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1. Introduction. Let A be a uniform algebra on a compact Hausdorff space X;
that is, A4 is a closed subalgebra of C(X) which contains the constant functions
and which separates the points of X. The spectrum o(f) of f € A is the compact
set of complex numbers A\ such that 1/(A—f) does not belong to A. The norm
[u| of ue C(X) is the supremum on X of the absolute value of u. Alexander [2,
Lemma 2] proved the following theorem, using a quantitative version of the clas-
sical Hartogs—Rosenthal theorem on rational approximation in the complex plane.

ALEXANDER’S THEOREM. If fis in A then
dist(f, A) < [Area(a(f))/7}V2,
where f is the complex conjugate of f and dist(f, A) =inf{| f—g|: g€ A}.

In Section 3 of this paper we give a new proof of this theorem. The prcof we
give is very abstract. We use a distance formula in a uniform algebra, which will
be proved in Section 2, and we will need the famous Putnam inequality in opera-
tor theory. In Section 4, using Alexander’s theorem, we will give an area estimate
of a complete spectral set for the distance from the adjoint 7* of 7 to some norm
closed algebra generated by T and (T—\) 1, where T is a bounded linear opera-
tor and A is not in the complete spectral set. In Section 5, we will give an area esti-
mate of the spectrum o(7") of a hyponormal operator 7 for the distance from 7*
to some weakly closed algebra generated by Tand (T—\)~! for A ¢ o(T). In Sec-
tion 6, we will show an area estimate of the complete spectrum set for the self-
commutator of a bounded linear operator. This estimate looks like the Putnam
inequality.

In this paper JC denotes a Hilbert space and £(3C) is the set of all bounded
linear operators on JC. If 7 is in £(JC) and T*T—TT* is nonnegative then we
call T"a hyponormal operator. In Section 6 we shall show that, if T is a hyponor-
mal operator and X is in £(JC) with KT =TK, then

|T*K —KT*| < 2{Area(o(T)}2|K].

Moreover, for any 7 in £(JC) we shall show the result above with a complete
spectral set instead of o(T).
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2. Distance formula. Let A be a uniform algebra on X. Suppose A+ denotes
the set of all orthogonal measures on X to A. For any nonzero p in A, H?(|u|)
denotes the L2(|n|) closure of A; let P* be the orthogonal projection from L?(|u|)
to H2(|u|). Then, for any ¢ in C(X),

dist(¢, A) = sup{|(1 —P*)M4 P*|: pe A+ and |p| <1},

where M, is the multiplication operator on L2(|u|). The following lemma shows
that equality holds.

LEMMA 1. For any ¢ in C(X),
dist(¢, A) = sup{|(1—P*)My P*|: pe A* and |p| <1},
and the supremum is attained.

Proof. Assuming ¢ ¢ A, by the Hahn-Banach theorem there exists a nonzero
measure p € AL with || =1 such that

dist(9, 4) = | & d.
Let F=du/d|p|; then Fe (1—P*)L2(|p|) and 1€ P*L2(|u|) = H2(|u|). Hence
S¢-1-de.s [(1—P#)M,, P*]

and the lemma follows. O

Let Y be a compact subset of the plane whose complement has a finite number
of components, say n+1, and let 7 be the harmonic measure of a point in the
interior of Y. Let X =Boundary Y =X,UX,;U-.--UX,, where X is the compo-
nent of X that is the boundary of the unbounded component of the complement
of Y. Define v;e C(X) tobe 1l on X; and 0 on X\ X;, I1<j=n.

THEOREM 1. Let R(Y) be the uniform closure of the set of rational functions
in C(Y) and A=R(Y)|X. Then for any ¢ in C(X),

dist(qb,A)=sup[||(1—P”)M¢P”[|:
n
v=exp 3, t;v;=|F|, Fdme At and S |F| dmslz,
j=1

and the supremum is attained.

Proof. By the theorem of F. and M. Riesz (cf. [7, Chap. 4, Thm. 3.3]), AL=
A*NLY(m). If fe AN LY(m) then log| f| e L'(m) and there exist {#;}7_, such that
log| f|—2X%-1¢;v; has a single-valued harmonic conjugate [11, Chap. I, §10]. Set
u=log|f|-X7-1tv; and h?2 =exp(u+i *u), where *u is the harmonic conjugate
of u. Then 4 is an outer function in the Hardy space H?(m), that is, the L2(m)-
closure of 4. Let F=fh~2; then |[F|=v=exp X7~ t;v; and Fe AN\ L!(m) te-
cause A+NLi(m) has the form s ~'H1(m), where H!(m) is the Hardy space, s is

.an invertible function in L=, and 4 is an outer function. Since | f|=v|h|?,
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H2(|f|dm)=h"1H2(vdm) and H?2(|f|dm)*=h"1H?(vdm)-.
For h—-ge H%(| f|dm) and A~ € H?(| f|dm)*,

S¢h—1g-h‘17|f| dm= Sd)g»fv dm;

also, {|h—1g|2| fldm=§|g|>vdm and § |h~1U|?| f| dm={|l|?v dm. This implies
(1~ PU)M, PV/I| = |(1- P*)M, PY|
and the theorem follows from Lemma 1. O

The distance formula looks like Theorem 3 in [9] and relates with Theorem 1.3
in [8]. If A is the disc algebra then F'is an inner function and v =1in Theorem 1,
and hence dist(¢, A) =|(1—P1)M4P!]. Of course this is a special case of Nehari’s
theorem for Hankel operators [10]. We could prove a distance formula similar to
Theorem 1 for a finite codimension subalgebra of the disc algebra.

Let @ be an algebra of bounded linear operators on JC and lat @ denote the lat-
tice of all @-invariant projections. We shall write /2® JC for the Hilbert space di-
rect sum JCAICPD---, and 1Q T will denote the operator TAOTD --- € £L(/2® IC)
for each operator T € £(J3C). The following lemma is due to Arveson [4, Lemma
2] and will be used in Section 5.

LEMMA 2. Let Q be an arbitrary ultra-weakly closed subalgebra of £(3C) con-
taining 1, and let Te £(3C). Then

dist(7, @) =sup{|(1-P)(1QXQT)P|: Pelat(1Q ®)}.

In Lemma 2, if lat @ is totally ordered then dist(7, @) =sup{|(1—P)TP|: Pe
lat @} [4, Thm. 1.1].

3. A new proof of Alexander’s theorem. By Lemma 1, if fe @ then
dist(f, 4) =sup{|(1—P*)M;P*|: pe A* and |u| <1}.
For pe A+ with |p|<1and fe A,
P*M(1—-P*)M;P*=P*M;M;P"—P"M;P*M7P*
=P*M;P"M;P"—P*M,P*M;P*
because H2(|p|) is an A-invariant subspace. Set Tj = P*M,| H?(|p|); then
dist(f, A) =sup{|T/*T} —TFT;*|/*: pe AL and |p| <1).
Now we need an inequality due to Putnam [11]. |
PUTNAM'’S THEOREM. If T is a hyponormal operator in £(3C) then
|T*T—TT*| < Area(o(T))/x.
By Putnam’s theorem,

dist(f, A) < sup{(Area(a(T}))/m)"?: pe AL and |u| <1]}.
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If f is invertible in 4 then 77 is invertible in £(H 2(|n])) because f1H?(|u|)C
H?(|n]) and hence o(Tf) Ca(f) Thus

dist(f, A) < [Area(o(f))/7}V2.

In the proof of Alexander’s theorem we show there exists a measure p in A+ with
|| =1 such that

dist(f, A) =T/ TF—TFTf*|"2.

For a special algebra as in Theorem 1, such a x can be described. Moreover, then,
o(T§)=a(f) by the proof of Lemma 2.2 in [1].

4. Complete spectral sets. Let 7" be in £(3C) and let Y be a compact subset
of the complex plane C which contains the spectrum of 7. Y is called a spectral
set for T if | f(T)|<|f| for f in rat(Y), where rat(Y) denotes the set of all ra-
tional functions on Y. Arveson introduced a somewhat stronger definition (sce
[3, p. 277]). For each k=1 let rat,(Y) denote the algebra of all k£ x k matrices
over rat(Y). Each element in rat, (Y) is then a k X k matrix of rational functions
F={(f;;), and we may define a norm on rat;(Y) in the obvious way:

|Fl=supf|F(M)]: e Y}.

A compact plane set X is called a complete spectral set for T if X contains o(T)
and
[F(T)] =sup{]F(M)]: N e X}

for every F in rat;(X) and every k=1.
THEOREM 2. If X is a complete spectral set for T in £(3C) then
dist(T*, @) < {Area(X)/n}1/2,
where Q denotes the norm closure of {f(T): ferat(X)].

Proof. By a dilation theorem due to Arveson [3, p. 279], there exists a Hilbert
space X and a normal operator N on X such that o(N) € X and f(T)=V*f(N)V
for every ferat(X), where V is an isometric imbedding of 3C in X. Since N isa
normal operator, |u#(N)| =supf|u(z)|: zed(N)} for any ue C(a(N)). Hence, for
any ferat(X),

|N*—f(N)] <sup{|Z— f(z)]: z€ X}.
Let B be the norm closure of {f(N): ferat(X)}; then
dist(N*, B) <dist(zZ, rat(X)).
Hence, by Alexander’s theorem,
dist(T*, @) < {Area(X)/x}V/2
because dist(7*, @) < dist(N*, B). ]
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In the theorem above, it would be nice if we could take a spectral set instead of
a complete spectral set of 7'; unfortunately, we cannot do so. If a spectral set of T
has a connected complement then it is a complete spectral set (cf. [3, Prop. 1.2.1]).
However, when a spectral set of T has a disconnected complement we do not
know whether it is a completely spectral set or not. Douglas and Paulsen [6, Cor.
2.4] showed that if a spectral set X of 7" has a complement with only finitely many
components then there exists an invertible operator S such that X is a complete
spectral set of S—178. In general, if T is a subnormal operator then the spectrum
is always a complete spectral set. Hence we can show the following two corol-
laries, using Theorem 2.

COROLLARY 1. If Tis in £(3C) and if a spectral set X of T has a complement
with only finitely many components, then there exists an invertible operator § and

dist((S~17S)*, S~1@S) < {Area(X)/m}1/2
Moreover, if X is simply connected then
dist(7*, @) < {Area(X)/m}2.
(Here Q@ denotes the norm closure of { f(T): ferat(X)}.)
COROLLARY 2. If T is a subnormal operator in £(3C) then
dist(T*, @) < {Area(a(T))/7}V2,
where @ denotes the norm closure of {f(T): ferat(a(T))]}.

5. Hyponormal operators. A subnormal operator is hyponormal, but the con-
verse is not true. We could not show Corollary 2 for hyponormal operators; how-
ever, the following theorem is still valid. Instead of Alexander’s theorem we use
Lemma 2.

THEOREM 3. If T is a hyponormal operator in £(3C) then
dist(T*, ®) < {Area(o(T))/m}/2,
where ® denotes the strong closure of {f(T): ferat(o(T))}.
Proof. By Lemma 2,
dist(7*, ®) =sup{|(1-P)(1QT)P|: Pelat(1® B)}.
Since 1® T is also hyponormal, by Putnam’s theorem we have

|A1-P)YART)*P|?=|POART)(1RQT)*P-P(1QT)P(1QT)*P|
= |PARTI*AQT)P—-P(IQT)P(1QT)*P|
< Area(e(P(1®T)P))/x.

From Pelat(1® ®), it follows that ¢(1Q®7T)De(P(1QT)P). Because o(T) =
0(1®7T), the theorem follows. O
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6. Commutators and spectrum area estimates. Axler and Shapiro [5, Thm. 3.1]
proved Putnam’s theorem for subnormal operators by using Alexander’s theo-
rem. We will prove it using Theorem 2.

Let T be a subnormal operator on JC, and let NV be a minimal normal extension
on the Hilbert space JC such that 3JC C JX. P is the orthogonal projection from ¥
onto JC, and f(T)=Pf(N)| I for every ferat(o(T)). Since N*N=NN*,

|T*T—TT*|=|PN*NP—PNPN*P|=|(1-P)N*P|? <dist(N*, @),
where @ denotes the norm closure of {f(N): ferat(e(T))}. By Theorem 2,
dist(N*, ®@)? < Area(a(T))/x.

Hence, Putnam’s theorem follows for subnormal operators. Unfortunately we
could not prove Putnam’s theorem for hyponormal operators using Theorem 3.
However, the proof above shows that if there exists a hyponormal operator 7 for
T such that PT*TP = PTT*P then PTP =T and P elat 8, where ® denotes the
strong closure of {f(T): ferat(a(T))}.

Now we will show an inequality for a hyponormal operator using Theorem 3
(hence using Putnam’s theorem).

THEOREM 4. If T is a hyponormal operator in £(3C) and if K is in £(3C) with
KT=TK, then

|7*K — KT*| < 2{Area(o(T))/m}2|K]|.
Proof. Let @ denote the strong closure of { f(T): f erat(c(T))}. For any J e @,
|T*K —KT*|=|(T*-J)K+JK—KT*|
<2|T*-J]IK].
From Theorem 3, the theorem follows. O

If we use Theorem 2 then a version of Theorem 4 can be shown for any bound-
ed operator.

THEOREM 5. If Tand K are in £(3C), TK = KT, and X is a complete spectral
set, then

|T*K — KT*| <2f{Area(X)/x}V2|K]|.

Instead of | K| in Theorems 4 and 5 we can take dist(K, ® N ®*), where & de-
notes the double commutant of 7.

I am very grateful to Professor J. Kister, who improved the exposition in the
first draft of this paper.
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