A NOTE ON DISJOINT INVARIANT SUBSPACES

H. Bercovici

Let 3C be a separable Hilbert space, and let 3 be a subspace of £(JC). We de-
note by Qg the weak* dual of ®, that is, the elements ¢ of Qg are linear func-
tionals on B which are continuous in the induced weak* topology of . If # and
k are in JC we can define an element [A® k] e Qg by

[h@KkI(T)=<(Th, k), TeB,

where (-, -) denotes the scalar product in JC. The notation [A® k] is justified by
the fact that Qg can also be regarded as a quotient of the space C;(JC) of trace-
class operators on JC, and in this case [A® k] is the equivalence class of the rank-
one operator A® k. Observe that C,(J3C) is a separable Banach space, and we de-
duce that Qg is also a separable Banach space.

Fix an integer n =1, and recall from [1] that ® is said to have property (A7)
if the following holds. Given e > 0 there exists 6 = 6(n, €} > 0 such that for every
array {¢;;:1=<1i,j=n}C Qg and every family {h, hy, ..., Ay, k1, k2, ..., Ky} C3C
satisfying the inequalities

loij —[hi®k;l| <6, 1=<i,j=n,
we can find {A{, A5, h}, ..., h,, ki, k5, ..., k;} C 3C such that

@i =1hi®k}1, 1=<i,j=n,
and
\hi—hi|<e, |kj—kj|<e, 1=<i,j=<n.

Suppose that @ has property (A7), and denote 6, =46(n,1). It is then easy to
see that we may choose 8(n, €) = €25, for all e > 0.

Let us also recall that @ is said to have property (Ag,) if every array {¢;;:
1=<1i,j <Ry} in Qg can be written as ¢;; = [#;®k;], 1 <i,j =Ry, for some fam-
ilies {A;: 1 =<i<Ro} and {k;:1=<j <Ry} of vectors in IC.

The main purpose of this paper is to prove that a nonzero space & that has
property (A7) for every positive integer n possesses many disjoint cyclic spaces,
that is, there exist x, y € 3C such that (Bx)” # {0} = (By)™ but (Bx) " N(Ry) =
{0}. This result is obtained from an auxiliary result which shows that @ has a
property stronger than (Ag,); a form of this stronger property was first used by
Brown [5] to show the existence of full analytic subspaces for certain operators.

Let us note that our results imply that operators 7 in the class Ay, defined in
[2], and hence operators in the class (BCP), have disjoint invariant subspaces.
Indeed, it is known from [4] that the weak* closed algebra G generated by an
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operator 7' in Ay, has property (A7) for every integer n. Thus we answer, in par-
ticular, a problem posed in [3].

The problem of disjoint invariant subspaces for subnormal operators has been
studied in great detail by Olin and Thomson in [6] and [7]. In their terminology,
we show that operators in the class A, are cellular decomposable.

We begin with a factorization theorem, related to Theorem 1 in [5].

THEOREM 1. Let 83 C £(3C) be a subspace which has property (A}) for every
positive integer n. Assume that D C Qg is a dense set. For every array {¢;;:
1=<i,j< o} in Qg there exist sequences {x;:1<i< o}, {y;:1<j< oo}, and {z;:
1 <j< o} with the following properties:

() [xi®yjl=dij, i,j=1;
(i) [x;®z;1e D, i,j=1; and
(iii) {z;:1=<j < o] is dense in 3C.

Proof. Let 6, = 6(n,1) be derived, as before, from property (A}). Choose in-
ductively positive numbers ay, a3, ..., satisfying the inequalities
a;aj|bij| <4 "834, n=max(i,j), i,j=1.

Fix also a sequence { f;:1=<j < oo} dense in JC. We will determine inductively (on
n) sequences of vectors {A{":1=i<eo}, (kK{:1=j< oo}, {f{:1=j<oo} in
JC, and arrays {1,0(”) 1<i,j<oo}]CD Satlsfymg the following propertles forn=
0,1,2,...:

Q) =k =0, i,j>n;

3) fF=f i>n

4) YM'=0 if min(i,/j)> n;
5) (7 @Kk =aia;di;, 1=<i,j=<n;
(6) (A1 =aiy, 1=<i,j=<n;
(7 v =y, max(i,j)<n;
(8) : |A D - <271 iz,
©) | |k =k <277 =1
and , )

(10) W= <27, =1

For n=0 we have /¥ =k(¥ = /=0 and ¢}’ =0 for all i and j, and the con-
ditions (5) and (6) are vacuously satisfied. Suppose that for some n =0 vectors
n, k™M, £ and elements ¢/’ € D have been found satisfying (2)-(6). We can
then choose elements ¢("+1) € H, max(i, j)=n-+1, such that

"[hi(n)®fn(+l _ai‘o&i(,':;:-ll) | <4—n_152(n+1)» l=i=n,

(11) (n+1) —n—1 ;
la,+1¥,57. 71 <4 0o+, 1=j=n+1.

The other values of ¥+ are dictated by (4):
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1 ..
pID =y 1=i,j=n,

Yt =0, min(,j)>n+1.
Let us note now that we have the inequalities
(12) A @Kk D1 —aia;di] <47 " '6ppnsry, 1=<i,j=n+1,
(13) 1A @ £ —aiviy| <4 7" 8y0msn, l=i,j=n+l.

Indeed, (12) and (13) follow at once from (5), (6), and (11). It follows now from
property (A3z+1y) (note that 4="~! Orn+1y=06(2(n+1), 27"~1y) that we can find
vectors 1"V, k"D and £V, 1<i, j = n+1, satisfying (8), (9), and (10) for
l<i,j=< n+1 and (5) and (6) with n replaced by n+ 1. The values of A"*Y,
k(”“) and f; (D) gre prescribed by (2) and (3) for i, j = n+2, and the existence
of {h(”’ t>1} (kM:j=13, {f:j=1}, and {gb‘”’ i, j =1} for every value of
n is proved by 1nduct10n

Let us set now /; =1im, o 4", k;=1im,_, o k™, z;=1im, .« f", and §;; =
lim,, o ¥ = x,b(““') for i, j= 1. These limits exist by (8), (9), (10), and (7). Note
that [A; ®k ]—azaj¢11s [A; ®zj]'—al¢lj$ and

“Zj _fJ" = ﬂ lim fj(n)_fj(j—l)“

n— co

o0
< E "f;,'(k+l)_‘f‘]'(k)||

k=j—1
< i 5=k _n—j+2
k=j—1
for j = 1. These inequalities show that the sequence {zj:Jj= 1] is dense in 3C. To
conclude the proof it suffices now to set x;=a; '4; and yi=a; k fori,j=1. 0O

We are now ready to prove the main result of this paper. If 8 C £(3C) is a
linear subspace, a space of the form (®#4)~ will be called, somewhat improperly,
a cyclic space for G3.

THEOREM 14. Assume that the subspace &3 C £(3C), @ # {0}, has property
(A7) for every positive integer n. Then there exists a sequence {O;: j =1} of
nonzero cyclic subspaces for & with the following property. If {K,:a€ A} is a
Jamily of subsets of {1,2, ...} such that (\,e 4 K,= 3 and at least one of the sets
K, is finite, then Nge (VjeKa ANM;) = {0}.

Proof. As we noted in the introduction, the space Qg is separable, and hence
we can choose a sequence D ={¢;: j =1} dense in Qg. An application of The-
orem 1 implies the existence of vectors x;, v, z; in 3C, i, j, p =1, with the fol-
lowing properties:

(15) Xi®Vipl=0ijbp, i, j,0=1;
(16) {zj: =1} is dense in 3C;

and
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a7 [xi®zj]=¢zi,/ €D, i,j=1.

Here w: N X N — N is some function provided by the fact that [x;®z;] € D, and,
of course, §;; =0 or 1 according to whether i # j or i =j. We will show that the
spaces M; = (Bx;), i =1, satisfy the conditions of the theorem. First we show
that ;= {0} for each i. Indeed, @ = {0}, so that there exists p =1 with ¢, = 0.
Choose T € & such that ¢,(7") # 0, and note that

(Txiayfp>= ¢p(T) # 09

and hence 7Tx; € N;\ {0}.

Let now {K;:ae A} be a family of subsets of {1,2,...} with K, finite and
Naea K,=D. Fix an element x € MNgea(Viex, M;); to finish the proof it will
suffice to show that x = 0. We show first that

(18) <xayjp>=09 j9p21~

Indeed, fix j, and choose a; € A with j & K,,. Since x € V ek, ‘JIZ,, there exist op-
erators 7, in @& such that for each n, 7;(" > 0 for finitely many values of i, and

x=lim Y 7T'7x,.
n—oo iEKal
We deduce from (15) that
Gyipy=lim 3 [(x®y,,(T)=1lim Y &;¢,(7;")=0
n—o iekK, n—wo ieKy
for all p=1.
Use now the fact that x e VieKao O; to write
x=lim Y T"x.
n—ow i€k,
For j € K4, and p =1 we deduce from (18) that
(19) 0=(x,y;pd>=lim 3 8;¢,(T )= lim ¢,(T").
n—oco ieKa0 n—co
Suppose that x # 0, and choose k such that |x—z,| < 3|x|; this is possible by
(16). We have
|<x, zid] = <X, %) — <x, x —2p)| = x| * =[x} % — 24| > 0
but, on the other hand,
x,zey=lim 3 (T x, z4)

n-—»co ieKao

= lim 2 [x,-®zk](T,-("))

n—w iekK,
=lm 3 ¢ru0(T")=0
n—ow iekKg,

by (17) and (19). This contradiction shows that necessarily x =0. The theorem
is proved. i
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