A NOTE ON DISJOINT INVARIANT SUBSPACES

H. Bercovici

Let \mathfrak{C} be a separable Hilbert space, and let \mathfrak{B} be a subspace of $\mathfrak{L}(\mathfrak{K})$. We denote by $Q_{\mathfrak{B}}$ the weak* dual of \mathfrak{B} , that is, the elements ϕ of $Q_{\mathfrak{B}}$ are linear functionals on \mathfrak{B} which are continuous in the induced weak* topology of \mathfrak{B} . If h and k are in \mathfrak{K} we can define an element $[h \otimes k] \in Q_{\mathfrak{B}}$ by

$$[h \otimes k](T) = \langle Th, k \rangle, T \in \mathfrak{G},$$

where $\langle \cdot, \cdot \rangle$ denotes the scalar product in \mathcal{K} . The notation $[h \otimes k]$ is justified by the fact that $Q_{\mathcal{K}}$ can also be regarded as a quotient of the space $\mathcal{C}_1(\mathcal{K})$ of traceclass operators on \mathcal{K} , and in this case $[h \otimes k]$ is the equivalence class of the rankone operator $h \otimes k$. Observe that $\mathcal{C}_1(\mathcal{K})$ is a separable Banach space, and we deduce that $Q_{\mathcal{K}}$ is also a separable Banach space.

Fix an integer $n \ge 1$, and recall from [1] that \mathfrak{B} is said to have property $(\mathbf{A}_n^{\widetilde{}})$ if the following holds. Given $\epsilon > 0$ there exists $\delta = \delta(n, \epsilon) > 0$ such that for every array $\{\phi_{ij}: 1 \le i, j \le n\} \subset Q_{\mathfrak{B}}$ and every family $\{h_1, h_2, ..., h_n, k_1, k_2, ..., k_n\} \subset \mathfrak{F}$ satisfying the inequalities

$$\|\phi_{ij}-[h_i\otimes k_j]\|<\delta,\quad 1\leq i,j\leq n,$$

we can find $\{h'_1, h'_2, h'_3, ..., h'_n, k'_1, k'_2, ..., k'_n\} \subset \mathcal{K}$ such that

$$\phi_{ij} = [h_i' \otimes k_i'], \quad 1 \leq i, j \leq n,$$

and

$$||h'_i - h_i|| < \epsilon$$
, $||k'_j - k_j|| < \epsilon$, $1 \le i, j \le n$.

Suppose that \mathfrak{B} has property (\mathbf{A}_n^{\sim}) , and denote $\delta_n = \delta(n, 1)$. It is then easy to see that we may choose $\delta(n, \epsilon) = \epsilon^2 \delta_n$ for all $\epsilon > 0$.

Let us also recall that \mathfrak{B} is said to have property (\mathbf{A}_{\aleph_0}) if every array $\{\phi_{ij}: 1 \le i, j < \aleph_0\}$ in $Q_{\mathfrak{B}}$ can be written as $\phi_{ij} = [h_i \otimes k_j], 1 \le i, j \le \aleph_0$, for some families $\{h_i: 1 \le i < \aleph_0\}$ and $\{k_i: 1 \le j < \aleph_0\}$ of vectors in \mathfrak{F} .

The main purpose of this paper is to prove that a nonzero space \mathfrak{B} that has property (\mathbf{A}_n^{\sim}) for every positive integer n possesses many disjoint cyclic spaces, that is, there exist $x, y \in \mathfrak{IC}$ such that $(\mathfrak{B}x)^- \neq \{0\} \neq (\mathfrak{B}y)^-$ but $(\mathfrak{B}x)^- \cap (\mathfrak{B}y)^- = \{0\}$. This result is obtained from an auxiliary result which shows that \mathfrak{B} has a property stronger than $(\mathbf{A}_{\mathfrak{R}_0})$; a form of this stronger property was first used by Brown [5] to show the existence of full analytic subspaces for certain operators.

Let us note that our results imply that operators T in the class A_{\aleph_0} defined in [2], and hence operators in the class (BCP), have disjoint invariant subspaces. Indeed, it is known from [4] that the weak* closed algebra α_T generated by an

Received October 4, 1986.

Research in this paper was partially supported by a grant from the National Science Foundation.

Michigan Math. J. 34 (1987).

operator T in A_{\aleph_0} has property (A_n^{\sim}) for every integer n. Thus we answer, in particular, a problem posed in [3].

The problem of disjoint invariant subspaces for subnormal operators has been studied in great detail by Olin and Thomson in [6] and [7]. In their terminology, we show that operators in the class A_{\aleph_0} are cellular decomposable.

We begin with a factorization theorem, related to Theorem 1 in [5].

THEOREM 1. Let $\mathfrak{B} \subset \mathfrak{L}(\mathfrak{K})$ be a subspace which has property (\mathbf{A}_n^{\sim}) for every positive integer n. Assume that $\mathfrak{D} \subset Q_{\mathfrak{B}}$ is a dense set. For every array $\{\phi_{ij}: 1 \leq i, j < \infty\}$ in $Q_{\mathfrak{B}}$ there exist sequences $\{x_i: 1 \leq i < \infty\}$, $\{y_j: 1 \leq j < \infty\}$, and $\{z_j: 1 \leq j < \infty\}$ with the following properties:

- (i) $[x_i \otimes y_j] = \phi_{ij}, i, j \ge 1;$
 - (ii) $[x_i \otimes z_j] \in \mathfrak{D}$, $i, j \ge 1$; and
- (iii) $\{z_j: 1 \le j < \infty\}$ is dense in $\Im \mathbb{C}$.

Proof. Let $\delta_n = \delta(n, 1)$ be derived, as before, from property $(\mathbf{A}_n^{\tilde{n}})$. Choose inductively positive numbers a_1, a_2, \ldots , satisfying the inequalities

$$a_i a_j \|\phi_{ij}\| < 4^{-n} \delta_{2n}, \quad n = \max(i, j), \ i, j \ge 1.$$

Fix also a sequence $\{f_j: 1 \le j < \infty\}$ dense in $\Im \mathbb{C}$. We will determine inductively (on n) sequences of vectors $\{h_i^{(n)}: 1 \le i < \infty\}$, $\{k_j^{(n)}: 1 \le j < \infty\}$, $\{f_j^{(n)}: 1 \le j < \infty\}$ in $\Im \mathbb{C}$, and arrays $\{\psi_{ij}^{(n)}: 1 \le i, j < \infty\} \subset \mathfrak{D}$ satisfying the following properties for $n = 0, 1, 2, \ldots$:

(2)
$$h_i^{(n)} = k_j^{(n)} = 0, \quad i, j > n;$$

(3)
$$f_j^{(n)} = f_j, \quad j > n;$$

(4)
$$\psi_{ij}^{(n)} = 0 \text{ if } \min(i, j) > n;$$

$$[h_i^{(n)} \otimes k_j^{(n)}] = a_i a_j \phi_{ij}, \quad 1 \leq i, j \leq n;$$

(6)
$$[h_i^{(n)} \otimes f_i^{(n)}] = a_i \psi_{ij}^{(n)}, \quad 1 \le i, j \le n;$$

(7)
$$\psi_{ij}^{(n+1)} = \psi_{ij}^{(n)}, \quad \max(i, j) \le n;$$

(8)
$$||h_i^{(n+1)} - h_i^{(n)}|| < 2^{-n-1}, \quad i \ge 1;$$

(9)
$$||k_i^{(n+1)} - k_i^{(n)}|| < 2^{-n-1}, \quad j \ge 1;$$

and

(10)
$$||f_i^{(n+1)} - f_i^{(n)}|| < 2^{-n-1}, \quad j \ge 1.$$

For n=0 we have $h_i^{(0)} = k_j^{(0)} = f_j^{(0)} = 0$ and $\psi_{ij}^{(0)} = 0$ for all i and j, and the conditions (5) and (6) are vacuously satisfied. Suppose that for some $n \ge 0$ vectors $h_i^{(n)}$, $k_j^{(n)}$, $f_j^{(n)}$ and elements $\psi_{ij}^{(n)} \in \mathfrak{D}$ have been found satisfying (2)–(6). We can then choose elements $\psi_{i,j}^{(n+1)} \in \mathfrak{D}$, $\max(i,j) = n+1$, such that

(11)
$$\|[h_i^{(n)} \otimes f_{n+1}^{(n)}] - a_i \psi_{i,n+1}^{(n+1)}\| < 4^{-n-1} \delta_{2(n+1)}, \quad 1 \le i \le n, \\ \|a_{n+1} \psi_{n+1,j}^{(n+1)}\| < 4^{-n-1} \delta_{2(n+1)}, \quad 1 \le j \le n+1.$$

The other values of $\psi_{i,j}^{(n+1)}$ are dictated by (4):

$$\psi_{i,j}^{(n+1)} = \psi_{i,j}^{(n)}, \quad 1 \le i, j \le n,$$

$$\psi_{i,j}^{(n+1)} = 0, \quad \min(i,j) > n+1.$$

Let us note now that we have the inequalities

(12)
$$||[h_i^{(n)} \otimes k_j^{(n)}] - a_i a_j \phi_{ij}|| < 4^{-n-1} \delta_{2(n+1)}, \quad 1 \le i, j \le n+1,$$

(13)
$$||[h_i^{(n)} \otimes f_i^{(n)} - a_i \psi_{ij}|| < 4^{-n-1} \delta_{2(n+1)}, \quad 1 \le i, j \le n+1.$$

Indeed, (12) and (13) follow at once from (5), (6), and (11). It follows now from property $(\mathbf{A}_{2(n+1)}^{\tilde{n}})$ (note that $4^{-n-1}\delta_{2(n+1)} = \delta(2(n+1), 2^{-n-1})$) that we can find vectors $h_i^{(n+1)}$, $k_j^{(n+1)}$, and $f_j^{(n+1)}$, $1 \le i, j \le n+1$, satisfying (8), (9), and (10) for $1 \le i, j \le n+1$, and (5) and (6) with n replaced by n+1. The values of $h_i^{(n+1)}$, $k_j^{(n+1)}$, and $f_j^{(n+1)}$ are prescribed by (2) and (3) for $i, j \ge n+2$, and the existence of $\{h_i^{(n)}: i \ge 1\}$, $\{k_j^{(n)}: j \ge 1\}$, $\{f_j^{(n)}: j \ge 1\}$, and $\{\psi_{ij}^{(n)}: i, j \ge 1\}$ for every value of n is proved by induction.

Let us set now $h_i = \lim_{n \to \infty} h_i^{(n)}$, $k_j = \lim_{n \to \infty} k_j^{(n)}$, $z_j = \lim_{n \to \infty} f_j^{(n)}$, and $\psi_{ij} = \lim_{n \to \infty} \psi_{ij}^{(n)} = \psi_{ij}^{(i+j)}$ for $i, j \ge 1$. These limits exist by (8), (9), (10), and (7). Note that $[h_i \otimes k_j] = a_i a_j \phi_{ij}$, $[h_i \otimes z_j] = a_i \psi_{ij}$, and

$$||z_{j} - f_{j}|| = ||\lim_{n \to \infty} f_{j}^{(n)} - f_{j}^{(j-1)}||$$

$$\leq \sum_{k=j-1}^{\infty} ||f_{j}^{(k+1)} - f_{j}^{(k)}||$$

$$< \sum_{k=j-1}^{\infty} 2^{-k} = 2^{-j+2}$$

for $j \ge 1$. These inequalities show that the sequence $\{z_j : j \ge 1\}$ is dense in \mathcal{H} . To conclude the proof it suffices now to set $x_i = a_i^{-1}h_i$ and $y_j = a_j^{-1}k_j$ for $i, j \ge 1$. \square

We are now ready to prove the main result of this paper. If $\mathfrak{B} \subset \mathfrak{L}(\mathfrak{K})$ is a linear subspace, a space of the form $(\mathfrak{B}h)^-$ will be called, somewhat improperly, a cyclic space for \mathfrak{B} .

THEOREM 14. Assume that the subspace $\mathfrak{B} \subset \mathfrak{L}(\mathfrak{IC})$, $\mathfrak{B} \neq \{0\}$, has property (\mathbf{A}_n^{\sim}) for every positive integer n. Then there exists a sequence $\{\mathfrak{M}_j \colon j \geq 1\}$ of nonzero cyclic subspaces for \mathfrak{B} with the following property. If $\{K_a \colon a \in A\}$ is a family of subsets of $\{1, 2, ...\}$ such that $\bigcap_{a \in A} K_a = \emptyset$ and at least one of the sets K_a is finite, then $\bigcap_{a \in A} (\bigvee_{j \in K_a} \mathfrak{M}_j) = \{0\}$.

Proof. As we noted in the introduction, the space $Q_{\mathfrak{B}}$ is separable, and hence we can choose a sequence $\mathfrak{D} = \{\phi_j : j \ge 1\}$ dense in $Q_{\mathfrak{B}}$. An application of Theorem 1 implies the existence of vectors x_i , y_{jp} , z_j in \mathfrak{R} , $i, j, p \ge 1$, with the following properties:

$$[x_i \otimes y_{jp}] = \delta_{ij} \phi_p, \quad i, j, p \ge 1;$$

(16)
$$\{z_j: j \ge 1\}$$
 is dense in \mathfrak{K} ;

and

$$[x_i \otimes z_j] = \phi_{\pi(i,j)} \in \mathfrak{D}, \quad i, j \ge 1.$$

Here $\pi: N \times N \to N$ is some function provided by the fact that $[x_i \otimes z_j] \in \mathfrak{D}$, and, of course, $\delta_{ij} = 0$ or 1 according to whether $i \neq j$ or i = j. We will show that the spaces $\mathfrak{M}_i = (\mathfrak{G}x_i)^-$, $i \geq 1$, satisfy the conditions of the theorem. First we show that $\mathfrak{M}_i \neq \{0\}$ for each i. Indeed, $\mathfrak{G} \neq \{0\}$, so that there exists $p \geq 1$ with $\phi_p \neq 0$. Choose $T \in \mathfrak{G}$ such that $\phi_p(T) \neq 0$, and note that

$$\langle Tx_i, y_{ip} \rangle = \phi_p(T) \neq 0,$$

and hence $Tx_i \in \mathfrak{M}_i \setminus \{0\}$.

Let now $\{K_a: a \in A\}$ be a family of subsets of $\{1, 2, ...\}$ with K_{a_0} finite and $\bigcap_{a \in A} K_a = \emptyset$. Fix an element $x \in \bigcap_{a \in A} (\bigvee_{i \in K_a} \mathfrak{M}_i)$; to finish the proof it will suffice to show that x = 0. We show first that

$$\langle x, y_{jp} \rangle = 0, \quad j, p \ge 1.$$

Indeed, fix j, and choose $a_1 \in A$ with $j \notin K_{a_1}$. Since $x \in \bigvee_{i \in K_{a_1}} \mathfrak{M}_i$, there exist operators $T_i^{(n)}$ in \mathfrak{B} such that for each n, $T_i^{(n)} \neq 0$ for finitely many values of i, and

$$x = \lim_{n \to \infty} \sum_{i \in K_{a_i}} T_i^{(n)} x_i.$$

We deduce from (15) that

$$\langle x, y_{jp} \rangle = \lim_{n \to \infty} \sum_{i \in K_{a_1}} [x_i \otimes y_{jp}] (T_i^{(n)}) = \lim_{n \to \infty} \sum_{i \in K_{a_1}} \delta_{ij} \phi_p (T_i^{(n)}) = 0$$

for all $p \ge 1$.

Use now the fact that $x \in \bigvee_{i \in K_{a_0}} \mathfrak{M}_i$ to write

$$x = \lim_{n \to \infty} \sum_{i \in K_{a_0}} T_i^{(n)} x_i.$$

For $j \in K_{a_0}$ and $p \ge 1$ we deduce from (18) that

(19)
$$0 = \langle x, y_{jp} \rangle = \lim_{n \to \infty} \sum_{i \in K_{a_0}} \delta_{ij} \phi_p(T_i^{(n)}) = \lim_{n \to \infty} \phi_p(T_j^{(n)}).$$

Suppose that $x \neq 0$, and choose k such that $||x - z_k|| < \frac{1}{2}||x||$; this is possible by (16). We have

$$|\langle x, z_k \rangle| = |\langle x, x \rangle - \langle x, x - z_k \rangle| \ge ||x||^2 - ||x|| ||x - z_k|| > 0$$

but, on the other hand,

$$\langle x, z_k \rangle = \lim_{n \to \infty} \sum_{i \in K_{a_0}} \langle T_i^{(n)} x, z_k \rangle$$

$$= \lim_{n \to \infty} \sum_{i \in K_{a_0}} [x_i \otimes z_k] (T_i^{(n)})$$

$$= \lim_{n \to \infty} \sum_{i \in K_{a_0}} \phi_{\pi(i,k)} (T_i^{(n)}) = 0$$

by (17) and (19). This contradiction shows that necessarily x = 0. The theorem is proved.

REFERENCES

- 1. H. Bercovici, *A reflexivity theorem for weakly closed subspaces of operators*, Trans. Amer. Math. Soc. 288 (1985), 139–146.
- 2. H. Bercovici, C. Foiaş, and C. Pearcy, *Dilation theory and systems of simultaneous equations in the predual of an operator algebra*, I, Michigan Math. J. 30 (1983), 335–354.
- 3. ——, Dual algebras with applications to invariant subspaces and dilation theory, CBMS Regional Conf. Ser. in Math., No. 56, Amer. Math. Soc., Providence, R.I., 1985.
- 4. H. Bercovici, B. Chevreau, C. Foiaş, and C. Pearcy, *Dilation theory and systems of simultaneous equations in the predual of an operator algebra*, II, Math. Z. 187 (1984), 97–103.
- 5. S. Brown, Full analytic subspaces for contractions with rich spectrum, preprint.
- 6. R. Olin and J. Thomson, *Cellular-indecomposable operators*, Integral Equations Operator Theory 7 (1984), 392–430.
- 7. ——, Cellular-indecomposable operators, II, Integral Equations Operator Theory 9 (1986), 600-609.

Department of Mathematics Indiana University Bloomington, IN 47405