A COUNTEREXAMPLE IN CONFORMAL WELDING
CONCERNING HAUSDORFF DIMENSION

Christopher J. Bishop

1. Introduction. If I" is a closed Jordan curve on the Riemann sphere C we
let 2, and Q, denote the complementary components, and for fixed z; € Q; and
Z2 €2, we let w; and w, denote the harmonic measures on I with respect to these
points (see [2]). The object of this note is to prove the following.

THEOREM 1.1. For any 1 <d <2 there is a quasicircle ', a C >0, and points
Z1€Q, and z, € Q, such that dim(I') =d and, for any (Borel) set ECT,

1. w(E) <C

(1.1) C ' = o B) = C

Here “dim” means Hausdorff dimension (see [4]). Suppose {co}eI'. Since Q;
is simply connected, the Riemann mapping theorem says there is a conformal
map ®; from the upper half-plane H = {Im(z) >0} to 2; with ®,(i{) =2z, and
®P,(0) = c0. §2; is a Jordan domain, so by Carathéodory’s theorem &, extends to
a homeomorphism of R to I\ {eo}; similarly for #, going from the lower half-
plane H_ to Q,. Hence ¢ = ($,) 'o &, defines an increasing homeomorphism of
R to itself. If (1.1) holds then y is bi-Lipschitz. Furthermore, one can show that
dim(T') > 1 implies there is a nonconstant element in the space of bounded, con-
tinuous functions on C which are holomorphic off I" (this space is denoted Ar).
An element of Ay corresponds to a pair of functions fie A(H.), fo,€ A(H_)
(i.e., continuous functions with bounded, holomorphic extensions to A, and H_
respectively) which satisfy f; = _f,°y. Thus we obtain the following.

COROLLARY 1.2. There is a bi-Lipschitz, increasing homeomorphism ¢ of R
to itself and a nonconstant fe A(H,) such that fo-ye A(H_).

If ¥ is a homeomorphism of R to itself, then Jones showed in [8] that the map
f— foy is bounded from BMO to itself if and only if ¥’ is in the Muckenhoupt
class A, . In [9] Semmes asked if such a map must behave well with respect to the
decomposition of BMO into holomorphic and antiholomorphic BMO. More pre-
cisely, if P denotes the projection from BMO to holomorphic BMO, he asks if
there is a constant C > 0 such that for any holomorphic f€ BMO

|P(fod) > Cl ]+,

where | |. denotes the BMO norm. Since our homeomorphism satisfies C~! <
Y’ < C, itisin A, but clearly does not satisfy this inequality.

Before starting the proof we should discuss some related results. For example,
recall that I" is a quasicircle if and only if there is a C > 0 such that
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YO+ —Y(x) _
Y(xX)—yY(x—1t)
for every x, € R (see [1]). In particular, if ¢ is bi-Lipschitz it automatically satis-
fies this condition. Since a quasicircle must have dimension less than 2, this shows

we cannot take d =2 in Theorem 1.1. We say I' is a chord arc curve if it is locally
rectifiable and there is a C > 0 such that

C

(1.2) Cl<

o(z,w)<C|z—w]|

for all z, we I (0 denotes arclength distance on I'). By a theorem of David [5],
this holds with a constant close to 1 if and only if y is absolutely continuous and
log(¥’) is in BMO with small norm. This happens if ¢ is bi-Lipschitz with con-
stant close to 1, so Theorem 1.1 fails if C is close to 1. Since Ar is trivial if I" is lo-
cally rectifiable, Corollary 1.2 also fails in this case (see [6]). A related example is
given in [10], where Semmes constructs a non-locally rectifiable curve satisfying
(1.1). Also, in [7] Garnett and O’Farrell give an example of an absolutely contin-
uous ¥ on R and a nonconstant fe€ A(H,) such that foy e A(H_).

In the next section we motivate the construction, and in Section 3 we recall
some simple estimates on harmonic measure. In Section 4 we prove Theorem 1.1.

The results of this paper come from Chapter IV of my doctoral dissertation [3].
I would like to thank my advisor, Peter W. Jones, for all his help and encourage-
ment and Stephen Semmes for many useful conversations concerning these re-
sults. I am. also grateful to the National Science Foundation for their support in
the form of a graduate fellowship and to the referee for his comments.

2. The basic construction. We will build a curve with a given dimension by
passing it through a Cantor set with the desired dimension. Start with a unit
square. Fix an «, % =a< %, and consider the four equal subsquares of side length
« obtained by removing a “cross” from the center. Each of these squares is then
divided into four squares of side length a2 in the same way and so on, obtaining
at the nth stage 4" squares of side length «”. The limiting set is the Cantor set
E=F(x). One easily shows
@.1) dim(E) = —284 _,4

—log

Now we want a curve which contains E(«). Consider Figure 1. It shows a
square of sidelength (1+6) with four squares of side length «(1+4) removed,
one from around each of the first-generation squares of E. In order for these
small boxes not to overlap we set 6 =1—2«. We then draw a curve I', symmetric
with respect to the center of the box, consisting of five arcs connecting the mid-
points of the vertical sides of the boxes, as shown in Figure 1.

Now dilate this picture by « and place one copy in each of the smaller squares.
Iterating this construction and adding the set E(«) we obtain a curve I'" resem-
bling Figure 2. Since E(a) CT and I' is smooth away from E,

log 4
log o

dim(I') =dim(E) =d, —
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Figure 1 A building block

which varies from 1to 2 as « goes from } to 1. Moreover, it is easy to see that Ap
is nontrivial, since if u is the d,-dimensional Hausdorff measure then

_ 1  rde(w)
F(Z)—z*'u_s Z—w

defines a nonconstant element of Ay (see [4] or [6]).

Furthermore, one can easily verify that for any z¢ T, w(z, "'\ E, I'°)>e¢>0
uniformly, so that w(z, E,T'“) =0. Since I' is smooth elsewhere, the two harmon-
ic measures on I' are mutually absolutely continuous and so the corresponding
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Figure 2 A curve with dim >1
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Figure 3 Another building block

homeomorphism y is absolutely continuous. This is essentially the construction
of Garnett and O’Farrell mentioned in Section 1.

Unfortunately, this curve will not satisfy (1.1). For example, if we consider Fig-
ure 2 and the portion of the curve in the dotted box, we see it has much larger
harmonic measure on one side than on the other, and this gets worse on smaller
scales. The problem is that the portions of I" lying in two different nth-generation
boxes can have very different harmonic measures (even from the same side) and
this ratio grows with n. We wish to modify the construction of I" so that the har-
monic measure of any two nth-generation boxes is roughly the same, uniformly
in 7. We begin by replacing Figure 1 with the more complicated “building block”
pictured in Figure 3 and iterating to get I"' as before. Assume the corners in Fig-
ure 3 are slightly rounded so that I" is smooth away from E.

We think of the nth-stage square as being connected to a (7 —1)th-stage square
by a long narrow tube (see arrows in Figure 3). If a particular nth-generation box
is getting more than its “fair share” of the harmonic measure, we “pinch off”” the
tube leading to that box (see Figure 3), thus reducing the amount of harmonic
measure it gets. The main problem is to show that perturbing the curve to fix the
harmonic measure locally does not ruin the estimates elsewhere.

3. Some estimates on harmonic measure. In this section we will state some very
simple lemmas which quantify the idea that a local perturbation of I' does not
greatly effect harmonic measure far away.

We will only need to consider certain special domains. Take two disjoint squares
Q; and Q, (possibly of different sizes) with centers z; and z,. Denote one side of Q;
by o;, and let C; (for “collar”) denote the middle thirds of the two adjacent sides.
Now let 24 be as in Figure 4, a Jordan domain bounded by arcs g;, 05, I'}, and I',,
where each I'; hits each square exactly along an edge. We obtain another domain Q
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Figure 4 The domain Q

from Q, by replacing o; and o, by disjoint arcs £; and X, which do not hit Q.
We let 2, be the subdomain of Q2 bounded by o; and X, and similarly for Q, (see
Figure 4).

LEMMA 3.1. There is a C> 0 such that

—1 w(z, E,Q)
=
w(zs CZ, Q)CO(ZZ,E, Q)

for any z € Q, and (Borel) EC X;.

=C

This is quite easy to prove using the maximum principle and Harnack’ in-
equality (e.g., see Lemma IV.3.1 of [3]). We can think of Q, as a “tube” con-
necting ©; and Q,. We quantify this by assuming

w(zls C2sﬂ)$6’ w(ZZ, C'I’Q)S6

for some very small 6. The next lemma makes precise the notion that perturbing
Q, does not greatly change harmonic measure in Q.

LEMMA 3.2. Suppose Q is obtained from Q by replacing £, by some other
curve ¥,. Then there is a C > 0 such that if 6 > 0 is sufficiently small, z € Q,, and
EC E], then
w(z, E, Q)

-1
(1+Cé) '= oG E. O

<1+ Cé.

For a proof see Lemma IV.3.3 of [3]. Next recall that for a C* Jordan domain,
harmonic measure is some smooth function times arclength on the boundary. The
following fact is based on this idea and is also in [3].

LEMMA 3.3. Suppose TYUX,UT, is a C* arc. Then there is a C (depending
on Ty, X,, and T';) such that
w(z, E, Q)

C =lEewc,o =°

Jor any ze€Q, and EC X, (|E| denotes the arclength of E).
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This still holds if I'yUX,UT; is replaced by a compact family of smooth
curves, with C depending on the family. Finally, suppose we replace Qq by a fam-
ily of domains Q) satisfying the same conditions as € and also

w(z1, Ca, Q) < 19, w(z2, C1, Q) <16,
where Q, =Q,UQ{UQ,.
LEMMA 3.4. For each ¢ >0 there is a T = 7(e) such that
w(z, E,Q;))<ew(z, E,Q)
Jor all ze€eQ, and E C X,.

The proof is easy. The point is that 7 depends on € but not on .

4. Proof of the theorem. We will now use the elementary observations of the
previous section to prove Theorem 1.1. The argument is quite simple, but the no-
tation is a bit awkward and I apologize for any discomfort it may cause. We will
index parts of the nth generation of the construction by the sets S,={1, 2, 3, 4}";
that is, j € S, is a sequence of length n with values in {1, 2, 3,4}. For j € S, and
1=m=<n we let j” e S, be the sequence whose terms are the first m terms of j.
We define a metric on S,, by

|k—j| =n—max{m: k™ =j"}.

Suppose we have constructed I' as in Section 2 by iterating Figure 3 inside a unit
square centered at the origin, adding E and letting I' = R away from the square.
We fix z; =i and z, = —i, and let 2! and Q2 be the corresponding domains. We di-
vide these domains into generations, writing

=V U (77U
n=1jes§,
for i =1, 2, where Q{,, , and Q' are as pictured in Figure 5. We think of {Q‘]
with j € S, as the 4" pxeces of the nth generatlon of ©°. We index them so that T’
is the “tube” connecting 9’ to @4, k=j""le Sp—1-
We let C; denote the “collar” joining 7} to Q%; that is, C} = 8T} N’ (see Fig-
ure 5). We also define the “pinched” versions of T‘ by takmg a C°° famlly of do-

Q0 i_écj L
] o

Figure § $,, T;, and {;
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mains {Ti (£)}, 0=r=1, with Ti (1) —Ti and so that the bottleneck closes com-
pletely as ¢ — O (see Figure 6). Note that perturbing 7; ! only changes the shape of
itself and 7}, but no other part of the domains. Once we have chosen values of ¢
for both T1 and T2 we denote the two resulting tubes Tl and T"‘.

Now suppose we have already constructed

- . N_l -~ .
Qh1=0%U U U (Jfue).
n=1 jesS,

For j € Sy consider all 2-4% values of
w(zi, Cf, Qv VT UQY)
and let @ > 0 be the minimum value. For each i and j choose ¢/ so that
w(zi, C}, Un_ 1 UT (tHUQh) =a.
Now set _ ) . .
Q=04 U U (77U0).

j € SN
Then @' =Up Qb, i =1, 2, defines two Jordan domains with common boundary

I which we claim satisfies Theorem 1.1.
First we verify that

a=w(zi, Cf, v UT; (1) UQY)
~ w(zi, Cf, ON).
Note that (dropping the i’s)
(2, Cj, An_ 1 UTHHHUQ;) ~ w(z, Cj, An_1UT; UQ)),

since replacing 7;(¢) by T} (the perturbation due to the “other” tube 7;) increases
the harmonic measure of C; by at most a uniform factor. Now let

4.1)

N
Dj = Ul (T;'nUan)Uﬂo,
n=

so Dj is the subdomain of @, consisting of all the 7’s and Qs “above” 7; and Q;.
Also, for j, ke S, let

Qi --—QN_.IUTkUQkUT uQ;.
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Now apply Lemma 3.2 with @ =Qy;, Qi =D;, Q; =Dy, and 6 = 71””"', where >0
corresponds to the harmonic measure of one end of a “tube” from the other end.
It depends only on the dimension of the Cantor set (i.e., our choice of « in Sec-
tion 2) and is as small as we wish depending on our choice of curves in Figure 3.
We obtain:

(.O(Z s Cj ’ Q Jjk )
w(z,C s D j)

Applying the lemma to all pairs j, k£ € S,, grouped together according to the size of
|/ — k|, we have

1< <1+Cyl/—*l,

< w(zs Cj: QN) < N Ny
1< oz C;, D)) _I]_;II(I+C17 )
If » is small enough, the right-hand side is bounded independently of N. This
proves (4.1).
Thus, for any N, all 2-4" values of w(z;, C}, Q%) are comparable (with con-
stants independent of V). Since this was also true for Q,_; in the preceding con-
struction, all 2-4”~! values of

w(z, Cj, Qn_1 UT;UQJ)

were comparable with some constant independent of N, by Lemma 3.1. Hence,
by Lemma 3.4 our choices of 7; did not involve arbitrarily small choices of ¢ but
only 7 =¢,> 0 (independent of N). So by Lemma 3.3, applied to the compact
family of possible choices of T}, we see that

_ (ZsE’ QN)
c1l<- 2 <
Ele(z, C,, ) =€

for all EC d(7;UQ;) and some C > 0 independent of N. In particular,
w(21, B, QN) ~ 0(22, E, QR).
By another application of Lemma 3.2 we see that, for £ C anna(:f;- uQ;),
w(z, E,QN) ~w(z, E, Q).

By dividing any subset I' =9 into “generations” we see that (1.1) holds in the
unit square. Since it is easy to verify that it holds away from the unit square, we
have proven Theorem 1.1. (IR

Added in proof: A result related to this note is given by Charles Moore in his
1986 UCLA thesis. He independently answers the question in [9] (discussed in the
introduction) using a construction similar to that in [10].
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