SOLVABILITY OF INVARIANT SECOND-ORDER
DIFFERENTIAL OPERATORS ON METABELIAN GROUPS

Ronald L. Lipsman

Introduction. This paper is the third in a series (see [3], [4]) devoted to the idea
of applying group representations in order to obtain solvability properties of dif-
ferential operators on groups and homogeneous spaces. A typical theorem in the
subject asserts that if L is a left-invariant differential operator on a connected Lie
group G and if its infinitesimal components 7 (L), 7 € G, have bounded inverses
with suitable norm-growth properties, then L is semiglobally solvable. Theorems
2.1 and 2.4 of [3] are of this variety. In [4] these theorems are improved by allow-
ing for Sobolev-type norms on the representation spaces. The main theorem of
[4] is then applied to prove new solvability results for differential operators on the
affine motion group of the line (i.e., the ax+ b group). In this paper we broaden
the applications of [4] considerably.

Until [3], virtually all group representations-related work on solvability con-
centrated on nilpotent groups and transversally elliptic operators. The frame-
work for much of my work in solvability has been solvable groups G = SN which
are semidirect products of a normal simply connected nilpotent subgroup N and
a vector group S. Within this framework I have considered parabolic and hyper-
bolic operators in addition to transversally elliptic operators. For example, a typi-
cal operator of interest is the variable-coefficient heat operator 3C=3%; 4;—%; X ,—2,
where {A;} is a basis of the Lie algebra 8 of S, and {X] is a basis of n. If we set
A=3; A; and consider its span, we see it is really no loss of generality to assume
that dim S = 1. In this paper we study parabolic and hyperbolic second-order op-
erators on G = SN where N is abelian and dim S=1. (The ax+ b group is the
simplest noncommutative example of such a group.) So let Ae8, 40, and let
{X;}7=1 be a basis of n. Denote the Laplacian on n (with respect to this basis) by
A=3Y%_; X}?. We shall consider the following three “classical” second-order op-
erators:

(i) Heat Operator H=A—A,
(ii) Schroedinger Operator S =id—A,
(iii) Wave Operator W=A>—A.

We saw in [3] and [4] that the eigenvalues of the matrix A = Ad,, A play a critical
role in solvability results on metabelian solvable groups. They continue to play a
feature role here; in fact, our main result is the following.

THEOREM. Suppose that all the eigenvalues of A have positive real part. Then
each of the operators 3C, 8, W is globally solvable.
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We close the introduction by noting that only when every eigenvalue of A is
semisimple and purely imaginary do the above operators have constant coeffi-
cients. In the situation of the Theorem, they have variable coefficients composed
of familiar transcendental and/or polynomial functions.

The main lemma. Let G = SN be a'semidirect product of a normal (real) vector
group N, acted upon by a one-parameter (real) group S. Let g, n, 8 denote the Lie
algebras and U(g) the universal enveloping algebra of g. Choose A8, 4A#0.
Our basic assumption is that a/l the eigenvalues of the matrix A =Ad, A have
positive real parts.

We recall the representation theory of G via the Mackey machine. The irreduc-
ible unitary representations of G consist of two families:

(a) the characters x,:g=e“n—e’ neN, t,\eR;
(b) the infinite-dimensional representations m., = Ind$ ¥, YEN, v#1.

Recall that 7., = 7, if and only if s-y =+’ for some s € S. Note also that we are
using the fact that for any character v € N, v # 1, the stability group S, is trivial;
this is an easy consequence of our assumption about the eigenvalues of A. It’s also
easy to see from the basic assumption that the orbits of S in N are locally closed.
In particular, the Lie group G is type /. Furthermore, it is a final simple conse-
quence of the basic assumption that every nontrivial S-orbit in N tends to both
oo and 0. In particular, we may find a relatively compact set C C N (that is also
bounded away from 0) which serves as a cross-section for N/S. Thus a complete
list of representativesAfor the generic classes in G is given by £ = {m,:yeCl.
(Generic means that G\ £ has Plancherel measure zero.)
The representations w., = Ind$ v may be realized in L2(S) via the formula

7r7(ns)f(a)='y(cmo‘l)f(as), s,o0€S, neN, feL*S)

(see [3, p. 1277]). Furthermore, we identify L?(S) to L?(R) via the identification
fe )= f(t), t e R. Now let L € U(g) be considered as a right-invariant differen-
tial operator on G. (Formulation of the main result of [4], Theorem 4.5, requires
right invariance for the operator.) We shall write L, to denote «, (L): L, = 7w, (L).
Then L. may be considered as a differential operator on R. Here is the main
Lemma —it is the analog of [4, Thm. 5.2].

LEMMA. Fix 3=0. Suppose that every L., v € C, has the following property:
vfe CZ(R), 3u e C*(R) such that u =0 for large negative t, e Pue L? for large
positive t, and L, u = f. Then L is globally solvable.

Proof. We begin with the assumption that {X;};-, is a modified Jordan basis
for A in the sense of [3, pp. 1291, 1292]. Then we can explicate the Sobolev norms
of [2] for the spaces of the representations m.,, vy € €. The collection {A4, X;: j=

1,...,r} forms a basis of g. Then a simple computation shows that, when we real-
ize w, on L*(R), we have

d
1 m, (A) = s and

(2) 7r'y(Xj)=p'y,j(t);
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a multiplication operator given by the purely imaginary function

d
3) Dy, j(t)= E{‘T(CXP e % X ) —o-
We also have
“) _Wy(A)zﬂ"y(—'A)=p'y(t):

another multiplication operator, this time by the nonnegative function

(5) p'y(t)"_'__Elp‘y,j(t)z-
j=

But because of the assumption that {X;};—-, is a modified Jordan basis, we have:
either

6) ead’AXj=e"’f [Xj+ E Cj’k(l‘)Xk]
k>j
or
) ead’AXj=e"’i[aj(t)Xj+bj(t)inl+ 2 cj'k(t)Xk]’
k>j+1
k>j

where either p; is a real positive eigenvalue of A and the functions ¢; (#) are poly-
nomial in /; or p; is the real part of a complex eigenvalue of A, the c; ’s are as
above, and the q; and b; are orthogonal sinusoidal functions of ¢ with the same
frequency.

Next we express y € N by

v(eX)=e%%)  Xen, 0en*

Taking y # 1 amounts to assuming 6 # 0. Set py = p,,. Now suppose v € C is given.
Let X; be chosen so that 6(X;) # 0, and choose it so that the real part of the cor-
responding eigenvalue is as large as possible —say p, = ps. Then clearly

po(t) ~ e’ as t— o,

It is also clear that (up to equivalence) we may realize the Sobolev norms of the
representations ., on L?*(R) by
2 1/2
dt}

.= 3 A
Jtk=s
(see [2], [4]).

Now we reason as in [4, Thm. 5.2] —that is, we carry out the usual Hormander
argument. Consider the linear form

im={"

_ SR dt,

with topology defined as follows. On the first component we place the Sobolev
norms of m, (i.e., |-|s). On the second component we use the norms |L! A|;. Of
course, continuity of the form in the first component is obvious. The continuity
in the second component comes about because of the solvability hypothesis:
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|(fs D) =(Lyut, )| =|(u, L h)| = (e ~/P'u, e’P'LY, h)| < C| LY ] 5,
where we chose / so that jp, > 8. As usual, joint continuity follows and therefore
c,|L,u|s=|u|-s for some s =0 and constant c, > 0.

So Li, has a bounded left inverse, and therefore L., = 7, (L) has a bounded right
inverse
(L)™' 305 — 3¢
Moreover,
| (L) | <c,, veC.
Finally, it is clear from the construction that the bound c, varies continuously
with . Hence, by the (relative) compactness of C, we have that

sup |7, (L) !| =c.
vyeC

Then an application of [4, Thm. 4.5] yields semiglobal solvability of L. But since
G is exponential solvable, it follows from [1] that L must actually be globally
solvable. ]

Before going on we note that the Lemma applies to any L € 2 (g) which satisfies
its hypotheses —not just the second-order operators (i)-(iii). Also, in the proof
of the Lemma we selected a special kind of basis of n. The operators (i)-(iii) are
taken with respect to any basis of n.

Proof of the Theorem. We continue with the same assumptions. Let 4 €8,
A #0, and assume that every eigenvalue of A = Ad,, A has positive real part. Let
{X;}j=1 be any basis of n. Consider the heat, Schroedinger, and wave operators
(i)-(iii). We seek to prove that each of these operators is globally solvable. To
achieve this we need only verify the hypotheses of the Lemma. We treat the three

operators separately.
(i) Heat operator 3¢ =A—X%_, X}. First assume that {X}} is a modified Jor-
dan basis. Then, from equations (1)-(4), we have

Ly=m, ()= % +p, (1),
with p. as defined in (5). Let us set
P,t)={ p,(s)ds.
Then the equation L., u = fe C°(R) has a solution given by
u(t)y=e Siw e f(s) ds.

It is clear from formulas (6) and (7) that

Dy (t ) ~ eZp,y
Therefore the smooth function u(z) is bounded for large positive 7, and hence

' as t— +oo.
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e Pluel? >0

for any 8 > 0. (For example, select 3 to be the largest of the real parts of the ei-
genvalues of A.) The requirement that # =0 for large negative ¢ is clearly satis-
fied since f has compact support. It follows from the Lemma that JC is globally
solvable.

If {X;} is not a modified Jordan basis, we still have

d
Ly=my(3C) = - +a,(0),

where g, () is the nonnegative function

q,(t)=—3% q,,;(1)?
J

d
q,,j(t)= E’Y(CXP e* xX )y —o-

Then we reason as in [3, pp. 1297fF] to conclude that there is a positive scalar 6> 0
such that

q.,(t)=86%p,(¢).

It follows that the growth properties of g, as ¢t — o are as strong as that of p,.
Therefore we can apply the same reasoning to

d
to obtain a solution « with the properties of the Lemma. Once again the conclu-
sion is global solvability of 3JC.

(ii) Schroedinger operator 8 =iA—X7;-1 X 1-2. The situation is quite similar to
that of the heat operator. We have

L, =7, (8)=i—>

L

d
dt +q‘y(t)-

Setting
0, ={ a,()as,

we see that we may solve the equation L., u = f by the formula

u(t)=—ie'%" S‘ e~ 29 f(s) ds.
The function Q, (#) is real-valued, and so it is clear that u is bounded. Also, u
vanishes for ¢ << 0. Hence, it satisfies the conditions of the Lemma, and we ob-
tain global solvability for 8.
(iii) Wave operator "W = A% — 2i=1 X J-z. This time the infinitesimal components
L., =7, (W) of our differential operator W become

2

L
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Now we reason as in case (iii) of [4, Cor. 5.3]. Suppose that u,, u, are two linearly
independent solutions of the homogeneous equation L, u =0. Let fe C°(R) and
suppose that L., u = f for some u € C*(R). (The existence of u is guaranteed by
standard ODE — we must adjust # so that it satisfies the remaining two conditions
of the Lemma.) In any event, for large negative #, u is a solution of the homo-
geneous equation. So u =cju;+cu,, ¢t K0, for some scalars ¢;, c;. Replace u
by v=wu—cju;—cyu,. Then L, v=f and v =0 for large negative ¢. Finally, for
large positive # we again have that v solves the homogeneous equation. Hence,
the growth of v as ¢ — oo is completely determined by that of #; and u,. Now
we apply [5] to conclude that the growth of u; and u, is exactly the same as the
growth of the solutions to the (asymptotically similar) homogeneous equation
2
® O +e®=0, p=p,

(Note that [5] applies since g, (#) obeys the hypothesis on [5, p. 193].) But in fact,
if Jp, Yy denote the Bessel functions of order zero, then two linearly independent

solutions of (8) are
1 1
Jo —e?* d Yo —e”).
o(5e7) wna wo(5e)

These are bounded functions as ¢ — co. Hence the solution v for L,u = f con-
structed above obeys the conditions of the Lemma. As before, the conclusion is
global solvability of “W. O

Concluding remarks. 1. A familiar category of groups covered by the methods
of this paper are (many) exponential solvable groups AN, where MAN is a max-
imal parabolic subgroup of a connected semisimple Lie group. Of course the
ax + b group is the simplest of these. It was precisely such groups that were not
treatable by the balanced eigenvalue technique of [3] —see [3, Remark 4.4(iii)].

2. In spite of the preceding remark, we observe that Conjecture 5.1 of [4] re-
mains open. Namely, it is still not known if every right invariant differential op-
erator on the ax+ b group is (even) locally solvable.

3. We remark that under the situation of our main Theorem, we may replace
Aesdby ANA, A> 0. However, the results do not apply if we change 4 to —A. For
example, if G is the ax+ b group with Lie algebra generators A, X satisfying the
bracket relation [A4, X ] =X, then the operator 4 + X ? does not seem to be amen-
able to the methods of this paper.

4. The author believes it is likely that the conclusion of the main Theorem is
true provided only one of the eigenvalues of A has positive real part. That is good
enough to carry forward (generically) the growth estimates in the proof. How-
ever, in that case we cannot assert relative compactness for the cross-section C of
N/A, and the final reasoning in the proof of the Lemma breaks down.

5. The author contemplates future work with second-order operators on expo-
nential solvable groups G = SN, with dim S =1 but with N only simply connected
nilpotent. It is interesting to consider the operators (i)-(iii) in that circumstance,
where A may be replaced by a sub-Laplacian in generators of the Lie algebra 1.
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