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1. Introduction

A well-known result of Fatou states that every positive solution of the La-
place equation on the upper half-space R”*! has a finite nontangential limit
at Lebesgue almost every point of the horizontal boundary R” (cf. [2], [9]).
It is also known that the nontangential approach region (a cone) in this re-
sult cannot be replaced by one which is bounded by a surface tangential to
the boundary (cf. [4], [11]).

However, there are many surfaces which do not lie entirely in a cone, yet
are not tangential to the boundary. Recently, Nagel and Stein [6] obtained a
new Fatou theorem for solutions of the Laplace equation on R”*!, Their
approach regions allow sequential approach to the boundary at any desired
degree of tangency. Their results were generalized in [5] to improve the clas-
sical approach regions for certain parabolic equations on R"*! and for the
heat equation on the right half-space.

The most important condition on these new approach regions {2 involves
the Lebesgue measure of their cross sections

Qt)={xeR": (x,t)e}

for every height # > 0. However, it is intuitively clear that boundary limits
from within an approach region only involve the structure of the region close
to the boundary point. It is shown in Section 2 that this is indeed true. There
we obtain a Fatou theorem for “locally admissible” regions.

In Section 3 we show that these locally admissible regions are the only ones
which permit every bounded solution to have finite limits from within them
at almost every boundary point. The proof of this result is accomplished by
reducing to the case of a sequence of convolution operators on a group with
finite Haar measure and then applying techniques developed by Stein [8] and
Sawyer [7]. It appears that this reduction to the case of finite measure could
be avoided by invoking Stein’s theorem as presented in Chapter 6 of [3].

We take this opportunity to thank Steve Krantz for his encouragement
and for presenting to us some of the material in [8],in his analysis seminar,
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and Juan Sueiro for making us aware of his own interesting work [10] which
is related to ours.

2. Preliminaries

We first establish some notation and assumptions. With »n a positive integer,
let R ={(x,)eR"":xeR", t>0}, Q,=[—1, 1)", and let Z" be the set
of lattice points in R”. The Lebesgue measure of a set E C R" is denoted by
|E|. Let p be a translation-invariant pseudo-distance on R”. That is, for all
x, ¥,z in R", p:R"XR"— [0, ) satisfies

(@ plx,»)=0 iff x=y,

(b) p(x,y)=p(y,x),

© px,2)=7vlp(x,¥)+p(y,2)],

d) p(x+z,y+2)=0(x,»),

where y = 1is a constant independent of x, y, z. We denote |x|= p(x, 0), and
|x| denotes the usual Euclidean norm of x. We write

2.1)

B(x,r)y={yeR": |x—y|<r]

for the p-ball with center x and radius r. It is further assumed that

(2.2) (@) {B(0,r):r>0}
is a base of open neighborhoods for the Euclidean topology of R”, and that
|B(0, rav) |

(b) 7,(x)=sup <o for each a>0.

r>0 |B (Os r )I
Assumptions similar to (2.2) as well as facts similar to the next lemma are
treated in [1]. The following lemma is used in Section 3.

LEMMA 2.1.

(@) There is a constant € >0 such that {B(m,e):meZ"} is a
disjoint family.

(b) The number of lattice points in B(0, r) is at most
|B(0, v(r+€))|+| B(0, )| .

(c) For each r> 0, there exist finite A(r) and B(r) such that

(2.3) x| <r implies |x|<A(r)
and
(2.9 |x|<r implies |x| <B(r).

Proof. (a) By (2.2)(a) we may choose € > 0 so that B(0, €) C {x e R": |x| < }}.
Then (a) follows by the translation invariance of p.
(b) This follows from (a) because if #z is a lattice point in B(0, r), then the
triangle inequality for p implies that B(m, €) is a subset of B(0, v(r +¢€)).
(c) The proofs of (2.3) and (2.4) are nearly identical, so we prove (2.4).
Suppose |x;| <r yet |x;| = o as j — . By (2.2)(a) there exists (r) >0 such
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that if |x| < 8(r) then |x| <r. By passing to a subsequence we may assume
that |x; —x;| = r if i # j; so |x;—x;| = 8(r) if i 7 j. It follows that the p-balls
B(x;, 8(r)/2v), j =1,2,3, ... are disjoint; so their union has infinite Le-
besgue measure, yet is a subset of B(0, yr+3(r)/2) which has finite mea-
sure, by (2.2). This contradiction establishes (2.4) and concludes our proof
of Lemma 2.1. O

For each 7 > 0 let K, be a nonnegative measurable function on R” satisfying
2.5) () SK,(x) dx—1 as t -0+,

(b) For all (x,)eR™:, K,(x)<|B(0,t)|~1-¢(]x|/t), where ¢ is a
bounded and decreasing real-valued function on [0, ) for which
Si=1Tn (251 $(2F) < oo,

(c) For each x,e R”, open W>sXx,, and 0 < T < oo, there exist open sets
UDVaxy, UCW, and (y,, sy) € R” X (0, T) such that, for all xeV,
yeR"\ U, and ¢ sufficiently close to 0, K;(x—y) <6(f)Ks,(¥o—2),
where 6(¢) > 0as 1 -0+,

(d) There is a constant 4 >0 such that | B, Ki(x)dx> A forall £>0.

These conditions are satisfied by the kernels appearing in the integral rep-

resentation of the positive solutions of Laplace’s equation and certain para-

bolic equations (cf. [5]).
Let QCR™* £>0, and o > 0. Define Q(¢) = {x e R": (x, t) € Q}, and

t
Q,= {(x, B eRY: |x—xy| < a(t— ?O) for some (xy, #y) € Q} .

Then we have the following properties:
(i) 2CQ,;
(ii) if 0<s <t then Q,(s) CQ,(¢);
(iii) if (0,0) € & then (0, ¢) e Q,, for all >0 and ¢ > 0;
(iv) if (y,5)€Q, and |x—y|<a(f—s) then (x, ) € Q,,.
We now introduce the concept of locally o-admissible (which is to be com-
pared with that of a-admissible in [5]).

DEFINITION 2.2. Let 2 C R%*! be open and let oo >0. Then Q is said to be
locally a-admissible if
(@) 0eQ(¢) for all £ >0;
(b) 0<s <t implies Q2(s) CQ(¢); and
(c) there exists open ' D Q such that
(i) |2(1)|=0(B(0,?)|) as t - 0%, and
(i) if (y,s)eQand |x—y|<a(f—s) then (x,¢)e Q.
If p is a metric then in Definition 2.2 we take Q' = Q and replace (a) by (0,0) €
Q. Observe that if (i) is modified to read

|9°(¢)|<c|B(0, ¢)| for aconstant c and all # >0,

then Q is a-admissible.
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Now let @ c R%*! have (0,0) as a limit point. For each regular Borel measure
p on R” and y e R”, define

) p(B(y+x,1))
Mg u(y)= limsup ’
. @swn-o |B(0,1)]

. p(y+0(1))
N*p(y)=lim sup ————,
t—-0t+ IQ(t)l
o) =U (B(x,1): xeQ(1)}.
Then, by carefully examining the proof that the maximal function
p(y+0(1))
Np(y)=sup —————
>0 Q)]

is weak type (1,1) if Q is a-admissible ([5, Lemma 1.7], [6, Thm. 1]), one
sees that N* is weak type (1, 1) if Q is locally a-admissible. Hence we obtain
the following.

where

THEOREM 2.3. Let Q be locally o-admissible. Then there is a constant ¢ >0
such that, for any finite Borel measure p on R",

[{x e R": M n(x) > \}| _<_c|—£|— Jor all \>0.

Then, as in [5], we obtain the following general Fatou theorem.

THEOREM 2.4. If Q is locally a-admissible with (0, 0) as a limit point, and
if p is a signed measure such that

Kutr,0)=|  Ki(x=)du(y)
is finite on R"x (0, T) for some 0 <T < oo, then

d,
lim Ku(x+xp,1)= il (xo) JforLebesgue a.e. xyeR".
Qs(x,t)-0 dm

3. A Converse Fatou Theorem

In this section our principal result is Theorem 3.2. The main tool is Theo-
rem 2 of [7]; our problem in applying it is that L.ebesgue measure on R” is
not totally finite. We therefore restrict ourselves to Q, and periodize our
kernel K, to obtain H,. We then show that a certain maximal operator as-
sociated with H, satisfies a weak type inequality.

For this section we assume that @ CR%*! is open, that C Q, X (0, 1),
and that Q has the origin as its only limit point in the boundary R”. We re-
mark that conditions (a) and (c) of (2.5) on the kernel K, are not used in
what follows.
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THEOREM 3.1. Let 1 < p < and suppose that, for each fe L?(R"),

(3.1 sup |(K *f)(x+xg)|<co for a.e. xoeR".
(x,)el

Then, for each a >0,

(3.2 |Q,(2)|=0|B(0,t)| as t-0".

Proof. Assumption (2.5)(b) implies that X, e L1(R"), so the convolution in
(3.1) is well defined. As in [9, Ch. 7.2], let
(3.3) H,(x)= Y K;,(x+m) for xeR", t>0.
meZh
Then H, e L}(Q,) and H,(x+m) = H,(x) for all x, ¢, and m.
We want to establish that, for each fe L?(Q,),

(3.9 sup

(x,)el
By Lemma 2.1(c) we choose @ > 0 so that | y| <a whenever |y| < 3vn (Vn is
the Euclidean diameter of Q,,). Now fix b>y(a+ 2) and let (x, t) e, xp€
Q,. We note that

<o for a.e. xo€Q,.

SQ J()H (x+x9—s5)ds

’ SQ SJEYH, (x+x5—s)ds| <

S S . |f(m+s8)|K,(x+x9—5)ds

|m|<b
S |f(s)||?]bK,(x+x0+m s)ds
m|=
=1+11.

By Lemma 2.1(b), the set of lattice points m with |m|<b is finite; so, by
(3.1), SUP(r, 1) e I < oo for a.e. xoeR". We now estimate the sum that ap-
pears in IT using y =x+xy—s (which guarantees that |y| < 2\/— n). For 0<
< 5, let k4(¢) be the (nonnegative) integer defined by

2ko(t) < b—ay < 2ko(1)+1
vt
Then, since |y|<a, we use (mainly) the triangle inequality for p, the fact
that ¢ decreases, and Lemma 2.1(b) to obtain that

S K(m+y)s I lB(o,t)l"‘-¢(""+y')

Im|=b |m|=b t

|B(0, ¢)|—1.¢(1:_1|_’_n_|__a_>

t

|mj=b

s o]

_ m|—a
< I |BO,n™" ¢<|_u)
k=ky(t) 2k < ([m|—ay)/yt <2k+1 044

= 3 |B(O0, )" ¢(25)
k=ko(t) |B(O, y(2% 1yt +ay+¢€))||B(0,€e)| ! <
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oo

< Y |B(O,1)|!-¢(2%)-|B(0,2%+128)||B(0,€)| 7,
k=k0(()
where

0=-y(y+2ay+2)
<7,3) B0, &)™ 3 $(2K)r, (281,
k=0

which is a finite constant c, by (2.5)(b). Thus IT <c, SQn |f(s)|ds and (3.4)
is established.

Now let {(x;,¢):j=1,2,...} be a dense subset of Q. For fe L?(Q,) and
x € Q,, we define

(3.5) T/ = J)H,(r+x-5)ds
and !
(3.6) T*f(x)=§uxil7}f(x)l-

j=

Then, since H;=0 is periodic and Hy, € L1(Q,), each T; may be viewed as a
positive and bounded convolution operator on L?(T"), where T” is the n-
dimensional torus. Statement (3.4) above verifies that, for each fe LP(T"),
T*f(x) is finite for a.e. x e T". We conclude from Theorem 2 of [7] that

c|frerny \°
A

for all fe LP(T") and for all A >0, where ¢ is independent of f and \.

Now let ¢y = (4+a)y2. Choose #y, 0 <ty < %, so that B(0,cyt)UQ, () C
Q, whenever 0 <t < {,. (This is possible because the origin is the only limit
point of £ which lies in the boundary R".) Now fix 7, 0 < < ¢,. Define g(s) =
1 for s € B(0, cyt) and define g(s) =¢ for s € Q,\B(0, cyt), and extend g
periodically.

Next let x € Q,(¢). Then |x—y|<a(f—s/2) for some (y,s) e Q. Choose
(xj,t;) € @ so that |x; —y|<¢ and |¢; —s| <. It follows from the triangle in-
equality for p that B(0, ¢;) C B(x;—x, cot). Hence we obtain that

(.7) l(xeT": T*f(x)>)\][s(

T*o(— = S . — Y — ds = . d
8(=x) B(0,¢qt) Ht"(xj X—s)ds §B(xj—x, cot) HIJ(S) S
Z R Z ) A
SB(O. 1) Hy(s) ds SB(O, ) K (s)ds>

by (2.5)(d).
What we have just shown is that Q,(¢) C{xe Q,: (T*g)(—x) > A} for 0 <
t <ty. Applying (3.7), we obtain that

p P
|ua(t)|s(§) B(O, cot)[_<_<§) 7a(c) |B(O, 1)]

for 0 < ¢ <y, which completes the proof of the theorem. Ol
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We can now prove the main result of this section.

THEOREM 3.2. Suppose for some 1 < p < and every fe L”(R") that

(3.8) lim (K, *f)(x+Xx,) exists for a.e. xoeR".
(x,1)>0
(fc,tt)eﬂ

Then, for each a>0, Q is contained in a locally a-admissible set.

The proof is immediate because (3.8) (along with (2.5)(b)) implies (3.1), so
we may apply Theorem 3.1 and take Q, for the required set.
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