prove (3) first. Lemma 1 and
the hypothesis on the function f give that the numerator is bounded by

(1= (€Y1 < (1= 6D < |1~ Fo) [ 1 = Egy| D/,

Hence (3) will be a consequence of

dm(§) 1
) — e =0(5%7Y),
b |1 &2y |12 |1 = £2p | 172 £ — 2, || £~ 2|
and applying Lemma 1, the estimate (7) will follow from
dm(%) sl
® \e Tzl gy = 0",

Now we decompose the integral of (8) in the three regions that appear when
we consider the discs D(z;, 6/2), i =1, 2, and we will see that each of the re-
sulting integrals satisfies an estimate like (8).
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If £ € D(z;,68/2), then | —z;| = 6/2 for j #i and i =1, 2, and consequently
a polar change of coordinates gives

dm(&) 5
<<5(a-3)/zg pla=1)/2 g,
SD(z,-,&/Z) |§—7,|B=)/2|f —z,|B~)/2 0

<6l i=1,2.

If £ ¢ D(z4,6/2)UD(z,,6/2), then |§ —z;|=|{—2,|, and a polar change of
coordinates gives

S dm(&)
(10) C\D(z1,8/2)UD(z5,8/2) |E—21|B3 /2| —2,|B-)/2

€))

+ o0 5
< S ré—4dr
)
< 6271,

Finally, from (9) and (10) we get (8), and hence (3). The other estimates fol-
low in a similar way. 0

Applying Theorem 2 to the function dF, we conclude that there exists a func-
tion u in Lip, /,(D) such that F—u is a bounded holomorphic function in D.
By Fatou’s theorem the hm,_,l(F(re” )—u(re™)) exists a.e. ¢ in I. Hence,
lim, , F(re')=1im,_,; fo®(re") exists a.e. ¢ in I. Using property (iii) that
is satisfied by the function ® and Cirka’s theorem (see [7, p. 171]) we get the
existence a.e. ¢ in I of the K-limit of the function f.

Since u is in Lip, ,(D), # verifies a Lipschitz estimate with exponent 1/2.
Since F—u has a bounded conjugate it follows that F has also a bounded
conjugate.

For part (b), it is enough to prove the statement for real bounded plurihar-
monic functions. Given such a function f, let g be such that f+ige H(B).
Then (b) will follow by applying (a) to the bounded holomorphic functions

exp(f+ig) and exp[—(f+ig)]. O

Before proceeding we need to introduce two pluriharmonic kernels. For v
a 2w-periodic simple transverse C! curve, let P(z, ¢) be the pluriharmonic
“Poisson” kernel (introduced by Bruna and Ortega [1]) given by

1—|v(8)z]? _
(1) P(z,t)=2Re——1__——1=_|ﬂ’(;%, eB\T, tel.
1—v(t)z |1—y(#)z|
Similarly, we introduce the conjugate of P, Q(z, t), given by
21 t _
12) O(z,t)=2Im I _ 21my(0)z zeB\TI, tel.

1—y()z  |[1—v()z|*’
The following lemma of Chaumat-Chollet [2] is used in [1] to give an esti-
mate of P. We state it without proof.

LEMMA 2 [2]. Let T be a curve as above. There exists a neighbourhood
Uof T in C", and a mapping p: U—T of class C', such that:
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(i) p(z)=z for zeT, and Im p(z)Z =0, provided z e BN U.
(ii) For ze BNU, let t, be such that p(z) =v(t;). Then, for tin I,
[1—v(Oz] =]t~ 1| +]|1-7(t)z].

The following estimates, in case the curve is more regular, are in [1]. We
state and prove them for C! curves.

LEMMA 3 [1]. ForzeUNBand |t—t,|=<m,

: re+|t—t?
P(z,t) =0 2——*_1,

® @0=0( i)

wherer,=d(p(z),z). If I, ={t||t—t,|<d,}, whered,=r*and t e I, then
r

P(z,t) = ——*—

0= iy
.. It_tzl )
D=0 ———— ).

® 06 01=0( 77

Proof of Lemma 3. We will see that for fixed z in UN B, the function f(¢) =
1—|v(£)z|* is O(r,+|t—t,)*). We have that f(¢,) <2r,, and if we differen-
tiate f and evaluate it in a point £ between ¢ and ¢,, we get

—f'(£) =2 Re[(v(£)z) (v(£)2)]
=2[Re(y'(£)z) Re(v(£)Z) —Im(y'(£)z) Im(v(£)Z)]
=O0(|z—7(t) |+ v () —v(O)|+]s =) =O0(|z—v(2,) |+ |t —1.]),

since, by construction, Imy’(¢;,)Z=0 and Re vy'(£)y(£) =0. Applying the
mean value theorem we have | f(#) — f(£;)| = supgcp,, )| f/(8)|]f — 2], and
since |z —7(t;)| << r}/2, we deduce that | f(¢)—f(t;)|=O(r,+|t—1,?), and
we get part (i).

For part (ii) it is enough to notice that Im v (#)z = Im(y(¢) —'y(_tz))z =
O(|t—1t,]). O

Note that P has in I, the same growth as the classical Poisson kernel. On the
other hand, P(z,¢) is bounded for ¢ ¢ I,. So P(z,¢) is like an approxima-
tion of the identity, concentrated in 7., plus a bounded perturbation. The
following weak version of a lemma in [1] makes this assertion precise.

LEMMA 4 [1]. Shrinking U if necessary, one has for z€ U

lim ls Pz t)df=1.
2-T,zeUNB\T 27 JI, A

Proof of Lemma 4. Since P(z,t)=2Re(l—~(¢)Z)"!—1 and
Re M1—7(1)Z) "' =Im[(\i) (1—v(£)2)7],

it is enough to show that
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. i

lim S —— =i
z=T,zeUNB\T VI, 1—7(£)Z

From the fact that v’(¢)y(¢) = \i, we deduce that this last integral is equal to

i Y'(1)Z v () (v(£)—2)

——dt=\ ———dt+
SIZ I—V(t)f SIZ 1—70)2— Slz 1_7(t)2

and what we will see is that I has the limit we are looking for and that II con-

verges to zero. Let us show the first of these assertions. We integrate by parts
and, denoting by “log” the principal branch of the logarithm,

S v'()Z
1, 1 _'Y(t)z

dt =1+1I,

dt =log(1—vy(t;—d;)z) —log(1— (¢, +d;)Z).

Writing the expression appearing on the right in the form

1—y(t,—d;)Z “log 1—y(t,+d;)Z
d; d;

and using the Taylor development, we obtain

1—y(t,—d)Z=1—7(t;)z+d,v'(t,)Z+0(d,)

log

and
1 —'Y(tz +dz)z= 1 _7(rz)z—dz7'(tz)2+0(dz)-

By (ii) of Lemma 2, |1 —y(f, +d,)z| = r, =d?2, and y'(f,)Z — i as z ap-
proaches I'. Hence

1—~(t,—d,)Z
log V{t: —d2)Z =log y'(¢,)Z+0(1),
d,

1—+v(t,+d,)Z

log 'Y(f ) =log[—7'(¢;)z]+0(1),
and )
1—y(t,—d,)z —y(t z
log V= dy)2 —log L= y(le ;)2 —wi=o0(1),
d; d;

an estimate that shows that the limit of I is =i.

For integral II we use that |y(¢) —z| << |1 —v(f)z|"/? and Lemma 2 to
obtain
dt

dt —75
I |t =t

S Y(£)(v(£)—Z)
I, 1—’)/({)2

an expression that converges to zero as z —»T'. O

<<S

An immediate corollary to Lemmas 3 and 4 is the following.

LEMMA 5. ForzeB\T,

S; P(z, 1) dt = O(1).
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For f a 2m-periodic function in L'(I), let us consider the pluriharmonic
function in B given by '

Pf(z)=§IP(z,t)f(t)dt, zeB\T.

Also, as in [1], we consider for ¢#s the kernel

1—|v(s)y(2)[?

[1=v()v()*’

which is bounded and of class C! outside the diagonal. So it makes sense to
consider, for f in L!(1) and 2n-periodic, the function Tk f given by

Te /=5 Ka0),5)5(5)ds.

K(t,s)=P(y(1),s)=

Then the following result holds.

THEOREM 3 [1]. Let f be a bounded 2x-periodic function on T, and let
Pf and Ty f be as before. Then:

(i) Pf is a bounded pluriharmonic function in B.
(ii) If fis continuous at t,,
. 1
lim Pf(2)=‘):f(to)+TKf(f0)-

z2—7v(ty),ze B\T
(iii) If, for f 2w-periodic in L\(I) and o> 1 we define

M, Pf(t) =sup{|Pf(z)|,d(y(t),z) <ad(y(;),2)},

then M, Pf(t) < Mf(t), where Mf is the Hardy-Littlewood maxi-
mal function, and (ii) also holds for a.e. t, provided the limit is
taken within the admissible regions

D,(t)={zeUNB,d(y(t),z) < ad(y(t;),3)].

Proof of Theorem 3. The first of the assertions is a consequence of the pluri-
harmonicity of the kernel P, and of Lemma 5. (ii) follows as in [1], substi-
tuting Lemma 4 for Lemma 3.3. For the maximal inequality in (iii), let z be
a point in D_(¢). Then

|Pf(2)] sjl P(z,5)|f(s5)| ds = S{ P(z,5)|f(5)] ds+jm P(z,5)| f(s)|ds

=1+1I,

where I is the interval considered in Lemma 3. In 7\ I, P(z,s) is bounded
(see (i) of Lemma 3) and hence II is bounded by the Hardy-Littlewood max-
imal function at ¢. In order to estimate I, we write J, ={(s||s—¢,|<r,} and
Jr =2KJ, with k = N, where N is the least integer verifying |Jy|> r}/2. Then

<L ) |ds+ 3 —L
r, JJ, i=1 2%r,

4

SJ | £(5)| ds << MF (1),
k
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since, by Lemma 4 and the definition of D,(¢), we have that |s—¢,| << 2k,
in J;. This maximal inequality gives, with a standard method, the confirma-
tion of (iii). ]

Let us state a lemma concerning the operator 7.

LEMMA 6.

(i) Tx:L=(I)— L*{) is a compact operator.
(i) If feL™(I) then Ty f€ N y<1 Lipa(1).

Proof of Lemma 6. Part (i) follows from (ii). For part (ii), let #;, 7, €l,
6=|t;—1,|, and let ¢y be the middle point. With a constant a that will be
chosen in a convenient way, we write

Tef ) -Tef= 5[ |K(t,9) =K, 9)||f(5)] ds

Ito—SlSa

1

gg“ I 5|K(tl’s)_K(t2’S)”f(s)|dS:I-{-H.
o—S|=a

Clearly I < C$, using the boundedness of K. For the estimate II, we apply
the mean value theorem to get

12 Re[y(£)v(s) 1 —v(2)v(s))?
K(t,s)—K(t,, < —_—
Kt1,9)=K(1,9) tesl?ll,)tzl [1—v(£)v(s)|*
Calling H,(¢) the function that appears in the numerator of the last frac-
tion,
H,(t)=Re(y'(£)7(s)) Re(1—v(£)y(s))2 = Im(y'(£)7(s)) Im(1 —v(£)y(s))?
=Re(7'(£)v(s)) [Re(1 —v(£)v(5))* = (Im(1 —y(£)y(s)))?]
+2 Im(y'(£)7(s)) Re(1—v(£)v(s)) Imy(2)y(s).

The first of the summands in the last equality is O(|s—¢ |3) and s_qi_s the sec-
ond, as 2 Re(1—y()y(s)) = [v(¢) —v(s)[* = O((¢ — 5)*) and Im y(t)y(s) =
O(|t—s|). Hence H,(t)=O(]s—¢|*), and choosing a conveniently we see
that

iy~ .

t—1t
|K(t1,s)—K(t2,s)|sC| 1= 0| .
|£0—s]
Then
11<<5S 1 gsslogl,
lto—s|=as |to—S]| )
an estimate that, with the estimate obtained for I, gives part (ii). ]

As an immediate corollary we have the following.

COROLLARY 1. The range of 1d+\Tyx, R(Id+\Ty), has finite codimen-
sion in the space of bounded functions on the curve.

We now have the necessary tools to prove Theorem A.
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THEOREM A. The space h® | has finite codimension in L*(T).

Proof of Theorem A. Given a bounded function f on the curve I', the func-
tion u = \Pf is, using (i) of Theorem 3, a bounded pluriharmonic function
in B that, by (iii) of the same theorem, converges to f+ATx f a.e. ¢ in 1.
Hence 7% |r contains the range of Id + N7y, which by Corollary 1 has finite
codimension. ]

If the transverse curve is a slice, y(f) =e"¢, |£] =1, then this codimension
is zero, but in general it can be seen that the codimension is different from
zero. It would be interesting to characterize the codimension in terms of
some properties of T'.

2. The Spaces Re H* | and Re Lip,r

In this section we give a characterization of the space
Re H® p={feLg(I)|3aFe H*(B), Re F*(t)=f(t)a.e. tel},

where F* denotes as usual the restricted K-limit of F.
The following result gives a way to construct bounded holomorphic func-
tions from functions defined on a transverse curve.

PROPOSITION 1. Let f be a real bounded function on I’ such that its con-
Jugate is also a bounded function. Then the function
1 S 14+v(8)z

F@ =5, 1o, 04

is in H*(B).

Proof of Proposition 1. From Lemma 5 we deduce that Re F' is a bounded
function. We will see that Q f(z) =Im F(z) is also a bounded function in B.
We need three technical lemmas. The first generalizes a classical result on
one complex variable (see, e.g., [3, p. 103]).

LEMMA 7. Let 2< p<+oo. Then there exists a>0 and C >0 such that,
Jfor every real 2xw-periodic function f in LP(I) and z in UNB,

0@ - | Ov(t), (1) dt| < CMFt) +111,),

|t—t,|=ar,

where U is as in Lemma 2 and Mf is the Hardy-Littlewood maximal func-
tion.

Proof of Lemma 7. An upper bound of the left term above is

~

Q(z, 1) f(¢) dt

SII—IZISarZ

+’§[f—f |=ar tQ(z, t)—Q('Y(tz)’t)}f(f) dit|=1+11,
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and we will see that both I and II satisfy the estimate. For I, it suffices to use
(ii) of Lemma 3 to get

t—t
Q(Z’t)f(t)dt‘<<5|; (< Ttl_tlz‘i?lf(t)ldt<<Mf(tz}-
—ll=ary £y z

Slt—tzlswz

In order to obtain the estimate of II, note that every z € UN B splits into the
sum of two orthogonal vectors (one in the direction of +y(#,)), writing z =
My(t,) +w where A=~(t,)z=1—r,. Now we decompose the expression II
introducing the factor §|,_; |=qr, Q(Ny(Z,), 2) f(¢) dt, and we obtain

b o 12 =000 (22), D}

+S!¢_, |=ar O (2), 1) —O(v(t), DS (1) dt =TI +1V.

For III we apply the mean value theorem to the function Q(-, ¢) in the
segment joining Ny(f;)+w and \y(Z;), and use the orthogonality between
w and y(¢;) to get

[Im{y (1) —y())w)]
N D)= QM (%), )] = ()
|Q(Vy () +w, 1) — Q(Vy(2,) t)|<121[10p”[l1_7(t)(>\7(t )+ 7wl

IIm(W(t)()\’Y(t )+ 7w)) 2Re(y (£) —y(£)w) (1 =y (£) (My(2, )+TW)))|]
[1—7(0) \y () +7w)*
|2 —2||wl|
rit|t—1>°

where the last inequality comes from Lemma 2, provided a is chosen large
enough to have |1 —y(£)(\y(¢;) + 7w)| >> |t — t,| + ;. Since |w| << r}/2, an
application of Holder’s inequality shows that III is bounded by

_1_5
27 lt—t;|=zar,

(Q(z, 1) — QMY (£,), D} (1) dt'
|t —1.||w|

|t—t;|=ar, r7.2+lt_t7:|2

| ()]

< ol
lt—t;|=ar, lt—lel/z

fo)dr< | dt<|11,-

Finally, in order to estimate IV, we apply the mean value theorem once
more, getting in a similar way (choosing a greater if necessary) that

OOV (1), )= Q(v(t,), )| << r /[t — 1]
Hence IV is bounded by

1

2T § [ON(v(£), 1) —O(v(2,), )} f(¢) dt
T J|t—t,|=ar,

<<S|: (zar, = tzlz |f ()| dt < MS(2,),

where the last inequality is obtained with a standard “doubling method”.
J
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The statement of the next lemma corresponds to the well-known fact that in
one complex variable the difference 2 /¢ —cot(z/2) is a bounded function.

LEMMA 8.
2

A —s)

Q(y(1),s)+ =0(),

provided |s|<m and |t —s|< .

Proof of Lemma 8. Recall that we have chosen a suitable parametrization
such that y(¢) = \i, where \ is a strictly positive constant. Hence, a Taylor
formula development gives

1—y(£)y(s) =¥ ()y(s)(t—s) +o(|t—s|) = —Ni(t —s) +o(|t —s]),
and then

1= ()y(s)[> = (£ —5)*(N*+0(1))
and L
Im y(#)y(s)=—N(t—s)+o(|t—s]|).

As a consequence, provided |f—s| is small enough,
2 )= Nt —s) Im y(£)¥(s) +[1 =7 ()7 (5)
[1=7(D)v()PME—5)

AT —5)
Calling A,(¢) the numerator of the last expression, we will see that A,(¢) =
O(|t—s|?). In the first place, A;(s) =0, and by differentiating we have

Mm y(2)y(s)+M(¢ —s) Im v/ (£)v(s) —2 Re(v/(£) v(s) (1 —v(2)7(5)))

=Nm y(£)y(s)+ Mz —s) Im y'(£)v(s) —2 Re(y'(£)v(s)) Re(1—v(1)¥(s))
—2Im(y"(£)y(s)) Im(y(1)¥(s))

= —2Re(Y'(£)7(s)) Re(1 — () (5)) —Im(y'(£) (v(s) — ¥())) Im(y(£)v(s))
+N(#—5) Im y'(1)y(s) —Im(y"(£)v(s)) Im(v(£)¥(s)).

The first two terms obtained in the last equality are, using the properties
of v, O((s—¢)*). We shall see that

Mt —s) Im y'(£)y(s)—Im /() y(s) Im y(¢)y(s)
is also of this type. We apply the mean value theorem to obtain
At —s) Im v (£)y(s) —Im v "(£)y(s) Im y(£)¥(s)
=N(¢—s) Imy"(1)y(s)—Im y'(£)y(s) (¢ —s) Im v’ (£)v(s)
= (t—s) Im y'(£)v(s) [Im(y'(8) (v (§) — v ()],

where £ is a point in the segment joining ¢ and s. Therefore we get that
hy(t) = O(|t —s[*), and the lemma follows. O

1

LEMMA 9. Let f be a real bounded 2x-periodic function such that f is
bounded. Then the function
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J1(0) =sup f(t)dt

e>0

0—t
( 5 ) e L>(). ,

S cot
|[t—8]>¢

Proof of Lemma 9. This lemma is a consequence of [3, p. 103], where it is
proved that if f is a 2x-periodic L' function then

0-1)
2

cot

i 1
Qs (re™) 2 S|t—9§>l—-r
where Qf is the conjugate function of Pf.

Let f be a real bounded function with bounded conjugate. Then Hf, the
Herglotz transform of f, is a function in H® (D), since P(f+if) is in H*(D)
and coincides (except for an imaginary constant) with Hf. Applying the re-
sult of [3] cited before, we get that f; is bounded. O]

S(@) a't‘ <K Mf(09),

Now we can prove Proposition 1. From Lemma 9 and Lemma 8, we obtain
that the function

sup
e>0

[ ow®,.nrwat

ft—0|>€

is also a bounded function. Hence, applying Lemma 7, Qf is bounded. [
Now we can prove Theorem B.

THEOREM B. The space Re H® |r has finite codimension in the space of
real bounded functions in T" with bounded conjugate.

Proof of Theorem B. From Theorem 1, given F in H “(B), we get that 1/{;’/*
is in L*(Z). On the other hand, if fe R(Id +\Tx) and f is bounded then we
have f =g+ \Txg, where g is a bounded function on I'. From (ii) of Lemma
6 we deduce that Ty g is in every Lip, (/) with « <1, and, in particular, that g
is bounded. Applying Proposition 1, the function

A S 14+7(t)z
2m I 1—v(0)z
and, from (iii) of Theorem 3, a.e. fin I, Re G|p = +)\TKg f. Hence the
space Re H*p contains R(Id+ATx)N{feLg(T") | fe L)}, a L space that

has, by Corollary 1, finite codimension in the space {fe L§(T")| fe L§(T")}.
O

G(z)= g(t)dt e H*(B),

We finally give a similar result concerning the space Lip,(B), 0 <a <1, of
holomorphic Lipschitz functions. For technical reasons (and as stated in the
introduction), we will suppose from now on that the curves are of class C2.

THEOREM C. The space Re Lip,r, where a <1, has finite codimension in
the space of real functions in " satisfying a Lipschitz condition of order o.

Proof of Theorem C. Let f bein Lip,(I"), and let Hf be the corresponding
Herglotz transform of f related to I''; that is,
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1 [ 1+7(0)z
Hf(z)= — 1) dt.

o e e Al
We will see first that Hf is in Lip,(B). Since (1+v(#)z)/(1—7(¢)z) and
2/(1—~(t)z) differ by a constant, it is enough to prove that

H, f(z)= 217r L l_f%z dt € Lip, (B).
This last assertion will follow (see [7]) from the estimate
(13) |RH, f(z)|=0((1-|z])*7"),
where
Ri @)= 3 0 @)z

is the radial derivative of H, f. By a result of Nagel [4] the function

S _ 4w,
I 1—v(t)z

provided v is of class C2. Hence (13) will hold if we prove that

@0z o
S} (l_mz)z(f(t) f(fz))dt‘—O(rz ), zeU,

where #,, r;, and U are as in Section 1 (notice that r, >>1—|z|). By Lemma 2
and the hypothesis on f, the last estimate is a consequence of the easily veri-
fied estimate

It_tzla -1
S e dt| = O(rg7").
He—t|=x) |t —1,]2+72

Now, using the fact that 7 maps L*(T") in N, < Lip,(I"), a <1, the same
argument as for Theorem B finishes the proof. ]
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