Generators of Certain Groups of Semi-free
S' Actions on Spheres and Splitting of
Codimension-3 Knot Exact Sequences

MIKIYA MASUDA

0. Introduction

Let Z#(S') denote the set of oriented equivariant diffeomorphism classes of
smooth semi-free S! actions on oriented homotopy (7 + 2k —1)-spheres sat-
isfying these properties:

(P) The fixed point set is diffeomorphic to the standard (n—1)-sphere §"~1,
The normal bundle of the fixed point set is trivial as a complex vector
bundle where the complex structure is an induced one from the action
(see the Conventions below).

In fact, £#(S') is an abelian group under the equivariant connected sum
operation (except for some low-dimensional cases). The group structure is
fairly well understood. First, Hsiang [8] noted that 7(S') = 0. On the other
hand it has been observed by many people that #(S') is nontrivial in many
cases; for instance, Browder [3] applied surgery theory to exhibit elements
of infinite order for certain values of n and k. Later, Browder and Petrie [4]
determined the rank of the free part of L#(S') as follows:

0.1 rank, Z7(S!) =rank, H*(CP*~'x (D", 8" Y); Z)—¢,

where e =1if n+2k—2=0(4) and ¢ =0 otherwise. In particular it follows
that rank, X5(S!) =1 if and only if n=0(4). In fact, £5(S') is known to
be infinitely cyclic (i.e., torsion free).

Under these circumstances Davis [5, Prop. 7.15] has discovered that the
generator of £4(S!) is given by a semi-free smooth S! action defined nat-
urally on an exotic 7-sphere discovered by Milnor [16]. An alternative proof
is given in [13]. The result of Davis motivates this question:

What is a generator of the free part of L#(S')? In other words, is there
an explicit description for such a generator?

As is well known, famous Brieskorn spheres support natural semi-free
smooth S' actions and some of them satisfy Property (P). We can verify that
one of them is a generator or twice a generator of the free part of Z#(S')
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when n > 2k (Corollary 4.13). As a matter of fact, we will define an integer-
valued homomorphism 8 on X%(S!) under the assumption n>2k and see
that 8 takes values 1 or 2 for this example (Theorem 4.7).

The method of defining 3 is based on an observation of Montgomery and
Yang [19]; namely, given £ € Z%(S'), we do surgery equivariantly along the
fixed point set producing a manifold with a free smooth S! action, and then
we take the orbit space. We then assign to X an integer determined from the
(n/4)th Pontrjagin class of the resulting smooth manifold. This definition
involves an ambiguity stemming from the choice of an equivariant framing
used in the surgery, but the independence can be established with the aid of
the G-signature theorem when n > 2k.

As first observed by Montgomery and Yang [19] and then by Levine [12]
in more detail, £5(S') is closely related to the group £”**”~! consisting of
isotopy classes of oriented codimension-3 knots in S"*2, by regarding the
fixed point set as a knot in the orbit space. Through this correspondence f
induces a homomorphism B3; from X"+2"~1to Z. According to Levine [11],
there is a short exact sequence

0.2) 0— 2B Trt2n-1_, ker gy (n—1,3)— 0

if n=0(4) (see §5). As far as the author knows, little is known concerning
the group extension of this exact sequence (cf. [14], [12, §IV]). We will see
that if n=0 (8), then the composition 3;°8} is the identity map, and hence
the above exact sequence is split (Theorem 5.3).

In a manner similar to that used in the definition of 3, one can define other
invariants. These will be discussed in [15] in connection with equivariant
inertia groups.

This paper is organized as follows. In Section 1 we define an invariant
B: T2(S") — Z as explained above for B. In Section 2 we see that 8 turns out
to be a homomorphism. In general, § is far from susjective. In Section 3
we consider the largest integer dividing each element in the image of 8 and
define 3 to be B divided by that largest integer. In Section 4 we carry out an
explicit computation of 3 for a Brieskorn sphere with a semi-free smooth
S! action. Section 5 treats the splitting problem of the knot exact sequence
0.2).

Throughout this paper every action will be smooth and the following con-
ventions will be used unless otherwise stated.

CONVENTIONS. (1) S! will denote the circle group considered as the mul-
tiplicative group of elements with unit length in the complex numbers.

(2) Given an oriented manifold W, the boundary aW will be oriented as
follows. Let (wy,...,w,,) be an orthonormal frame such that the m-form
wiA --- Aw,, represents the orientation of W and w,, is outward normal to
W. Then we orient dW by the (m—1)-form wiA---Aw,,_;.
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(3) For a manifold M with a semi-free S! action, the normal bundle » of
the fixed point set F' is equipped with the complex structure defined as fol-
lows: for ge S'C C and u € v the complex multiplication gu is defined by
g.u, where g, denotes the differential of the diffeomorphism g. In particu-
lar, » has a natural orientation induced from the complex structure. If M is
oriented, then we give an orientation to F compatible with those of M and ».

1. An Invariant 8

As outlined in the Introduction, we shall define an invariant 8: Z3(S') - Z
under the assumption n > 2k.

Let X be an element of Z#(S!). Let D?* denote the unit disk of C* with
the S! action induced from the complex multiplication. Property (P) implies
that there is an equivariant imbedding y: S"~!x D?* - T, where the trivial
S! action is considered on S”~!. We do surgery on ¥ equivariantly to obtain
an S! manifold I (y) with the orientation inherited from . Note that the
S! action on () is free; so the natural projection map from Z(y) to the
orbit space T (¥)/S! becomes an S! bundle. Since S! acts naturally on C as
complex multiplication, one gets a complex line bundle associated with the
S! bundle. Let x(y) (resp. D(X, ¥)) denote the first Chern class (resp. the
unit disk bundle) of the complex line bundle. Clearly dD(XZ, ¥) = X(¢). Since
X (y) is already oriented, we give a compatible orientation to D(X, {). More-
over Z(y)/S!is the base space of the disk bundle, and the fiber and the total
space are oriented; so we again give a compatible orientation to Z(y)/S.
With these understood, we have the following.

DEFINITION 1.1. Suppose n=0(4). Then we define
B(Z, ¥) = (—x(¥)*'Up(Z(W)/SHIEW)/S e Z,

where p( ) denotes the total Pontrjagin class and [ ] denotes the funda-
mental class.

REMARK 1.2. Obviously only (n/4)th Pontrjagin class contributes to the
definition. One can define more invariants making use of other Pontrjagin
classes.

It is not difficult to see that when n <2k, S(X, ) actually depends on the
choice of ¢ for a linear S' action on $”"*%~1. The next theorem establishes
the invariance of 8(X, y) when n > 2k.

THEOREM 1.3. If n>2k, then B(X, y) is independent of a choice of ¥;
hence B(X, ¥) is an invariant of L.

The rest of this section is devoted to the proof of this theorem. The G-signa-
ture theorem plays a role in the proof.
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If X is an oriented manifold, then the notation —X will be used for the
same manifold with opposite orientation. We choose an orientation on the
interval [—1,1] such that d[—1,1]={1}U—{—1}, where the natural point
orientations are considered on {1} and {—1}. The direct product £ X[—1, 1] is
then an oriented S' manifold such that (X X [—1,1]) = x {1}U—-X x {—1]}.
We identify X x {1} and X X {—1} with X and regard y as an imbedding to
¥ % {1}. Now choose another equivariant imbedding ¢’: S" 1xD* - ¥ =
¥ % {—1} and glue two copies of D"x D% to £ x[—1,1] via ¢ and ¥’. The
resulting oriented S! manifold (¥, y’) has X(¢) and —X(¢¥’) as bounda-
ries. Hence one can glue —D(X, ) and D(X, y’) to X(y, ¥’) along their
boundary. The resulting space,

W=D(Z,¥")UE (¥, ¥)U(=D(E, ),

is a closed oriented manifold with a semi-free S! action.
We shall apply the G-signature theorem to this W. For that purpose we
observe the following facts:

(1.4) The S'-fixed point set of W consists of three connected components:
two of them are £ (¥)/S!and —XZ(y’)/S!, and the other one, denoted
by F, is diffeomorphic to S”.

(1.5) The total Chern class of the complex normal bundle of F is trivial be-
cause k < n/2; that is, the rank of the complex normal bundle is less
than half of the dimension of F (=S8"). Moreover, the Hirzebruch
L-class of F is trivial since F is S".

(1.6) Since S!is a connected group, the induced action of S! on cohomol-
ogy groups of W is trivial, and hence the S! signature of W is equal
to Sign W, the signature of W.

Let ¢ denote the complex 1-dimensional standard S! module. Using (1.4),
(1.5), (1.6), and the G-signature theorem (see [7, p. 50] or [1]), we get an
identity of rational functions of ¢:

Sign W=L(Z(¥")/S") (1e**¥) +1)/(te> V) —1)[Z(¥")/S]
—L(ZW)/SY) (1> W 4+ 1)/(1e>* P — 1) [Z(¥)/S"],

where L( ) denotes the Hirzebruch L-class.

1.7

LEMMA 1.8. Let p stand for either ¥ or y'. Then
L(Z(p)/S") (1e**®) +1)/(1e*?) —1) [£(p)/S"]

has a pole of order k at t =1, and the coefficient of 1/(t —1)¥ is a multiple of
B(X, p) that is independent of the choice of p. In fact, the multiple is

22a+k(229-1_1)B, /(2q)!,
where q =n/4 and B, is the qth Bernoulli number (see Appendix B of [18]).
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Theorem 1.3 will follow immediately from Lemma 1.8 and (1.7). In fact, (1.7)
implies that the right-hand side of (1.7) cannot admit a pole, in particular, a
pole of order k at t =1. Hence, by Lemma 1.8, 8(X, ) must coincide with

B(x,¥").

Now we shall prove Lemma 1.8. First we note
(1.9) Z(p)/S! has the form D" x CP*~1UD"x CP*~! (see [3]);

hence it has the same cohomology ring as S” x CP*~! when n > 2k (this is
where the hypothesis n > 2k enters). In particular, x(p)"” =0 for m = k. Since

we have
1 t(1—e>¥P) 1
te?*®) _1y- 1= _
(e ) t—1 ! t—1

1

=7 3 ( L 1) (1—e2 @y by (19),

the expansion of (te2*(®) +1)/(fe®**‘?’ —1) with respect to (¢ —1) has the pole
of order k, and the coefficient of 1/(f—1)* is 2%(—x(p))* 1. Therefore, the
coefficient of 1/(t—1)* in L(X(p)/S") (te**P +1)/(te**P) —1)[Z(p)/S] is

Lo (Z(p)/SH2*(—x(p))* 1 [Z(0)/S11,

where L,( ) denotes the factor of L( ) with cohomology degree 44g. Since

L,( ) is a polynomial of Pontrjagin classes with total cohomology degree

4q n, only the gth Pontrjagin class pq(E(p)/S ) survives in L (E(p)/S )

by (1.9). As is well known, the coefficient of p,( ) in L,( ) is
229(2297'-1)B, /(2q)!

(see Problem 19-C of [18]). The lemma follows from these observations.

2. Additivity of 8

By virtue of Theorem 1.3 we may abbreviate 8(X, ¢¥) as B(X). Remember
that £%(S!) is an abelian group (provided » = 5) under the equivariant con-
nected sum operation #. In this section we prove the following theorem.

THEOREM 2.1. Suppose n>2k as before. Then 3: £%(S') - Z is a homo-
morphism; that is,

B(=E)=—B(X) and PB(E#L,)=0(EX))+B(X,)
for £,X,,L,e ZHSY).
Proof. The first property is obvious from the definition, because the funda-
mental class of X(y)/S! is reversed if we alter the orientation of .
We shall verify the second property. The method is almost the same as

that followed in Theorem 1.3. Take the product X; x[—1,1] for i =1, 2, and
form the equivariant boundary connected sum of them along X, X {1} and
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¥, % {1}. Clearly the resulting S' manifold W(X,, L,) gives an equivariant
oriented cobordism between I, # X, and £, UX,. Let ;: S I x D?** » £, and
¥:S""Ix D% - T, #X, be equivariant imbeddings. As discussed in the proof
of Theorem 1.3, we glue three copies of D" x D% to W(Z,, L,) using those
imbeddings. The boundary of the resulting S! manifold is the disjoint union
of L, #X,(¢), —X,(¥1), and —X,(¥,). Hence one can glue —D(X,#X,, ¥),
D(X,, ¥1), and D(X,, ¥,) along their boundary to obtain a closed oriented
manifold W’ with a semi-free S' action. Applying the G-signature theorem
to this W’ as before, we get a similar identity to (1.7):

2
Sign W’'=3 L(Z;(¥;)/S") (&Y +1)/(1e>*¥) —1) [Z(¥;)/S"]
2.2 i=1
—L(Z#Z,()/SY) (€D 1 1) /(12 — 1) [T # Z5(¥)/S].

Repeat the argument done in the proof of Theorem 1.3 using Lemma 1.8.
Then one can deduce the additivity of 8 from (2.2). O

3. Divisibility of 3

In this section we shall investigate the largest integer that divides each ele-
ment in the image of the homomorphism 3. We deduce the divisibility condi-
tion from two sources: one is the Atiyah-Singer index theorem for a twisted
Dirac operator and the other is obstruction theory. The reader will find that
our method is essentially the same as in [9].

Suppose n=0 (4) and set n=4q. The following lemma is a consequence
of the Atiyah-Singer index theorem.

LEMMA 3.1. B(X)B,/(2q)!2 is an integer.

Proof. Let 5 be the complex line bundle over Z(y)/S! with the first Chern
class x(¥). Since H3(X(y¥)/S'; Z) vanishes by (1.9), X ()/S! admits a Spin®
structure. Choosing a Spin® structure gives rise to a Dirac operator on
X (¥)/S!. We consider the index of the Dirac operator twisted by (y—1)¥~1.
The Atiyah-Singer index theorem (see, e.g., [6, §26]) then yields the inte-
grality of the number

3.2 ch(n—1)*"1e2A(Z(¥)/SHIZ(¥)/S'],

where ch denotes the Chern character, c is the first Chern class of the complex
line bundle associated with the chosen Spin€ structure, and A denotes the 4
class. By (1.9), ch(n—1)¥~!=x(¢)*~! and hence only the p,(Z(¥)/S")) term
in A(X(y¥)/S!) contributes to the computation of (3.2). Here the coefficient
of p,( ) in the A class is —B,/(2¢)! 2. Hence (3.2) implies that

(=B, /) 2}x (V) ' py (E(W)/SHIZ(W)/S' 1€ Z.
This, together with Definition 1.1, proves the lemma. [l
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The following lemma is a consequence of obstruction theory.

LEMMA 3.3. B(X) is divisible by (2q—1)! a,, where a, equals 1 or 2 de-
pending on whether q is (respectively) even or odd.

Proof. The Gysin exact sequence for the S! bundle 7: Z(y) = Z(¥)/S" yields
an isomorphism 7*: H*(X(y)/S'; Z) - H*(Z(¥); Z). On the other hand,
the tangent bundle of X () is isomorphic to the Whitney sum of the pull-
back of the tangent bundle of X (y)/S' by 7 and the bundle tangent along the
fibers. The latter is a real line bundle, so its total Pontrjagin class is trivial.
Since H*(X(¥)/S'; Z) has no 2-torsion by (1.9), the above total Pontrjagin
classes behave multiplicatively with respect to the Whitney sum (see [18,
Thm. 15.3]). Hence

T*p(Z(Y)/SY) = p(Z(¥)).

In the sequel it suffices to verify that p,(X(¥)) is divisible by (2g—1)!a,.

Stabilize the tangent bundle of () by adding a trivial bundle of large di-
mension and consider its associated principal SO, (¢: large) bundle £, where
SO, denotes the special orthogonal group on ¢-dimensional Euclidean space.
We undertake to construct a cross-section of £ over X(y). Since X () has
the same cohomology as $%¢x S%~! (cf. (1.9)) and 2k —1 < 4q by the as-
sumption, the primary obstruction 8 lies in H2*~1(Z(¥); m2x—»(SO,)). We
note that £ (y) contains D*? x $2*~! as a submanifold via y and that the tan-
gent bundle of D% x §%*~1is trivial. Hence the restriction of 0 to D*9 x §2¢~1
vanishes. However, the restriction map induces an isomorphism between
cohomology groups of degree 2k —1; hence @ itself vanishes.

Thus the secondary obstruction 6, emerges in H ‘9z (¥); m4q—1(SOy)),
which is isomorphic to H*(X(y); Z) because m4,_1(SO;) = Z when ¢ is
large. Through this identification, 6, is related to p,(X(y)) as follows:

pq(z(lll)) = (zq_ 1)! aqoq,

which is established in (ii) of Lemma 1.1 of [9]. This completes the proof of
the Lemma. O

Decompose B,3(X)/(2q)! 2 into two factors as follows:

B,B(X)/(2q)! 2=B(E)/(2g 1) a;x a,B,/4q.

The total and the first factor are both integers by Lemma 3.1 and Lemma 3.3
(respectively). This means that 3(X) is divisible by

(2g —1)! a,-denominator(a,B,/4q).

Hence we pose the following.

DEFINITION 3.4. B(X)=g(X)/(2¢—1)! a,-denominator(a,B,/4q) € Z.
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4. A Generator of T?(S!)

As is well known, certain Brieskorn homotopy spheres naturally support
semi-free S! actions satisfying Property (P). In this section we shall compute
our § invariant of those examples to see that 8 can attain 1 or 2.

Let bP,,, (m=2) denote the set of diffeomorphism classes of oriented
homotopy spheres bounding a parallelizable manifold of dimension 4m.
Connected sum operation makes it an abelian group. As a matter of fact it
is a cyclic group of order b,,, where

4.1 b,,=22""2(22m=1_1).numerator (4B,,/m)

(cf. [10, p. 531]).

We shall recall an explicit description for an element of bP,,,. Let 6 be a
fixed small number. For each integer 4 let M} (resp. Z4”~!) denote a man-
ifold of dimension 4m (resp. 4m—1) defined as the intersection of the alge-
braic set

(U, 0,21, o0y Zom—1) ECFM 3 4014 2240 422 =6)

with the unit disk (resp. sphere) of C?"*!, Clearly oM™ =X 4™, The fol-
lowing facts are well known.

(4.2) Sign M;™=8h if we choose a suitable orientation on M/™.

Hereafter M;™ will be oriented so that (4.2) is satisfied and £#"~! will be
oriented as its boundary.

4.3) 4" lebP,,, and £{""!is a generator of bP,,,,.
4.4) x4m1is diffeomorphic to S*"~!if and only if # is a multiple of b,,.

These manifolds M and Z4"~! support semi-free S! actions defined by
rotating the last 27 (r <m) coordinates pairwise. To be precise, an element
exp(i@) of S! acts on them by

~ N ' N
I
Y D(0) v cosf —sinéd
?1 - ?1 ’ D(6)=(sin0 cosB)’
: o ||
_Z2m—1 _Z2m-1 |

where I is the 2m—2r+1) x(2m—2r+1) identity matrix and there are 7

copies of D(8) in the diagonal. We shall denote M and £4™~! with this

semi-free S! actions by M/*" and %" (respectively), where g =m—r.
These S! manifolds have the following properties:

(4.5) The S! fixed point set of M?" (resp. Z%") is M9 (resp. Z3271).

(4.6) The complex normal bundle of the fixed point set M7 (resp. X497 1)
to M7 (resp. £4™~!) is trivial.
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Therefore (4.4), (4.5), and (4.6) tell us that 7" belongs to £39(S") if and
only if 4 is a multiple of b,. With these understood, we have the following
theorem.

THEOREM 4.7. Suppose q>r. Then 3( zg;’) =a,, where a, is the same as
in Lemma 3.3.

Proof. To simplify notations we shall abbreviate M,‘,’q” and z:g;f asMand T
(respectively).

Choose an equivariant imbedding ¥ : S*~1x D* - £ and glue D*? x D¥
to —M via ¥. Then the boundary of the resulting oriented S manifold is
precisely —X(¢); so we can glue D(X, ) (see §1) along their boundary to
obtain a closed oriented manifold W with a semi-free S! action.

Observe the following facts:

(4.8) The fixed point set of W consists of two connected components: one
is ——Ml‘,‘;’UD“" = F and the other is Z(y)/S.

(4.9) The total Chern class of the complex normal bundle of F to W is
trivial by (4.6), except for the 2gth Chern class which is trivial for
the dimensional reason —the complex dimension 27 of the bundle is
less than 2g.

(4.10) L(F)[F]=SignF = Sign(—M39) + Sign D* = —8b,, by the signa-
q
ture theorem, additivity of signature, and (4.2).

Putting these facts together with the G-signature formula of Sign W, we
get an identity

Sign W= —8b,{(¢ +1)/(t —1)}*
+L(ZW)) (teP +1)/(te** V) —1) [Z(¥)/S].

By Lemma 1.8, the coefficient of 1/(f—1)% in the right-hand side of this
identity is given by

—2¥+3p, 222U _1)B_ /(2¢)! X B(T),
which must be zero. Replacing b, by (4.1), we find that
B(¥)=(2q)! 2-numerator(4B,/q)/B,.
Hence by Definition 3.4 we have

A 4q -numerator(4B8,/q)
4.11 X)= y '
(4.11) B(x) a,B,-denominator(a, B, /4q)

Here, recall that the highest power of 2 dividing the denominator of B, /q is
2#+1 where 2* is the highest power of 2 dividing g (see [18, p. 284]). This
implies

numerator (4B, /q) = a,-numerator(B,/q),

4.12
(4.12) denominator(a, B,/4q) = 4-denominator(B,/q)/a,.

Putting (4.12) into (4.11), we get 3(Z) =a,. O
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COROLLARY 4.13. Suppose q>r and q is even. Then E%;r is one of the
generators of the free part of £39(S'). In particular, it generates the free
part of £39(S") because rank , £39(S!) =1.

REMARK 4.14. If we relax the first condition of Property (P) to the condi-
tion that the fixed point set belongs to bP,, then we obtain an analogous
abelian group Z%(S') contamlng ri(SHasa subgroup of finite index. Hence
B can be extended to £ 7(S1) algebraically. Since b, £49(S") is contained in
T4ash, b, B is an integer-valued homomorphlsm from ££9(S'). On the
other hand one can prove B(b )= a, in a similar fashion to Theorem
4.7. Hence we have b, B(Z]") = B(b Z{"")=a,. These show that Z{"" is one
of generators of the free part of £ ?(S ), provided that ¢ > r and q is even.

S. Splitting of Codimension-3 Knot Exact Sequences

As first observed by Montgomery and Yang [19] and then by Levine {12] in
more detail, the study of semi-free S! actions on oriented homotopy spheres
with codimension-4 fixed point set is essentially equivalent to that of ori-
ented knots with codimension 3. On the other hand, the set of oriented knots
with codimension greater than 2 is fairly well understood in terms of an
exact sequence [11]. The work of Levine [12] is done from this point of view.
However, as far as the author knows, little is known about group extension
of the exact sequence (cf. [12, §IV]). Our homomorphism £ can be used to
give an information concerning the splitting.

Following [11], let Z"*3" (n=15) denote the abelian group of isotopy
classes of oriented pairs (X”*3, K), where £"*3 and K are diffeomorphic to
S"*3 and S” (respectively). Let £7*33 denote the abelian group defined
similarly to "% but this time we only require that £"”*3 be a homotopy
(n+3)-sphere. The group structures on them are given by knot connected
sum. Obviously we have a canonical isomorphism:

(5_1) Z‘:n+3,n=2n+3,n®en+3’

where ©”%3 is the abelian group of isotopy classes of oriented homotopy
(n+ 3)-spheres. We note that the normal bundle of a knot K to X"*+3 is triv-
ial (see [12, p. 171]). Levine [12] observed that taking the S orbit space gives
rise to an isomorphism:

(5.2 ¥:oHS)y=Lr+r2a-l

In fact the orbit space again turns out to be a homotopy sphere, and the
fixed point set defines a knot in the orbit space.

Recall the short exact sequence (0.2). It is a direct consequence of the
exact sequence (3); on p. 20 and (7),, « on p. 44 of [11]. There, o3(1n—1,3) is
the suspension homomorphism from =,_;(G;,S0O;) to 7,_{(G, SO) (see
[11, p. 39}). The definition of the homomorphism 44 is as follows. Hereafter
we put n = 4gq. Recall that £47~! defined in Section 4 is an oriented subman-
ifold of the unit sphere S**! of C29+1 and hence of §47*2, By (4.4), the
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oriented pair (§49%2, £3971) belongs to Z4¢+249-1if and only if 4 is a mul-
tiple of b,. Then 9j(y) is defined to be the oriented pair (S*¢*2, z;‘gq“‘) for
v e Z (cf. [11, pp. 35, 29]).

With these understood, we will prove the following theorem.

THEOREM 5.3. Suppose n=4q and q =2. Then there exists a homomor-
phism 33: £49+244-1 , 7 such that the composition (3409} is multiplication
by a,. In particular, the exact sequence (0.2) is split when q is even.

The definition of 35 is as follows. Via the isomorphism (5.2), 8 can be re-
garded as a homomorphism from £49+249-1to 7. Since the group 649*2 s
a torsion group in (5.1), S falls into a homomorphism from Z49+244-15 7,
which is the desired 8.

We shall interpret 85 geometrically. Let £ be an element of £39(S") and let
Y:84%~1x D% ¥ be an equivariant imbedding. By Definitions 1.1 and 3.4,
B(X) can be calculated once we know the gth Pontrjagin class of Z(y/)/S".

We note that X (y)/S! is also obtained by doing surgery of £/S! along
the knotted sphere (i.e. the fixed point set) on the framing induced from
Y by taking the orbit spaces. This means that given a knot (S**2 K) of
y4e+2,49=1" it suffices to calculate the gth Pontrjagin class of the manifold
obtained by doing surgery of S49*2 along K. Note that Theorem 1.3 ensures
the value to be independent of a choice of a framing used at the surgery
along X.

LEMMA 5.4. [If K bounds an oriented parallelizable submanifold Vy in
D*+3 with trivial normal bundle, then

B;((S*7%2, K)) =Sign Vi q/2%971(22¢~1 —1) B, - denominator (e, B, /4q).
q a5q

Proof. Let ¢: 8%~ !'x D3 8§%9+2 be a normal framing of K extendingto a
framing of the normal bundle of Vx in D*?*3, and glue the handle D% x D3
to S**2 via ¢. The boundary of the resulting manifold D(¢) is precisely
the manifold obtained by doing surgery of S4?*2 along K on ¢. We want to
know p,(dD(9)).

Let i: dD(¢) — D(¢) be the inclusion map. Observe that

i*: H*YD(¢); Z) > H*93D(¢); Z) (=2Z)

is an isomorphism. Since the restriction of the tangent bundle of D(¢) to
dD(¢) decomposes to the Whitney sum of the tangent bundle of dD(¢) and
the trivial line bundle, we get i*p,(D(¢)) = p,(3D(¢)). Thus we may calcu-
late p,(D(¢)) instead of p,(dD(¢)).

We note that D(¢) contains a closed submanifold Vx UD*? attached by

¢. Its normal bundle to D(¢) is trivial because ¢ is chosen to extend to a
framing of the normal bundle of Vx to D**3, This implies

J*pg(D($)) =p,(Vx UD*),
where j is the inclusion map from Vi UD* to D(¢). Since
J*: H*UD(¢); Z) » H* (V¢ UD*; Z)
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is an isomorphism and V; UD%* is an oriented manifold of dimension 4gq,
it suffices to compute the evaluation of p,(Vx UD*) by the fundamental
class of VxUD*, By assumption, V is parallelizable. This means that the
Pontrjagin classes of ¥ UD?* are trivial except for the gth one. It follows
from additivity of signature and the signature theorem that

Sign Vi = Sign(Vx UD*)
=222 -1)B, /(2q)! p,(Vxk UD*?) [V UD*].
Consequently we have verified
(—x($))Up,(3D($))[8D($)] =Sign Vx (2¢)!/2*/(2*~' - 1)B,

where x(¢) is a sqitable generator of H2(3D(¢); Z). On the other hand, by
the definition of (55 and Definition 3.4, we have

B3((S*7*%, K))
=(—x(9))Up,(d0D(9))[0D(9)]/(2g —1)! a,-denominator (a,B,/4q).
These two identities verify the lemma. L]

Proof of Theorem 5.3. Recall that 95(1) = (S49+2, 24" !y and E ~bounds
a manifold Mb sitting naturally in D%*2 and hence in D*+3 (see §4 for
Mgfq) As is well known, Mb is parallelizable and the normal bundle in
D4‘1 +3 is trivial. Since SlgnM 4g — 8b, by (4.2), we apply Lemma 5.4 to get

B3(3(1)) =8gb, /221 (229~ _ 1)B,-denominator(a, B,/4q)
= 4q-numerator (48, /q)/B,-denominator(a, B,/4q) by (4.1)
=aq, by 4.12),

which verifies the theorem. O
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