GREEN’S THEOREM AND BALAYAGE

J. Michael Wilson

1. Introduction. For Q a cube in R? with sides parallel to the coordinate axes,
let |Q| denote Q’s Lebesgue measure. For ¢ e L. (R?), define

1
¢Q=-|§|~ SQan’x.

We say that ¢ is in BMO if
9l= sup = | |6—goldx<eo
* ocrd |Q| Jo e .

For Q as above weset O ={(¢, ) e R4 1t € O, 0 < y <£(Q)}, where £(Q) is the
sidelength of Q. We say that u, a Borel measure on R%*! is a Carleson measure if

|| (O)
[ed

There is an intimate connection between the space BMO and the family of Carle-
son measures. Roughly speaking, a Carleson measure is a conformally invariant
finite measure, while a BMO function is a conformally invariant L' function. This
connection is made more explicit through the following fact. Let K € L'(R?) sat-
isfy f K=1, |[K(x)| =1+ |x])"?"L, |[VK(x)| <1+ |x|) "9 2 For y>0let K, (x)=
y 9K (x/y). Consider the function

le]lc= sup <o
QCR4

(1) Sux=| 0 Kyx—1)du(t, »),

where p is a Borel measure on R%*1. It is easy to see that if u is finite then the
integral in (1) —called the sweep or balayage of p with respect to K —converges
absolutely for a.e. xeRY, and S, x| = C(d)|x|.

More is true if p is a Carleson measure. In that case, S, x € BMO and

) "Su,K"* =C(d) "I""C

The proof of (2) is quite easy. What is more remarkable (and also true) is that (2)
has a converse [1; 2; 3].

THEOREM A. Let K e L'(R?) satisfy [ K=1, |K(x)|=1+|x|)"?" " Let ¢ €
BMO have compact support. There exist g e L°(R?) and a finite Carleson mea-
sure p such that ¢(x)=g(x)+ S, x(x), where |g|o+ |n]|c=C(d)|®| .

The proofs in [1; 2; 3] work by an iteration argument. One buildsa g and a i
for whigh ¢ = &+ S;, k 1s close to ¢ in BMO, and then one repeats the argument
on ¢ —¢. One does this infinitely often, obtaining g and u in the limit. The effect
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of this iteration is to produce a g and a x which do not, in general, have compact
supports. Also, the construction of g and p is not very explicit.

In this note, we give a new proof of Theorem A for the case of K, = the Poisson
kernel. The proof uses the Poisson kernel’s semigroup property, and Green’s the-
orem. Green’s theorem gives us formulas which let us avoid the iteration. They
also make our construction much more explicit. In addition, we are able to ob-
tain a g (but not, alas, a p) with compact support.

We prove the following.

THEOREM B. Let ¢ € BMO, supp¢ S {x=(x1,...,Xq): |xi|=<1, i=1,...,d}.
Let P, be the Poisson kernel. There exist a ge L(R?) and a finite Carleson
measure p such that ¢ =g+S, p with |g|eo+|p|c = C(d)|o|« and suppg <
{x=(X1,.225Xq): lx,-l <2,i=1,..., d}.

We wish to acknowledge our extreme gratitude to Akihito Uchiyama, who
found an error in an earlier version of this paper.

2. Proof of Theorem B. Let ¢(x, y) =P, * p(x).
We will use two facts about BMO.
(1) Let Q(x, y) denote the cube with center x and sidelength y. Then:

|¢(xs y) - ¢Q(x,y)| = C(d) "¢" ke
(2) Let V denote the full gradient in RZ*!. We have:

|yVé(x, y)| = C(d)| |+

For proofs of these see [4].

Henceforth we shall assume that |¢]. =< 1. For Q C R?a cube, let zg = (xg, £(Q)).
where xg is the center of Q (2o is the center of the top face of 0). Let Qo=
fx=(x1,...,Xq): |xi| =2, i=1,...,d}. We define generations, Gy, of subcubes of
Qy as follows:

Go={Qo}
Gr11={Q'C Qe Gi: Q' maximal dyadic
such that |¢(zg)—d(zp)| > A} k=0,

where A is a large constant to be chosen later. By fact (1), |¢(zg) — ¢ (z0')| > A4
implies that |¢o—do|>A/2 if A is large enough. For sufficiently large 4 we
have also that

1
> lel=5lol
Q'CQeGy
Q'€Gyyg

for each k. We shall henceforth assume that A is large enough. For x e R? let
u,(t, y) =Py(f—x). By Green’s theorem,

€) o=2| ., Vo Vu, dtdy
+

as a distribution.
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We are now going to cut up integral (3). Let E; = Qg and let £, =R%4*1\ Q.
Then:
=2 SE yVo-Vu, dtdy+2 SE yVo-Vu, dtdy
1 2

=)+ UI).

We will deal with (7I) first.
For Qe Gy, let

Q'co
Q' €Gy 4y
Clearly,
@) S YV-Vu, dtdy=3 3 S — dtady.
E, k=0 QeGy YEg

We now apply Green’s theorem to each of the summands in (4). We get:

S YVo-Vu, dtdy
Zo

v

where dog is d-dimensional surface measure on dXy and d/dv denotes differ-
entiation in the outward normal direction (outward relative to Xg; X is just
smooth enough to let us do this). Let 90X o =BoUB,, where By = aEQﬂRd and
B, = aEQ\Bo. We write:

= i o) 22\ (o a
- SazQ (y( ux(t, y)+(¢ ¢(ZQ)) EW ) (¢ qb(zQ))ux 3 )do'Q’

b 1) ou, ay
Jax, (7 (et )+ (0= 8(zo) G )~ (= blzoDus g ) doo

= SBO ——dogp+ SB ——dog

=)o+ (ii)o.
As a distribution, (/)¢ is equal to
(p(x) —d(20)) xB,(X) = go(x).

Since x € By implies x ¢ Ug'eg,,, @' We must have |go(x)| <A a.e. The sup-
ports of the different gg’s are easily seen to be disjoint, and so we may set

g= X go
QelUGy

with |g]lo=A4 and suppg S {x=(xy,...,Xq): |x;| =2, i=1,...,d}.
We will be finished with (/) once we show that

&) 2 (i)o=S8,p
Q

for some p with |u]c =< C(d). We proceed to do this now. Write:
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.. ao ou, 0
0= {0 rymmy (PG telt: )+ (8= 90 G2 )= (9= b(zoN e 52 ) o

By fact (2) and the way we chose the Q’s,

d
y—i—(cb (2 Q))——|<C(d)

when (¢, y) e dXoN{y > 0}. Hence,

d¢p
SBEQﬂ{y>O} (J’Ta——(¢ b(2 Q))—>ux(t y) dag

Saz:me>ol Py(X—l‘)hQ(t, ») dUQ

for some hg(t, y) with |Ag| < C(d). It is well-known that

=Cd)
C

a1 2 dog

QeUGy,
(see [4]), from which it follows that

2 hQ(t y) dO'Q =C(d).

QeUG,
Thus, to obtain (5), we only need to estimate the integrals

ou,
jaEQmM] Y(®—$(20)) 5= dog.

For this we need a lemma.
LEMMA. Let {z;} = {(x;, ¥))} CR%L™! be points and let 0z; = the Dirac mass at

zZi. Assume that

=<1.

©

2 yldﬁzi
i C

Let ds; denote d-dimensional Lebesgue measure on the h yperplane {(y=y;}CcRYH!
and let ®(x)=(1+|x|)"9"L. Set

plx, y)= E yi®, (x—x;) ds;.
Then |p|c=C(d).
Proof of Lemma. Let Q4 be a cube. What we need to show is that

@ 3 g, ¥ @y x—x) dx = C@)| Q4.

Yi=0(Qy)
For £k=0,1,2,3,..., let Q4 x denote the cube concentric with Qy and with side-
length 2* times as blg We set:
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So=_ 5 |y, 0c—xp dx;
Yi=0€Qy) Oy

x;€Qy
S = 3 S ¥, (x—x)dx k>0.
Yi=UQy) Qx
x;€ 0y 1k \Op k1
Clearly,
SoSC(d)'Q#I and S;SC(d)lQ#l
by (6). L
If xe Q#! Xi € Q#,k\Q#,k—Ia k= 2, and yise(Q#)s then
C(d)e(Qx)
b, (x—x;)< .
XTI = R gpyaH
Thus,
C(d)(Qy) d
= x X i
g (ZkE(Q#))d+l IQ#l y;s%Qg) 7
x; € Qy 1 \Op k-1
=C(d)27*| 04,
and now summing on k yields (7). O

We will now finish our treatment of (/7) by showing that every integral

ou,
SaEQﬂ{y>0] y(¢’.—¢(ZQ)) W dUQ
can be written in the form

| Pyx—1) dpoz, 3,

where

dpo= 2 yi(,iQ(\I’i’Q)y,-'Q(xi"‘t) ds; o(t)
with
®) ¥ C(x)| = C(d) ®(x)

and the z; o = (x;, g, Vi, @) satisfy

S ¥, Q“ =c(@).
ih,Q i [

BEQﬂ{y>O}= UEi'Q’

Write

where each E; ¢ is of the form

E o {{(x,y)=xea_Qf, 0(Q)=y=20(Q)INJTg or
O Wk, »):ixe Qi y=10(Q0))
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for some dyadic cube Q;. These E; o make a tiling of dXgN{y >0}, with the
size of the tiles going to zero as y — 0. Let (x;, g, Ji, ¢) be the centroid of E; ¢ (in

RY*!y and let & o= (xi, 0, 3 7i.0) = (Xi, 0> Vi, 0)-
It is easy to see that, for any cube Q%

~d
SQ* 2:: yi'Qagi,Q = S4Q‘ dog,
where 40Q* is the quadruple (the double of the double) of Q*. Therefore, by (77),

" E ngaf,"Q"CS C(d)'
Now, if (¢, y) EE,"Q, then

ou, :
YSEWL) =Py ((x=)E)8, (1, 3)(s—Xi,0) ds,

where the ¥ (¢, y) (x) satisfy (8) uniformly in (¢, y). (This is because Yy—Yio=
: Yi,o and |t —Xx; ol = Cy; ¢ for (¢, y) € E; o.) Therefore, inequality (8) and fact
(2) imply that

ou, .
SE;',Q y(d) _¢(ZQ)) W dO'Q =ylc,iQ SPyi,Q(x_S)A};i'QQ(S_xi,Q) dSi,Q:
where
-1
AL2 (x) = C(E;, o) (SE . daQ> |, @) —$(z) 5, (2, ) (x) dog

and C(E; o) is either (3)? or 29, depending on where E; ¢ sits. We obviously
have

|A"C(x)| = C(d) ®(x),
and this, with the lemma, finishes off (7).
Now for (II). Fortunately this is easy. Recall that (/1) equals

§Rd+1\g YV -Vuy dt dy.
+ 0

By Green’s theorem, we may write this as:
d¢ ou, ay
O (y( L (6, )+ (D= $(20)) S )—(¢—¢(zQ0))ux L )daQ,

where dog, is d-dimensional surface measure on 3dQ, and 3/3v now denotes the
normal derivative into Qgy. Since aQoﬂR‘_{“ is away from the support of ¢, and
leli = C(d), we have

|¢—d(zp,)| =C(d) and |yVo|=C(d)

on 30,NR4+!, So, since dog, is obviously a Carleson measure (with a norm <
C(d)) these terms present no problem. We now handle the other term by cutting
dQy into tiles, just as we did for (/), and this finishes the proof. L]
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