NORMAL EXTENSIONS OF
SUBNORMAL COMPOSITION OPERATORS

Alan Lambert

0. Introduction. A composition operator is an operator C of the form Cf =
ST, where T is a transformation on the state space X of a o-finite measure space
(X, X, m). Various questions of normality and semi-normality of such operators
have been addressed. Usually the Radon-Nikodym derivatives dmT ~"/dm play
a central role in these investigations. In this article it is shown how a subnormal
composition operator may be extended to a normal composition operator. Sec-
tion 1 deals with general properties of composition operators and re-states some
known properties of composition operators regarding normality and semi-nor-
mality. Section 2 is concerned with establishing the extension of a subnormal com-
position operator to a quasi-normal composition operator. It is shown that if T
is invertible (and bi-measurable) then this construction yields the minimal nor-
mal extension of C. The material in Section 3 relies heavily on a modification
of an ergodic theory technique for constructing an invertible transformation in
terms of 7. This material is then used to construct a minimal normal composition
operator extension of an arbitrary subnormal composition operator.

1. Preliminaries. Let (X, X, m) be a o-finite measure space and let 7 be a map-
ping of X onto X such that 7-!Z € . The linear transformation C on L2, =
L*(X, X, m) given by Cf = f-T is called the composition operator induced by T.
General properties of composition operators may be found in [7]. In particular,
C is a bounded operator on L?, if and only if m-T ! is absolutely continuous
with respect to m and the Radon-Nikodym derivative dmT —1/dm is essentially
bounded. Let & =dm-T ~1/dm. These assumptions will be made throughout the
remainder of this article. Conditions for composition operators to belong to cer-
tain specific classes of operators have been widely studied. Proposition 1.1 below
lists those results pertinent to this article together with references. The following
notation will be used.

(i) For feL? or f=0a.e.dm, E(f)=E(f|T~'X) is the conditional expec-
tation of f with respect to 7-1Z. For fe L?,, E,(f) is then the orthogonal
projection E,(f)=E(f|T"E).

(ii)) h,=dm°T~"/dm, h=h;.

1.1. PROPOSITION. (a) C is normal if and only if T"1L =X, T is invertible
and bi-measurable, and h=h-T a.e. dm ([9], [12)).
(b) C is quasi-normal if and only if h=h-T a.e. dm ([10], [12]).
(c) The following are equivalent.
(i) Cis subnormal.
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(ii) For every fe L%, there is a finite measure p; on I = [0, |h|.] such
that, for each n=0, § h,|f|> dm =1, t" dps(¢). (Throughout this pa-
per 1 is the interval above. Any sequence of the form {{, #” du(¢)} will
simply be referred to as a “moment sequence over 1”.)

(iii) For every X-set A of finite measure, {mT ~"A} is a moment sequence
over I.

(iv) For almost every x in X, {h,(x)} is a moment sequence over I ([5]).

(d) Cis hyponormal if and only if h>0a.e. and E(1/h) <1/h-T a.e. dm ([4)).

Throughout the remainder of this article we assume that C is subnormal. Then
from Proposition 1.1(c)(iii), for almost every x € X there is a probability measure
p, on I such that, for each n=0,

h,(x) = S; 1" dy (1).
We will have occasion to use the following relation between 4, and 4, ;. (This
relation holds for any composition operator regardless of its state of normality.)

1.2. LEMMA. h, .= h-[Eh,]-T L. (Even though 7 may not be invertible, the
expression (Eg)-T —1is well defined since 7 is surjective and Eg is by definition a
T —1X-measurable function.)

Proof. Let Ae X. Then
mT —(+DA =mT (T -1A)

={ __, hadm
- SA h(Eh,)eT -\ dm.

But mT'~"*+*DA={, h,,dm. Since A was chosen arbitrarily, &, ,,=h(Eh,)T"1
O

Now let B(Z) be the o-ring of Borel sets in /. For each Je B([), define ¢; on X
by ¢;(x) =p(J).

1.3. LEMMA. ¢, is X-measurable.

Proof. Let p,(t) = Xa,,t* define a sequence of polynomials which is uniformly
bounded over I and converges pointwise to x ;. Note that

Sa, h(x)=La,, SI £5 dy, () = SI Pa(t) di (1)

This defines a sequence p,, = Xa,h;, which is uniformly bounded in L*(X, X)
and which converges pointwise a.e. dm to p,(J) = ¢,(x), showing that ¢, is -
measurable. : | Ol

We conclude this section with a slight generalization of [3]. This more general
result will be applied later in this article.
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1.4. LEMMA. Suppose that A is an operator on a Hilbert space H such that,
for some interval I, there is a dense subset D of the unit ball of H and a probabil-
ity measure p, on I for each x in D satisfying |A"x|?>={, t" dp,(t) (n=0). Then
A is subnormal.

Proof. According to [3], we must show that {]A"x|?} is a moment sequence for
every x € H. Let {x,] be a sequence in D converging to x. Then {uy, } has a weak-*
convergent subsequence { Poxy, ) converging to a (sub)probability measure . In
particular, for each integer m =0 we have

limit | A™x,, |2 = limit S; (" dp, (1)

k — oo k — oo

- g 1" du(t).
I
But limity _, . A”x,, =A"x, and the desired result holds true. O

2. Constructions of normal and quasi-normal extensions. We are assuming
that C is subnormal and, in light of Proposition 1.1., that A,(x) ={, t" dp,(¢).
Let Y=X XTI and let I" be the o-ring X X B(I) over Y. For each rectangle A xJ
in I' define

p(AXJT) = L &, dm = SA w (J) dm(x).

2.1. LEMMA. v extends to a o-finite measure on I'.

Proof. 1t suffices to show that if {A4; X J;} is a sequence of mutually disjoint rec-
tangles in I' whose union is a rectangle A X J, then r(AXJ)=Xr(A4;XJ;). In-
deed, for such a sequence we see that

EV(A,-xJ,-)=ES | FSJ' dp,x] dm

L v

=2 x4 | x,0) dux(t)] dm(x)

={ |} =xas dux] dm(x)

= SX iS{ XAxJ dﬂx] dm(x)

=p(AXJ). O

Verification of the next assertion follows similar lines and so the proof is omit-
ted.

2.2. LEMMA. For FeL!,

Sdev = SX [S} F(x, 1) d,ux(t)] dm(x).
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As a consequence of Lemma 2.2, we note that the inner product in L? is given by

(F,G),= SX [SI FG dux(f)] dm(x).

Also, if Fe L? depending only on x (i.e., F(x,t)= f(x) for some X-measurable
function f), then

1#1.2=§[§, 170 ano] ameo

= SX |f2(x)| dm(x) (each p, is a prob. meas.)

=S

Thus, if H is the set of all such L2 functions F then H is isometrically isomorphic
to L2,. We shall refer to L2, as a subspace of L2.

2.3. LEMMA. The orthogonal projection of L* onto L2, is given by

(PF)(x)= S, F(x, 1) dug(?).
Proof.
2
1PFE= [ [, 17 d| am

=|Fi:.

Also, since each p, is a probability measure, P2= P. Finally, for each Fe L2,

(PF,F)=|_ [SI (PF)(x)F(x, 1) dux] dm

- SX |PF|2dm = | PF|2.

Thus P = P*P, completing the proof. O

We now define the transformation S on Y by S(x, ) = (Tx, t). Then S is a
surjection, and since S—1(4AxJ)=(T"14)x J, S is I"-measurable. Since we are
about to examine the composition operator induced by S, we must compute the
appropriate Radon-Nikodym derivative.

2.4. LEMMA. (dveS~Vdv)(x,t)=ta.e. dv.
Proof. Let AxJ be a measurable rectangle. Then
voS W AXJ)=v(T1AXJ)

- L_]A b, dm = L h(E$ )T ~\dm.

As before, let P,(¢) = Xa,; t* define a uniformly bounded sequence of polynomi-
als on I converging pointwise to x, and let P, = Xa,; h;. Then {EP,} is uniformly
bounded and converges a.e. dm to E(¢;). Thus
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limit SA (EP,)eT-1hdm= SA h(E¢,)oT - dm

=poS—1(AXJ).
Now, it follows from Lemma 1.2 and the definition of the measures u, that

h(x)(EP,)eT ~!(x) = Ea, h(x)E(h;)°T ~'(x)
=Syl () =Ty | 14+ du(0)

- L tP, (1) du (1),
so that
lim h(x)(EB,)oT~!(x) = S, tx (1) dp(2)

- S, ¢ du (1)
It then follows that

peS—I(AXJ)= SA U] t dyx(t)] dm(x)

=§ tdv(x, 1),
AxJ
and so dveS~l/dv =1t. O

Now define the operator Q on L2 by QF = FS; that is, QF (x, t) =F(Tx, t).

2.5. THEOREM. (a) Q is a bounded quasi-normal composition operator leav-
ing L2, invariant. The restriction of Q to L, is C.

(b) If T is invertible and bi-measurable, with the real-valued function m-T mu-
tually absolutely continuous with respect to m, then Q is the minimal normal ex-
tension of C.

Proof. Q is bounded since its norm is |dveS —/dv| % Let g = dv+S—Y/dv. Then
g(x,t)y=t, and so goS(x,t)=g(Tx,t)=t=g(x,t); that is, goS=g. But this is
precisely the characterization of quasi-normality given in Proposition 1.1. Let f e
L}, (S LY). Then (Qf)(x,t)=f(Tx,1), so QL3, < L%, Moreover, Q|2 =C.

Now suppose that 7 is a bi-measurable bijection. Then so is S, and because
g°S=g, Qs in fact normal. We now compute Q*: Let f and F be in L2, Then

(Qf,F)= SX [L JTIx, t)F(x,1) dux(t)] dm(x)

= SX h(x) [S, FCe OF(T %, t) dﬂT—lx(t)] dm(x).

Since 7 is invertible, Lemma 1.2 reduces to A, ;= h-h,°T 1. It then follows by
an argument similar to that given in Lemma 2.4 that A(x) du;-1,(2) =t du (1),
so that
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@)=\ [51 L0, OF(T 1%, 1) dux(t)] dm(x),

and so Q*F(x,t)=tF(T ~lx, t). More generally, Q**F(x,t) =tkF(T —*x,t). Let
felL?. Then Q**f(x,t)=t*f(T —*x). Now, because T is invertible, C has dense
range and so for each k=0, C*L2 is dense in L2, It then follows that Q**L2 =
t*L2, (where t* is in actuality the corresponding multiplication operator). This
shows that the closed linear span Vo, Q**L2, contains all functions of the form
X 4x g With m(A) < oo, s0 V°_ o Q*KL2,= L2, This in turn shows that Q is the min-
imal normal extension of C ([1, p. 128]). |

2.6. LEMMA. Suppose that there is a finite Borel measure p over I such that
Uy Is absolutely continuous with respect to p for almost every x. Let u(x,t)=
du./dpn, and for any function f(x,t) let f,(x)=f(x,t). Suppose that E(u,)>0
a.e.dm for all t e l. Then

(Q*)(x, t) = t[(Eu)oT X)) Eu, f)]-T~1(x).
Proof.

©ra=|, “, S(Tx, 0)g(x, Du(x, 1) du(t)] dm(x)

= gX h(x) HI Fx, O E(u,g,)T—\(x) du(t)] dm(x)

E
= SX [S{ (f(x’ t))h(X) l;f:;;g;) OT_I(X)E(u1)°T_l(X) d'u(x):l dm(X).
As in previous argumeﬁts, we see that #(x) (Eu,)oT~!(x) = tu,(x) so that

-\ _ E(ug) ,._
(Qf,g)—SX[SIf(x,t)t E(w,) T ‘(x)du(t)]dm(x),

yielding the indicated formula for Q*g. 1

One attempt to generate a measure p appropriate for application in the preced-
ing lemma is as follows: Let r be a strictly positive function on X of L!, norm
one. Since each ¢, is measurable, we define u(J) ={, r(x)¢;(x) dm(x). Then
is a probability measure. Moreover, for each J with u(J) =0, u,(J) = 0 for almost
every x. However, without some extra conditions imposed on {u,} it is possible
that for every x, u, L u. For example, if m is Lebesgue measure on [0, 1] and u,
is the point mass at x, then ¢;= x; and u = m. However, this technique is appli-
cable in at least one general situation of some interest, as shown below.

Suppose X = {x;} is countable. Then there exists a dominating measure u for
{uy}. Indeed, m consists of point masses {m;}. Let u(J) = Z(m/2*)p,, (J).
Then p(J) =0 if and only if p,, (J) =0 for all k.

3. Construction of a normal composition operator extension of a quasi-normal
composition operator. It was shown in Section 2 that if C is subnormal but 7 is
not invertible, then C has a quasi-normal composition operator extension. Sev-
eral constructions of normal extensions of quasi-normal operators are known (see
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[1, p. 135], [1, p. 116]) but it is not clear if these give rise to composition operators.
In [6] a construction is given of a bi-measurable bijection associated with a non-
invertible transformation. That construction is modeled after the result of Rohlin
[8] for measure-preserving transformations (see [2, p. 239] for a discussion of
Rohlin’s result and related topics). We will outline the construction in [6].

Let7XCX, T 12 CX, h>0, TX = X, and the real-valued mapping nT mu-
tually absolutely continuous with respect to m (in the sense of having the same
null sets). Let Z be the inverse limit space

Z=1{z2=(2¢p,21,-.-r:€ach z;e X and 7z, =z;].

Then Z is nonempty. For AeX and n=01let (4),={zeZ:z,€ A}. Let A be
the o-field generated by {(4),: A€ X, n=0}. The mapping M(A4),)={,H,dm
is well defined where Hy=1and H,=1/[heT---h-T"] for n=1. Then \ extends
to a o-finite measure on A. The transformation R on Z given by R{zy, 2, ...? =
(Tzo, Tz, ...) is a bi-measurable bijection (R ~{z, 21, ...) = {21, 22, ... )). More-
over, if G=d\°-R~Vd\, then G({z¢, 21, -.-)) = h(2Zy). Also, the composition op-
erator W induced by R on L3 leaves L2, invariant, where L2, is identified (isomet-

rically) with the set of L% functions depending on z, only. W | 12, is C.

3.1. THEOREM. Let C and W be as above. If C is quasi-normal, then W is a
normal composition operator extension of C.

Proof. If C is quasi-normal, then #o7T = h. It then follows, from the charac-
terization of G above, that GeR = G. But R is a bi-measurable bijection, so (via
Proposition 1.1) W is normal. Ol

Theorem 3.1 can now be combined with the results of Section 2 to construct
minimal normal extensions.

3.2. THEOREM. Let C be a subnormal composition operator with TECX
and T—'X € X, and such that moT ~! and moT are mutually absolutely continu-
ous with respect to m. Then the minimal normal extension of C is a composition
operator.

Proof. If T is invertible then Theorem 2.5(b) yields the required result. As-
sume then that 7 is not invertible. The constructions from this and the preced-
ing section yield L2(X, X, m) € L2(Y,T',») € L?(Z, A, \) (isometric embeddings)
and C € Q € W. We must show that ¥ is the minimal normal extension of C. We
will show that Q is the minimal quasi-normal extension of C, and that W is the
minimal normal extension of Q. It then follows from Embry-Wardrop’s theorem
[11] that W is the minimal normal extension of C. Let k=0 and let feL2,. Let
FeL?be given by F(x, t)=foTk(x). Then Q*F(x, t)=tkf(x). Thus Q*I2,2
t*L2 . From the construction of L2, \/Z°_ o, OQ*fL2, = L2. This shows the minimality
of Q over C. Now let g=dveS~1/dv and G =dN-R~1/d\. Then G{z¢,z;...) =
g(z0). For fe L2let F{zy, 21, ... =f(zp). Then W*F{zo,z,,...> =[8(z0)1¥f zx).
Now any function on Z depending only on the variables z, ..., 2; depends only
on z;, because zy =S¥z, ..., 241 = Szx. The set of all such functions forms a
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closed subspace L; of L%. Moreover, the function G(z) =g(z,) is strictly posi-
tive and bounded, and G-L; C Ly, so GL, is dense in L. Thus W**L,2> L. But
Vio Ly =15 (i.e., the set of all L3-functions depending on only a finite number
of variables is dense in L3). This shows that W is the minimal normal extension
of Q, and thus also of C. ]
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