LATTICES OF A LIE GROUP AND SEIFERT FIBRATIONS

Masayuki Yamasaki

1. Introduction. Let L be a Lie group with finitely many components, K a
maximal compact subgroup of L, and A a lattice of L. A acts properly discon-
tinuously on the contractible manifold K\ L. The isotropy subgroups are finite
and the orbit space K\ L/A is an orbifold. If A is torsion-free, then the action of
A is free and the orbit space is a manifold. The purpose of this article is tc prove
a structure theorem for K\ L/A; it roughly says that either it is a Riemannian
orbifold of nonpositive sectional curvature or it Seifert fibers over such an orbi-
fold. We do this if L satisfies the following extra condition (*):

(*) the center of MR\ L, is finite, where L, is the identity component of L,
R is the radical of L, and M is the Lie subgroup of L, which corresponds
to the sum of the compact simple factors of the semi-simple semi-direct
summand of a Levi decomposition of the Lie algebra of L,.

Without condition (*), our construction still produces a Seifert fibration
K\L/A—- O™

over an orbifold O of dimension # > 0. The condition (*) is used to show that
O™ has non-positive sectional curvature. If L is amenable, then (*) is satisfied
and it is not a restriction at all. The precise statement of the main theorem is:

THEOREM 1. Let L be a non-compact Lie group with finitely many compo-
nents satisfying (x), K a maximal compact subgroup of L, and A a lattice of L.
Then there is an orbifold Seifert fibration

K\L/A— O™,

where O™ is a Riemannian orbifold of dimension m > 0 and of nonpositive sec-
tional curvature. If L is amenable, O™ can be chosen to be flat.

REMARKS. (1) Condition (*) is unnecessary if L is connected and A is uni-
form. See §4. (2) O™ is in general not a manifold, even when K\ L/A is a mani-
fold. (3) If Ais only a discrete subgroup of L, our construction may not produce
a Seifert fibration. We heavily use the lattice property of A. (4) Some special cases
of Theorem 1 have been known; see Farrell and Hsiang [5; 6] and Quinn [12].

To begin the construction, we first choose a connected closed normal subgroup
S of L. Then KS is closed, and we have a fiber bundle

K\KS—-K/L—KS\L.
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L acts on K\ L by right multiplication. L acts also on KS\ L by right multiplica-
tion; let N denote the kernel of this action, that is, N={ge L: KSxg = KSx for
all xe L}. The action of N on K/L leaves all fibers invariant; in other words, we
have a family of right N-spaces parameterized over KS\L.

LEMMA 2. The right N-spaces K\KSx (xe€ L) are equivariantly diffeomor-
phic.

Proof. Since K is compact, K \ L has an L-invariant Riemannian metric. Fix
such a Riemannian metric. Pick two distinct fibers K\ KSx and K\ KSy (x, y € L).
It suffices to construct an N-equivariant diffeomorphism from K\ KSx onto
K\ KSy when they are sufficiently close to each other, because KS\L is con-
nected.

Fix a point p of K\ KSx and let d be the distance between p and K\ KSy. K\L
is complete and K\ KSy is closed; therefore, d is positive and can be achieved as
the length of a geodesic v connecting p and a point g of K\ KSy. S is contained
in NV and acts transitively on each fiber. The action of an element s of S sends «y
to a geodesic y-s of the same length d connecting p-s and g-s. Thus the distance
from a point of K\ KSx to K\ KSy is independent of the choice of the point, and
~v is one of the shortest geodesics connecting K \ KSx and K\ KSy. Therefore vy
is perpendicular to K\ KSx at p. Let (T,,(K \ KSx))* denote the orthogonal com-
plement of the tangent space 7,(K \ KSx) of K\ KSx at p in the tangent space of
K\ L at p. As the exponential map Exp is a diffeomorphism near the origin, any
fiber K\ KSz that meets Exp (V) meets Exp(V) exactly once, where V is a suffi-
ciently small neighborhood in (Tp(K \ KSx))*of the origin. This implies that v is
the unique geodesic of length d connecting p and K\ KSy, as long as K\ KSy is
sufficiently close to K\ KSx. Let us suppose that this is the case. Then the corre-
spondence p-x— q-s (s € S) defines a diffetomorphism K\ KSx — K\ KSy, which
is obviously N-equivariant because it sends a point in K \ KSx to the unique point
closest to it in K\ KSy and N acts on K\ L by isometries. Il

REMARK. The N-equivariant diffeomorphism above defines a local trivializa-
tion of the fiber bundle K\ L — KS\ L so that the action of N on K\ L is locally
a product of the action of N on a fiber and the action of a trivial group on the
base.

If A is a lattice of L, the action of L on K\L restricts to an action of A on
K\ L. IT=ANN is a normal subgroup of A which leaves the fibers invariant. By
Lemma 2, we have a fiber bundle:

K\KS/I1- K\L/T1—>KS\L.

The quotient group I' = A/IT acts on K\ L/ITand KS\ L such that (K\L/II)/T"=
K\L/A and (KS\L)/T'=KS\ L/A; the fiber bundle map induces a map:

g: K\L/A— (KS\L)/T.

Note that KS\ L can be naturally identified with (S\KS)\(S\L), which has
an (S\L)-invariant (and hence L-invariant) Riemannian metric. Thus I" can be
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thought of as a subgroup of the group I(KS\L) of all the isometries of KS\L
with respect to this Riemannian metric.

Suppose that I' is discrete in 7(XS\ L). Then the isotropy subgroup I', of I" at
ve KS\ L is finite for each v, and the inverse image g ~!([v]) of the orbit [v] e
(KS\L)/T"is ((K\KSx)/I1)/T",, where v=KSx (xe L). Thus a “fiber” of q is
homeomorphic to a quotient of the “general fiber” K\ KS/II by an action of a
finite group; that is, g is a Seifert fibration [3].

In the following three sections, we choose S and show that I' is discrete and
that O = KS\ L/A has nonpositive sectional curvature.

In §5, we will compute the Wall groups (tensored with Z[1/2]) of virtually
poly-cyclic groups in terms of certain homology theory (Theorem 6). A virtually
poly-cyclic group A can be embedded discretely and cocompactly in an amenable
Lie group L, and we use the Seifert structure of K\ L/A over a flat orbifold R”/T°
given by Theorem 1 for the computation. Such a structure is called a fibering
apparatus for A in [3]. Recently, Farrell and Jones succeeded in computing the
Wall groups (without ®Z[1/2]) of torsion-free virtually poly-cyclic groups [7]
using new ideas (e.g., pseudo-fibering apparatuses in place of fibering appara-
tuses and a foliated metric control theorem in place of the Chapman-Ferry-
Quinn control theory).

As in our previous papers [16; 17], the rational computation of Wall groups
mentioned above implies the so-called Novikov conjecture for virtually poly-
cyclic groups (Corollary 7), which is originally due to Cappell [2]. More recently,
Kasparov proved this corollary for arbitrary discrete subgroups of a connected
Lie group [9]. Also, the author has been informed by the referee that a rational
split injectivity result like Theorem 6 was proven by Ferry and Weinberger for
discrete subgroups of semisimple Lie groups or amenable Lie groups.

2. Non-amenable case. Recall that a Lie group L with finitely many compo-
nents is amenable if and only if L/R is compact, where R denotes the radical
(=the unique maximal connected normal solvable subgroup) of L. See Milnor
[10]. In this section we handle the case when L is nof amenable. We use R as S,
following [6]; that is, we are going to show that

K\L/A— KR\L/A

is a Seifert fibration with the desired property. As in the previous section, iden-
tify KR\ L with (R\KR)\(R\L)=R" (m>0). R\ L is a non-compact semi-
simple Lie group, and R\ KR is a maximal compact subgroup of R\ L. Using
condition (%), the Killing form, and the Cartan decomposition, one introduces an
(R\ L)-invariant (and hence L-invariant) Riemannian metric g on R” with non-
positive sectional curvature. In fact, any (R\L)-invariant Riemannian metric
on R’ has nonpositive sectional curvature. See Helgason [8]. Thus we have a
homomorphism ®: L - I(R™, g). Let I denote the image ®(A) of A. To prove
the theorem, it suffices to show that I'" is discrete in /(R"™, g). Let 7 dencte the
natural projection L — R\ L. If the image y(A) of A in R\ L is discrete, then I
is obviously discrete. Unfortunately y(A) may not be discrete in general. We
remedy this situation as follows.
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Let Ly denote the identity component of L. ANL, is a subgroup of A with
finite index. Therefore it suffices to show that ®(ANL,) is discrete in I(R™, g).
As (R\(KNLy)R)\(R\L,) can be naturally identified with R"”, we may assume
from the beginning that L is connected.

Now there is a semi-simple Lie subgroup S of L such that L = SR and such that
SNR is discrete (Levi decomposition). Let o: S— Aut(R) denote the action of
S on R. A sufficient condition for y(A) to be discrete in R\ L is that the identity
component (ker o), of the kernel of ¢ has no compact factors (Raghunathan
[13, p. 150]). Let C denote the unique maximal compact normal subgroup of
(ker a),. It is a characteristic subgroup of (ker g), and hence it is normal in ker o
and in S. On the other hand, C commutes with elements of R. Therefore C is
normal in L. Let «: L — L/C denote the natural projection, and let L'=w (L),
S'=xw(S), RR=n(R), N'=7n(A), K'=n(K). Then S’ is semi-simple, R’ is the
radical of L’, A’ is a lattice of L’, and K’ is a maximal compact subgroup of L’.
Let o’: S’ — Aut R’ denote the action of S’ on R’. Then it is easily observed that
ker ¢’ = (ker ¢)/C, since CNR is finite. So the identity component of ker ¢’ has
no compact factors, and this implies that the image A” of A’ in R’\ L’ is discrete.
Thus the action of A on R” factors through a properly discontinuous action of
A” on K'R’\L=KR\L. Therefore, I is discrete in I(R", g). This completes the
proof of Theorem 1 when L is not amenable.

REMARK. Let g: K\ L/A - KR\ L/A be the Seifert fibration constructed above.
Then the “fiber” g "}(KRxA) over the point KRxA € KR\L/A (x € L) is homeo-
morphic to

(x 'Kx)\(x T'KRx)/(x 'KRxNA).

It is easily observed that x "!KRxN A is a uniform lattice (= discrete cocompact
subgroup) of x "'KRx. In particular, we have

COROLLARY 3. Let L be a Lie group with finitely many components, K a
maximal compact subgroup of L, R the radical of L, and A a lattice of L. Then
KRN A is a uniform lattice of KR. .

3. Amenable case. Now let us assume that L is non-compact and amenable.
Let K be a maximal compact subgroup and R the radical of L as before. Since

L is amenable, L = KR.
We define a sequence N (j= —1) of closed characteristic subgroups of L as

follows:

(1) NV s the radical R;

(2) N© s the nil-radical (i.e., the maximal connected normal nilpotent sub-

gropp) of L; _ . .

3) N is the commutator subgroup [NY~D NU-D] of NU~D for j>0.
It may not be so obvious that N)’s are closed when j > 0; in general, the com-
mutator subgroup of a Lie group may not be closed. This will be observed later,
and we continue the construction. There exists an integer k such that N*) = {1},
Consider the following sequence:
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L=KNYDKNODSKND>...0KN® =K,
There exists an integer i =0 such that
L=KND=KNO=...= gNUG-Dz gN©,

because L is non-compact. Let us write M =NU~"D and N= N, We introduce
a flat L-invariant Riemannian metric on KN\ L.

Let us study the action of L on KN\ L defined by right multiplication. An ele-
ment ky of KM =L (ke K, y € M) acts on an element KNx (x € M) of KN\ L as
follows:

KNx-(ky)= KNxky
= KN(k ~xk) y.

Note that we have [M, M] C N; we identify the coset space KN\ L with the
simply-connected abelian Lie group (KNM)N\M=R™ (m>0). Now the in-
duced action of L on R™is:

(KNM)Nx-(ky)=(KNM)N(k ~'xk)y.

The following are easily observed: (1) this action, when restricted to K, defines
an homomorphism «: K — Aut(R”) and its image «(K) lies in the orthogonal
group O(m) with respect to some inner product of R”; and (2) if k€ KN M, then
(KNM)Nx-k=(KNM)Nk~xk =(KNM)Nk xkx)x=(KNM)Nx for
x€ M, and so KNM acts trivially on R, Let 8: M — (KNM)N\M denote the
natural projection. We now define amap ®: L=KM - a(K)X (KNM)N\M) C
O(m)XR"=I(R"™) by sending ky (ke K, ye M) to (a(k), B(y)) € O(m)XR™
This is a well-defined homomorphism. Here X denotes the obvious semi-direct
product. Let I' denote the image of A by ® in /(R™).

It remains to observe that N’s are closed and that I' is a discrete subgroup of
I(R™). To do this we use the following lemma:

LEMMA 4. If N is a connected nilpotent Lie group and A is a discrete cocom-
pact subgroup of N, then the commutator subgroup [N, N] is closed in N and
ANI[N, N] is cocompact in [N, N].

Proof. This is well known if N is simply connected, so consider the universal
cover p: U— N of N; it can be identified with the natural projection U— U/I]I,
where I is the kernel of p. To see that [N, N] is closed in N, it suffices to show
that N/[N, N] is Hausdorff. As p ([N, N]) =II[U, U], we have homeomor-
phisms:

N/[N,Nl= U/TI[U, U]
=(U/LU, U)/dIlU, U]/LU, U)).

Here U/[U, U] is a Lie group, because U is simply-connected and hence its
commutator subgroup [U, U] is closed. Note that the preimage p ~1(A) of A is
discrete and cocompact in U. Since U is simply-connected, p ~!(A)N[U, U] is
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cocompact in [U, U]. Therefore, the image p ~!(A)[U, U1/[U, U] of p ~(A) by
the projection U — U/[U, U] is discrete. As I C p~1(A), II[U, U1/[U, U] is also
discrete and hence closed in U/[U, U]. Therefore (U/[U, U))/(I1[U, U1/[U, U])
is Hausdorff. This proves the first statement as observed above.

Since we have homeomorphisms:

[N,N]/AN[N,N1=T1[U,U]l/p ~(A)NTI[U, U]
=[U,Ul/p~(A)N[U, U1,
the second statement is obvious. Cl
Now we prove

LEMMA 5. NUY¥s are closed subgroups of L, and T is a crystallographic sub-
group of I(R'™).

Proof. If ANR is cocompact in R=N1D, then ANN is a discrete cocom-
pact subgroup of N and we can apply Lemma 4 to prove that N )% are closed
for j=1. Unfortunately, AN R may not be cocompact in R, in general. To rem-
edy this situation we introduce a quotient Lie group L’ of L as in the previous
section. We may assume that L is connected. We have Levi decomposition L=
SR, where S is a connected semi-simple (and hence compact) subgroup, R is the
radical as above, and the intersection SNR is finite. Let o: S— Aut(R) denote
the action of S on R. The identity component (ker ¢), of ker ¢ is a connected
compact normal subgroup of L, because it commutes with elements of R. In par-
ticular, (ker o)oCker «a C K. Let w: L — L/(ker o) be the natural map. Now de-
fine: L'=L/(ker )y, A'=x(A), K'=7n(K), S’=x(S), R"=n(R). Then A is a
lattice of L’, K’ is a maximal compact subgroup of L’, S’ is a semi-simple sub-
group of L’, R’is the radijcal of L’, and the action ¢’: S’ — Aut(R’) of S’ on R’is
almost faithful (i.e., ker ¢’ is finite).

Let us define a sequence N'Y) (j = —1) of characteristic subgroups of L’ by:

(1) N'D=R;

(2) N’ =the nil-radical of L’;

(3) N'D=[N'U-D N'G-D] for j=1.
Then A’NR’ and A’NN’© are cocompact in R’ and N’ respectively. By suc-
cessively using Lemma 4, we know that all N’’’ are closed. Note that 7 | R:
R — R’ is a finite covering map; this implies that N () is the identity component
of (w|R) “W(N'VY) for each j. Therefore N’ are closed in L.

Next, we show that I' is a discrete cocompact subgroup of 7(R”). Note that
we have

L/=K1Nr(—l) =KINI(0): v =K/Nl(i—l)¢KrN/(f)

for the same i and that K’N’\K’M’=KN\KM, where M’'=N’¢~1 and N'=
NGO ANN’'YP is cocompact in N’ for all j. In particular, A’ M’ is cocompact
in M’. So the image of A’ in M’\ L’ is discrete; furthermore, it is finite, because
M’\ L’ is compact. Looking at the diagram:



LATTICES OF A LIE GROUP AND SEIFERT FIBRATIONS 221

A----- » finite
N N
* (M')y—> L — 7~ {(M’)\L
) = l=
M’ » L' —— M'\L’
U U

A —— finite,

we know that AN« ~1(M’) has a finite index in A. So it suffices to show that the
image ®(AN7w ~1(M’)) is a discrete cocompact subgroup of I(R™). As ker o C
ker v, ® sends elementsin 7 ~}(M"’) = (ker o)y M to elements in R™ C I(R™). Now
consider the following commutative diagram:

L 2 > O(m)XR™
U U
ANT=YM’YCn~Y(M’)=(ker 6)gM 2> R"=(KNM)\ M
l 7 ANCIPIR
ANNM C M . > (K'NM")N'\M’,

where @’ is the natural map and (= | M) is the map induced by the restriction of 7
toM, w|M: M- M’. KNM and K’N M’ are maximal compact subgroups of M
and M’, respectively, and m(KNM)=K'NM’; therefore, (v | M) " W(K'NM") =
KN M. Using this, it is easily verified that (= | M)~ 1(K'NM’)N’)=(KNM)N.
Therefore (7 | M) is an isomorphism. Since (A’NM")NN’'= A'NN'is cocompact
in N, (ANM"YN(K'NM’)N"’is cocompact in (K'"NM’)N’; thus ®'(A'NM") is
a discrete cocompact subgroup of (K'NM’)N’\M’. Therefore ®(ANx~'(M"))
is a discrete cocompact subgroup of R” (and hence in 7/(R")). This completes the

proof of Lemma 5. ]
Thus K\L/A— KN\L/A is a desired Seifert fibration as observed in the first
section. This completes the proof of Theorem 1. ]

REMARK. A fiber of the Seifert fibration above has the form K\ KNxA/A, and
is homeomorphic to

(x 7 IKx)\(x 'KNx)/(x IKNxN A).

If A is a lattice of L (which is automatically uniform), then x "' KNxN A is a uni-
form lattice of x "1KNx.

4. Uniform lattices of connected Lie groups. Let us assume that L is connected
and not amenable, and observe that the condition (*) can be deleted if A isa uni-
form lattice of L. Without (%), we may not have nonpositive sectional curvature on
KR\ L/A, so we replace KR by some larger closed subgroup in the following way.

Let r@s be a Levi decomposition of the Lie algebra of L into the radical » and
a semi-simple subalgebra s, and let k@ p be a Cartan decomposition of the sum
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of the non-compact factors of s, where & is a maximal compactly embedded sub-
algebra. Also let H be the subgroup of L corresponding to the sum of r, the com-
pact factors of s, and k. Then H is closed and A \ L has an L-invariant Rieman-
nian metric with nonpositive sectional curvature ([8, p. 252]). If the dimension
of H\ Lis 0 then p=0and therefore k is compactly embedded in itself, that is, k&
is compact. By assumption, k£ must be 0; that is, L is amenable. So dim(H \ L) >0
as long as L is not amenable. The argument in §2 together with the density the-
orem of Borel [13, 5.17] implies that the image I' C I(H \ L) of Ais discrete. Thus
we get a map K\ L/A— H\L/A onto an orbifold with the desired curvature.

Unfortunately, H is not in the form of KS (with S normal) and we can not apply
Lemma 2 to prove that this is a Seifert fibration. More precisely, we fail to prove
that the distance from each point of K\ Hx to K\ Hy is constant as in Lemma 2.

However, if we assume that A is a uniform Iattice then a point inverse of
K\L/A— H\L/A is compact. Therefore II=NNA acts cocompactly on each
fiber K\ Hx, where N is the largest normal subgroup of L in H; so the dis-
tance from each point of K\ Hx to K\ Hy is bounded and, for any ¢ >0, the
fibers K\ Hy sufficiently close to K\ Hx are contained in the e-neighborhood of
K\ Hx. On the other hand, there exists an € > 0 such that the intersections of
Exp(V) and fibers K\ Hy are transverse, where V is the e-neighborhood of the
origin of T,,(K\ Hx)*, for each pe K\ Hx, because x ~'Hx acts transitively on
the fiber K\ Hx. (See the proof of Lemma 2 for the notation.) Then the map
which sends a point pe K\ Hx to the unique intersection point of K\ Hy and
Exp(V) is the desired equivariant diffeomorphism if the fibers are sufficiently
close. The inverse map sends a point g€ K\ Hy to the unique closest point in
K\ Hx from q. Therefore K\L/II1—- H\L is a fiber bundle, and K\L/A—
H\L/A is a Seifert fibration. .

THEOREM 1. Theorem 1 holds true without condition (*) if A is a uniform
lattice of a connected Lie group.

5. A rational computation of Wall’s L-groups. Let L be an amenable Lie group
with finitely many components, K a maximal compact subgroup of L, and A a
uniform lattice of L. Such a discrete group A is virtually poly-cyclic [10]. Con-
versely, any virtually poly-cyclic group can be embedded discretely and cocom-
pactly in some amenable Lie group [1]. In this section we compute rationally the
L-groups of A in terms of certain generalized homology of K\ L/A.

K/L is diffeomorphic to some Euclidean space R”, and the isotropy subgroup
Ay=x“KxﬂA of A at y=Kx (xe L) is finite. The action of A on R"is free if A
is torsion-free; in general, R”/A is an orbifold, which is Seifert fibered over some
flat orbifold as observed in §3.

Let WA be a contractible free A-complex, and let p denote the projection

(R"x WA)/A — R"/A,

where A acts on R”xX WA diagonally. The preimage p ~!([¥]) of an orbit [y]e
R"/A by p is homeomorphic to WA/A,, and p is a sort of Seifert fibration (it is
called a “stratified system of fibrations” in [11]).
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Let L~"(A) denote the limit of Ranicki’s lower L-groups L™/ (ZL) [16]. Mod-
ulo 2-torsion, it coincides with Wall’s surgery obstruction group. We have a func-
tor L™*°(—) from the category of spaces to the category of Q-spectra such that
the homotopy group of L™"(X) is equal to L, *(w;X). Applying L™°(—) to
each fiber of p, we obtain a sheaf of spectra, denoted L™ (p). Quinn defines the
homology group H.(R"/A; L™*(p)) of R"/A with coefficients L™°(p). See [11]
and [16]. The following is a rational computation of L, *(A) in terms of this
homology.

THEOREM 6. Let A be as above. Then there is a natural isomorphism
H (R"/A;L™2(p))®Z[1/2] > L ™(A)RZ[1/2].

The map is induced by the following map between stratified systems of fibra-
tions:

(R"X WA)/A -9 (R"x WA)/A
Pl !
R"/A — pt.

Note that (R”X WA)/A = BA is a classifying space for A and that

H.(pt.; L™°(BA—pt.))=L"(A)
[16].

It is to be noted that Theorem 6 says that the L~*°(p) coefficient homology of
R"/A is independent (modulo 2-torsion) of the action of A on R” It is conceiv-
able that the orbifold R”/A has a certain topological rigidity. In fact, Connolly
and Kosniewski [4] have proven a geometric analogue of Theorem 6 for certain
crystallographic groups: suppose I' is a crystallographic group C I(E£") with odd
order holonomy group G, has no gaps of dimension 2, and has no fixed sets of
dimension 3 or 4. Suppose further that I" acts locally smoothly and properly dis-
continuously on a topological manifold M, such that M/T is compact anc M is
contractible for each finite subgroup A of I'. Then any equivariant homotopy
equivalence M — E” with trivial topological G-Whitehead torsion (in the sense
of Steinberger and West [14]) is equivariantly homotopic to a homeomorphism.
The author has been informed by the referee that Weinberger has constructed a
counterexample to this when I" has a holonomy group of order 2.

See also Takeuchi [15] for the topological rigidity of certain sufficiently large
3-dimensional orbifolds.

Proof of Theorem 6. The proof is by induction on the dimension # of K\ L.
Let g: R"/A - R"/T denote the Seifert fibration constructed in §3. Modulo 2-
torsion, we have

H,(R"/A;L™%(p)) = H. (R”’/F; yﬂ/r H(g7'w));L™"(plq "’(W)))

EH*(Rm/P; ) L‘“((qp)“(W)))

= H,(R"/T"; L™"(gp))
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by induction hypothesis, where H denotes the homology theory spectrum [16].
In [17] we proved that H.(R"/T'; L™°(gqp))&®Z[1/2] is naturally isomorphic to
Ly*(A). The key ingredients of the proof are the classification of crystallographic
groups by Farrell and Hsiang and the controlled L-theory. Actually the proof is
only a slight modification of that of the main theorem of [16]. This completes the
proof of Theorem 6. O

COROLLARY 7 (Novikov Conjecture). Let A be as above. Then the assembly
map

H, (BA;L™°(1)) > Ly ™(A)
is rationally split injective.

Corollary 7 was also obtained in our earlier paper [17], but Theorem 6 above
is more general than the main theorem in [17].
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