CLOSED IDEALS IN CONVOLUTION ALGEBRAS
AND THE LAPLACE TRANSFORM

Elizabeth Strouse

Introduction. Let L![0, 1]” denote the Banach algebra of integrable functions
on [0, 11”7 with restricted convolution as multiplication. It is easy to prove that all
closed ideals in L![0, 1] are of the form:

M= { f:inf(essential support(f)) =8} Lel[0,1].

(See Section 2.) Thus, a function fin L![0, 1] generates a dense ideal in L![0, 1] if
and only if zero is in the essential support of f. We demonstrate that this is not true
for n>1 and then describe a relationship between the closed ideals in L0, 1]”
(for any finite #) and those in a quotient of an algebra of analytic functions.

Let L'((R )™ be the Banach algebra of integrable functions on (R *)” with the
usual norm and convolution as multiplication. Notice that L![0, 1]”" = L'(R*)")/I,
where I is the closed ideal in L1((%7)”) of functions whose support is contained
in the complement of [0, 1]”. Define AE,”) as the Banach algebra of functions of
n complex variables which are continuous on the n-fold Cartesian product of the
closed right half-plane, analytic on the interior of this set, and which vanish at
infinity. The Laplace transform is a continuous monomorphism of L!((R+)")
into (but not onto) 44", Let K be the ideal e "9 4" + - + e~ 24, A function f
in LY((NT)") isin I if and only if £(f) is in the closure of K (see Section 4). Thus,
£ induces a continuous monomorphism &£ from L[0,1]” into AYY/K. If M is
any closed ideal in AY/K then £-1(M) is a closed ideal in L'[0,1]". We prove
(Theorem 4.6) that £~!actually implements a bijection between closed ideals in
L'[0,1]" and AY"/K, so that an ideal J in L'[0, 1]” is dense if and only if £(J) is
dense in AJY/K.

In 1950 Nyman proved that ideals in L!(t*) are dense if and only if their image
under the Laplace transform is dense in Ag) ([8], [3]). In 1981 Domar showed that
under suitable conditions on a weight w, all closed ideals in LI(:%®*, w) are of the
form My (defined above) [4]. (It can be shown, using recent results of Thomas
[10], that there are weights w on R* for which this is not true.) The key idea in
both of these results is to show that functions belonging to the annihilator of cer-
tain ideals necessarily have compact support. It is reasonable to expect that some
of our methods should be useful in extending Domar’s and Nyman’s results to
higher dimensions.

There are two problems in function theory which are relevant here. It is not
difficult to see that the ideal K = e‘zlAg) is closed in Af)”. Is the ideal K closed
in A4 for n>1?

- The second problem is that of finding a characterization of dense ideals in
AY” or AE)")/I_( for n>1. In Section 3 we discuss certain examples of nondense
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ideals in L'[0, 1]? containing functions with zero in their support. We then show
that these ideals correspond (via the Laplace transform) with ideals in Af)z) whose
restrictions to certain curves are not dense (Section 3). In order to determine
whether an ideal J is actually dense in AY", it is necessary to consider all restric-
tions of J to analytic varieties. If, for each analytic variety V, the restriction of J
to V' is dense, in the uniform norm, and in the set of all restrictions of elements
of Ag’) to V, then is J necessarily dense in Ag')?

The author would like to thank G. Allan, E. Amar, H. G. Dales, Y. Domar,
J. Esterle, R. Gay, H. Hedenmalm, and A. Sinclair for fruitful discussions; and
P. Dixon, S. Drury, and H. Hedenmalm for providing the counterexamples of
Section 3. She would also like to thank the referee and Y. Domar for their help-
ful suggestions which led to significant improvements in Section 4.

1. Definitions. We begin by defining several Banach spaces and algebras of
functions of several variables which are contained in L] (3t"), the space of all
complex valued locally integrable functions on " (a function whose domain is
a subset of N is considered to be a function on all of $” which takes the value
zero on the complement of its domain). R+ is defined to be the ray [0, 0] and
LY((R*)™ is the Banach space of integrable functions on (). L2(R*)") will
be the Banach space of essentially bounded measurable functions on (9#*)”. The
convolution of two functions f and g in Ll ((R1)") is the element f* g of
L} .((%)") defined almost everywhere by

ty t
(fxg)(ty,.... t,) = So ---Solf(sl,...,s,,)g(tl—sl,..., t,—s,)dsy---ds,.

Note that (L'(()™), %) is, in fact, a Banach algebra, and a subalgebra of the
group algebra (L!((2t")), %). We denote by L'[0,1]” the Banach space of inte-
grable functions on [0, 1]”. We define the product f % g of two functions f and
g in L'[0,1]" to be

(fhe)(ty,..., t,) = (f*g)-X0,1)7

where - signifies pointwise multiplication and x(¢, 1;»1s the characteristic function
of [0, 1]”. Equipped with this product, L![0,1]" is a Banach algebra which is
known as the Volterra algebra. Note that, if

I={feLY((R*)"): f=0o0n [0,1]7},

then L'0,1]"=LY((R*)")/I. Thus, we can consider the restriction map from
L'((R1)™ to L[0,1]" as the canonical quotient map onto L!((R*)")/1.

Next we define AE)”) to be the algebra of all continuous complex-valued func-
tions on the set

an {(21, ey zn) : Re(zl)a ceey Re(zn) = 0}
whose restriction to the interior of II” is analytic, and whose values converge

to zero whenever |z| — co. With the supremum norm and pointwise multiplica-
tion, A{,”) is a Banach algebra. Let A(D”) be the Banach algebra of continuous
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complex functions on the closed unit polydisc whose restriction to the open unit
polydisc is holomorphic, normed with the supremum norm (this algebra is dis-
cussed in [9]). We note that A(O”) is homeomorphic to the ideal of A(D") of func-
tions which vanish on the set (1 XD HU(Dx1xD""2)U---UD" 1x1).
Now let £ be the Laplace transform. If fe Ll .((R%*)"), we define £/ by

+c0 +o0 ozt gt
(1) (on)(zl,...,zn):SO SO Sty ey t)e =210 ~Tnln gt o dt,

where the domain of £ f is defined to be those points in C” for which the integral
converges absolutely. If p € Ag’ ) and wis integrable over the Cartesian product of
the imaginary axes, then we can define £-!(¢) by the formula

- 1 i © - . 4 . - .
LTty i) = (2m)n S_m"'y_w P(iP1yeney ipp)e 210t +nln,

It is well known that, for such qé, L) e L2(R 1)) and £(L!(p)) agrees
with ¢ on IT”.
Finally, let K be the ideal

K=e 24 +... 424",

We shall see in Section 4 that the Laplace transform £ induces a continuous
monomorphism £ from L'[0,1)"into AY"/K. We will prove (Theorem 4.6) that
&£ implements a bijection between the closed ideals in L[0,1]" and the closed
ideals in 4y"/K.

2. The Titchmarsh Convolution Theorem and closed ideals in Z1[0,1]. For
each fin L1 _(R"), the support of f is the set

supp(f) =cl{xe ®R”:if U is an open set containing x
then m{ye U: f(y)#0}> 0}

(where m is Lebesgue measure on 7). We write I'(f) for the closed convex hull
of the support of f.

The following theorem (one form of the Titchmarsh Convolution Theorem) is
the main tool used to characterize all closed ideals in L![0,1].

THEOREM 2.1 ([S, §4.5]). Let f, g € L\(R") be functions whose support is com-
pact. Then

F'(f*xg)=T(N)+TI'(g).
We now use Theorem 2.1 to obtain the following result.
THEOREM 2.2. Let f e L'[0,1]" be such that 0 e supp f. Set
T'(n)={(xy,....,x,)el0,1]": x;+---+x,=n—1]}.

Let
M={¢ e L'0,1]1": supp(¢) S T(n)}.

Then the ideal M is contained in f%L0,1]~.
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Proof. The dual space of L'[0,1]" is L*[0, 1]" where the dual action is
@m=|  ghx)dx (geL7[0,11", heLl[0,1]".

For any ze€ ((R7)”) and f e LI((N*)") we define the translation by 7 of fto be
the function

fl(x)={({(x—t) if x—te((RH)™M;

otherwise.
Clearly, f,e L'((R*)™) for all ¢ in (R*)"). It is well known ([2, §3.4.48]) that

span{f;: te (R+)")} = f A LI((R*)")

The arguments for LI((R+)") are easily extended to L[0,1]”. That is, if we
define the translation by ¢ of f e L![0,1]" to be

S f=Si-xpo,17 (£€[0,117),
where x(¢,1n is the characteristic function of [0, 1]”, then
span{S, f: te[0,1]"}= fx L'[0,1]".
Let ge L>([0,1]"), g orthogonal to f% L'[0, 1]”. Then
(&S, />=0 (t€[0,1]")

and so
@ | g0f(x—ndx=0 (1€[0,11".
[0,1]"

Let g be the reflection of g, that is,
g(—x)=g(x) (xel0,1]%).
After a change of variables, (2) yields

Fx 0= g(~1—x)/(x) dx
(3)
= Swg(—t—x)f(x) dx=0 (te[0,1]").
(We are now considering f and g to be functions in Ll .(9%").) Since supp(f) =
[0,1]1" and supp(g)<=[—1, 01", supp(f*g)<=[—1,1]" and so (3) implies that
supp(fxg)<=[—1,1]"\[—1,0]".
This implies that
4) D(fxg) (x5 x)el—1L, 11" x+ - +x,= —(n—1)].
Since 0 e supp(f), the Titchmarsh theorem together with (4) shows that
I'(g)NT(n)= ¢,

which proves the theorem. 0
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NOTE. If, for f e L'[0, 1], one defines «(f) =inf(supp(f)), then Theorem 2.1
implies that

a(fxg)=al(f)+a(g) (f,gel'[0,1]).

Using this property, and the same method as in the proof of Theorem 2.2, it is
easy to show that all closed ideals in L![0, 1] are of the form

Mg={feL'0,1]:a(f)=B} for some Be[0,1],

as stated in the introduction. (For details, see [2].) Thus, if fe€L'[0,1] and O e
supp f, then the ideal generated by f in L![0, 1] is dense. In the next section, we
demonstrate that no such simple characterization of closed ideals can be obtained
in L[0,1]" for n>1.

3. Unexpected ideals in L1[0,1]%. As shown in Section 2, if fe L![0,1] and
0 e supp f, then f generates a dense ideal in L[0, 1]. In this section we show that
the ideal structure of L{0, 1]2is much more complex, by giving examples of non-
dense ideals in L'[0, 1]% that contain functions with zero in their support. Some
of our examples are nondense ideals in L![0, 1]? which are inverse images by cer-
tain homomorphisms of nondense ideals in L![0, 1]. All of our examples are re-
lated to ideals in ABZ) which are not dense along certain curves in IT2 This moti-
vates Section 4, where we characterize density of ideals in L![0, 1]? in terms of
the density of the image of these ideals (by an induced Laplace transform) in the
quotient algebra AYY/K.

The following proposition was communicated to the author by A. M. Sinclair.

PROPOSITION 3.1. Let N\e R, ue R, and let E,_,,: L"(RT)>— LY(R™T) be de-
fined by

By f® =N fOt,E=0e™ " dt (Ee @),

Then E, , is a continuous homomorphism with dense range.
Proof. Fix N\e R, ueR. Clearly E, , is a continuous linear map. Let

S, ge L'((R)?).
Then

(M LE—1 .
En S *xe)® =N | |7 s —x, £t g(x, yye = ay ax at

NE PE—x/\ - .
=>\S ESE */ g(x,y)r yf()\t—x,E—t——y)e“'“‘dtdydx.
0 Jo x/\

Let s=¢t—x/\, w=y+Xx/\, and v=x/\. Then, with a bit of work, the formula
above reduces to

E)\,u(f*g)(g) = SjEk,uf(E_W)E)\,ug(W) dw= (Ek,uf*E)\,ug)(E)

and so E, , is, in fact, a continuous homomorphism.
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Finally, if ge LY (%*) with compact support, and we set

_ 8X/ND) iy
J(x,y)= ) e

then fe L'((R1)?) and E, , f=g. This completes the proof. O

Let Be R and let Mg={fe L' (R*):infsupp(f)=pB}. Let \,Be R*, ueR.
We define the ideal I , , by

I\ u=Ex 1 (Mp)
= [fELl(m+)2: ij()\f, E—I)e—iu’dt=0 a.e. 0= Esﬁ}

Clearly, none of the ideals I , , are dense in L'(%%)% But, for fixed ue R, Ae
N+ the function

e!W/Nx if x < \y
S )= {—e"(“/")x if x=\y

isin Ig , , for all appropriate 8. Clearly, zero is in the support of all such func-
tions.
Next, we characterize functions in the ideals I ) , by their Laplace transforms.
Let AE,") be the algebra of analytic functions in z variables defined in Section 1.
We begin with the observation that the map 0, , (Ae ®™*, u € R) defined by

2 1
9>\,u=AE) )HAEI)):

Z+iu
A

0)\,14(90)(2)2‘:0( ,z> (peAY)

is a continuous homomorphism with dense range. Thus, if an ideal J is dense in
AE)Z), then 6, ,(J) is dense in Ag) for all A\>0, ue R. Note that, if A\>0, ue®R,
feLi(RH)M), and E,, , is the map defined in Proposition 3.1, then

&) Ox, u (L)) = L(Ey, ().

Now, it is well known that a function ge LI(%t%) is in the ideal M defined above
if and only if £ge e‘BzAf)” [3, Thm. 3.7]. Thus, if we set Ng= e‘BZAE,” and Rg=
051 (Ng), we have Iy, ,= £~ (Rp). So, the nondensity of Igy , in L'((RT)?)
follows from the nondensity of £(/4 ,, ,) along the line z; = (z,+iu)/\.

We next see that, for appropriate (8, \, u), the restrictions of the I4, , to
L'[0,1]%are ideals in L![0, 1]2. Let I be the ideal in L!((97)?) of functions whose
support is contained in the complement of [0, 112, so that L'[0, 1]2= L}((R*)?)/1.
Let P be the restriction map from LI((%)?) onto L![0,1]% and let S be the sub-
set of N3 defined by

S={(B,Nu):NeRt, ueR, 0<B<=minf{l, \71}}.

If (B,\,u)e S then Ig, ,D1, so fﬁ,)\,u = P(lg ,,) is a proper closed ideal in
L'[0, 1]1? containing functions with zero in their support. Notice that, if we set
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E\ . f=PE, ,f for feL'[0,1]% then E\ ,:L'0,1]>*~L'[0,1] is a homomor-
phism. If 8 €[0,1] and we set Mg = PMj then Iy, , = Ey 1, (Mg). Note that,
if Ng and Rj are defined as above, then fﬁ, )\,L,:P(JB,"(RB)). Similar ideals can
be constructed in L'[0, 1]” for n> 2. We leave the details to the reader.

Let

K=e 44"+ ... +e~ A,

It is not difficult to see that £(7) K. (In fact, 7 = £ 1(K) = £ 1(K); see Section
4.) Thus, if fe L![0,1]?% then

©6) Lf+K=L(Pf)+K

and, if J is a dense ideal in L'[0,1]% then £(J)+K generates a dense ideal in
Ag’). If B, \,ue S, then £(T,3, xu) T K E Rg. Since Rj is not dense in AE)Z) we see
again that Iy, , is not dense in L'[0, 1]

We shall prove (Theorem 4.6) that, if J is an ideal in L![0, 1]%, then the condi-
tion that £(J)+ K generate a dense ideal in AE,") is not only necessary but also
sufficient for J to be dense in L![0, 1]".

CONJECTURES. P. Dixon conjectured that, if 0 € supp(f) and f is not an ele-
ment of any /5, ,, then f generates a dense ideal in L'[0, 1]% Recently, H. Hed-
enmalm communicated the following counterexample to the author. Let

St )= (—t+t—Lihe 172,

Then f has zero in its support and is not an element of any /g ) ,. So, Pf isnot in
any Ig , ;. However, its Laplace transform is

2—21—(1/(z;+1))
(z1+1)%(z,+1)2

£f(z1,22) = <

and so, if O:AE,Z)HAE,” is the continuous homomorphism with dense range de-
fined by

1
(6)(2) = so(z,z+ z?)

then (0-£)(f)=0. But clearly,
9(K)cS e~24y’

and so £f+K does not generate a dense ideal in AE)Z). By (6), this implies that
LPf +K does not generate a dense ideal in Af)z) . Thus

PfxL'0,11%2% L0, 1]?

and the conjecture is false. The problem here is that there is no known character-
ization of dense ideals in either 44" or A§"/K. (A characterization of denseideals
in certain subalgebras of the polydisc algebra which contain isometrically Ag’)
can be found in [7].) Perhaps a reasonable conjecture about density of ideals in
AY is that, if J is an ideal in AY”, and, for each analytic variety V in I1%, the
restriction of J to Vis dense (in the uniform norm) in the set of all restrictions of
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elements of AJ” to ¥, then J is dense in AY". If we could prove that this conjec-
ture were true at least for those ideals in Afr_,") containing K, we would have a char-
acterization of ideals in Ag’)/ K, and thereby (using Theorem 4.6) a characteriza-
tion of dense ideals in L]0, 1]".

4. Characterization of closed ideals in L1[0, 1]”. The existence of a bijection
between the closed ideals in L![0,1]” and AY"”/K will be established as a con-
sequence of the following more general theorem about closed ideals in certain

Banach algebras.
If M is a subset in a Banach algebra A, we write J(M) for the smallest closed

ideal in A containing M. If ue A we write u-A={u-a:ae A}.

THEOREM 4.1. Let A and B be commutative Banach algebras and let ¢ be a
continuous monomorphism from B into A. Suppose that:

(i) ¢(B) is dense in A.

(ii) B has a bounded approximate identity {e_},c » (A an index set) such that:

o(e)-ASo(B) (aeA).

Then the map 0,:J — o YJ) (J a closed ideal in A) is a bijection between the
closed ideals in A and the closed ideals in B. Its inverse 0, is defined by:

0,(1)=J(e(I)) ([aclosedideal in B).
Proof. Notice that the closed graph theorem implies that the map defined by
Ya)=p Ua-p(e,)) (acA)

is a continuous map from A into B for each a € A.
Assume (i) and (ii) and let J be a closed ideal in B. Since {e,} <  is an approxi-
mate identity for B, ¢(I) € ¢(IB) € ¢(I)A. Thus, if ¢(b) € J(o(])),

So(b) = lim Qa(ml,n)al,n_'_ e o ¢(mkn,n)akn,n

n-— oo

for some m; ,€1, and a; ,€ A (i=1,...,k,; n=1,2,...). For each fixed a €A,
there exist b; ,e B (i=1,...,k,; n=1,2,...) such that
ﬂa(b'ea) = lim ‘P(ml,n)ﬂo(bl,n)"'"' +‘P(mk,1,n) ‘P(bkn,n)

n— co

and the continuity of ¢ implies that

b-ei= lim my ,b; se,+ - +my by e, (xeA).

n— oo

Thus, for each ae€ A, b-e2is the limit of a sequence of elements of I and so
b-e2el (aeA)

sothat bel. Thus IC o ' J(eUI) 1, I= o 1(J(I)), and 0, is a left inverse for
6,. To finish the proof, we need the fact that J(¢(¢ ~1(J))) =J. It is enough to
show that ¢ ~! implements a one-to-one map between the closed ideals in 4 and
B. Let J be a closed ideal in A. Condition (ii) implies that

J-p(ey) S oo 1(J)).
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This, together with the fact that {¢(e,)}.,ca is @ bounded approximate identity
for A, means that

JS (e~ (JN)CSJ
and so J= ¢(¢ ~1(J)), which completes the proof. 1

REMARK 1. Notice that Theorem 4.1 implies that an element b € B generates
a dense ideal in B if and only if ¢(b) generates a dense ideal in A.

REMARK 2. The first part of the proof shows that, if we drop the hypothesis
that {e,},c s is bounded, then it is still true that

I=o" (I (o))
for each closed ideal 7 in B. Remark 1 is also valid in this case.
Now, let 7 LI((R*)”") be the closed ideal
I={feL'(%*)": f=0 on [0,1]")
and K € A" the ideal
K=e 244 ... 24",

(The ideal K is closed for n=1, but the author has been unable to determine

whether or not K is closed for n>1.)
We shall prove that Theorem 4.1 holds for A= AY"/K and B=LI(®R+)")/I =
L'[0,1]". The following facts about the function

u(tl, cesy tn) = e_tl_"'—t,,
and its Laplace transform £(u) will be quite useful.

FACT 1. The function u generates a dense ideal in L'((%t*)"). This is a conse-
quence of the fact that, if

U= U" X[0,1/m]">

then w,, = u,, /| tm| is a bounded approximate identity for L((®*)"), and w,, €
spanf{u,};cq+ Sux LI((R+)") (m=1,2,...). Here, u, is the translate of the func-
tion # defined in Section 2.

Note that, as a consequence of Fact 1, if L is a closed ideal in L'((%®*)") and
feL'((R)"), then f % u e L implies that fe L.
FACT 2. If o € AY” then
¢ L(u)2e LL(RH)M)
and the map
o Lo L£(u)?)

is a continuous map from Af)") to L((R+)"). (This follows from the fact that
£(u)? is integrable over the Cartesian product of the imaginary axes, and from
the formula for the inverse Laplace transform given in Section 1.)

We begin by establishing a correspondence between the ideals I and K.
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LEMMA 4.2. Let fe L'(R*)"). Then fel if and only if £feXK.
Proof. “If”: Let fel. Clearly, f can be written

f=§gi

i=1
where g;=0o0n (R¥) ~I1x[0,1] X (R+)"L. Set
Di(X1seens X)) =8i(X15 .05 xi+1,...,x,) (i=1,...,n).
Then ¢; € LI{((RT)"), so £(¢;) eAg’) (i=1,...,n). Also, by direct computation
(£o:) (21, ..., 2,) = €%(Lg)),

and £f= Y e % LP; K.
“Only if”: Suppose £f=X?_, e %¢g;, where £feKand p;e 4, i=1,...,n.
Then (because of Fact 2)

S(fhu*) = Sf-(Lu)i= 3 e~%iLh;,

i=1
where h; € L°((R1)") (i=1,...,n). Also:
LU Hu*?) - u)(zy, .5 2,) = LS K u*?)(z;+1,...,z,+1)
=e A 1 @(h-u)+ - +e 18 (h,- u)
=Lm+---+m,)
where
m;e L'((RF)") and m; =0 on (R ~1x[0,1]x(RH)" "L

Thus (f 4 u*?)-u=0o0n [0,1]% which implies that fxu*2e I, and so fel.
O
COROLLARY 4.3. If fe L°(R1)") and £f €K, then f=0o0n [0,1]".

Proof. Notice that £(f-u) € K. Since f-ue L'((}7)") this implies that f-u €I,
so that f=0o0n [0,1]".

LEMMA 4.4. Let f € L*(R™)") with £f € A, If f is equivalent to 0 on [0, 1]"
then £feK.

Proof. Suppose that fe L°(R+)"), £fe A’ and f is equivalent to zero on
[0, 1]". For each positive integer m, the function f,, defined by

fm= f-e_"l/m" cee—t,/m

is an element of L!(($$*)”). By Lemma 4.2, LfmeK (m=1,2,...). But £(f,,)is
just the translation of the function £f by the vector (1/m,...,1/m), so the fact
that functions in Ag’) are uniformly continuous implies that {£(f,)} -, con-
verges to £f in AYY. Thus, £feK.

COROLLARY 4.5. S(LI((RT)YNHYNK=KNLLI{(RH)").
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Proof. Suppose fe L'(%1)") and £f K. Let {¢,} be asequenceinK, ¢,— L.
Then, by the inversion formula,

7 | LY, Lu?)—fhu*?|,— 0.

But, by Corollary 4.3, £ 1(¢,- Lu?)=0o0n [0, 117, so (7) implies that f* u*2=0
on [0, 1]". This means that fxu*2e ] so that feI and £f €K, and the proof
is complete. J

NOTE. The author has mentioned above that she is unable to determine whether
the ideal K is closed in Ag’) for n> 1. Corollary 4.5 supports the conjecture that
K is closed in 44" for all positive integers n.

Corollary 4.5 together with Lemma 4.2 shows that, if f e L'((%*)"), then fe [l
if and only if £(f) e K. Thus, the Laplace transform £ induces a continuous
monomorphism £ from L![0, 1]”into A{"/K. If Q is the map from L'[0, 1]"into
LY((%1)") defined by

n
0f( =1 11 xel 1
otherwise

and » is the canonical quotient map from A" to AY"/K, then we have

£=v-L00.
Now we are ready to prove our main result, which shows that £ implements a
bijection between the closed ideals in L'[0, 1]” and the closed ideals in A{/K.

THEOREM 4.6.

(i) The map I~ £-1J) is a bijection from the set of all closed ideals in AJ"/K
onto the set of all closed ideals in Lo, 1]

(ii) A function f e L'[0,1]" generates a dense ideal in L'[0,11" if and only if
& f generates a dense ideal in AL/K.

Proof. Let B=L'0,1]", A=AY/K, and £ be the monomorphism from B
into A defined above. We show that conditions (i) and (ii) of Theorem 4.1 are
satisfied.

Condition (i) is just a consequence of the well-known fact that £(L'((%%)"))
is dense in AY".

Let {e,}_, be any bounded approximate identity for L!((}%)") (say e,,=
m"™-Xi0,1/mn)- By Fact 1, we can find w,, € L'((%*)") such that

lu*2%kw,,—e,|<l/m (m=1,2,...)

so that (u*? % w,,,) is another bounded approximate identity for Ll((S‘E*)”). Now let
P denote the projection map from L((R)”) to L![0, 1]". Then (P(u)*?** P(w,,))
is a bounded approximate identity for L![0, 1]7. Denote again by » the quotient
map from AY” to AY"”/K. We need to see that, for each ¢ € 4}” and each positive
integer m,

v(p)- L(P(u)*2)- £(P(w,,)) € £(L[0,117).
But, by Lemma 4.4, if ¢ € A then



196 ELIZABETH STROUSE

0 L) Lw,)—LPE (o L) LWy €K

SO
LPE (o - L) LW)))) =rv(0-£(u)* £(Wy))
=v(p)- vé(u)z . oé(wm)
so that »(e)- £(u)?- L(w,,) € £(L'[0, 1]17). Hence, P(u)*2 % P(w,,) satisfies con-
dition (ii) and Theorem 4.6 follows from Theorem 4.1. U
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