NONLINEAR SOLUTIONS OF
NEVANLINNA-PICK INTERPOLATION PROBLEMS

Joseph A. Ball, J. William Helton, and C. H. Sung

1. Introduction. This article concerns a nonlinear extension of the classical
theory of Nevanlinna-Pick interpolation. A matricial form of the classical Nev-
anlinna-Pick interpolation problem is as follows:

(NP) Given a collection {zy, ..., zx} of complex numbers with |z;| <1, a set of
vectors {xy, ..., X} in C” and a set of vectors {yy, ..., ¥x} in C”, find all
m X n matrix functions F analytic on the unit disk such that
(i) |F(z)|=1for |z|<1, and
(ii)) F(z;)xj=y; forl=j=<k.

The classical result is that solutions F to (NP) exist if and only if the Pick matrix

XjXi—YiYi
Az, x,y) = | 25 =YY
( y) [ 1-Z;z;  |1<ij=<k

is positive semidefinite (see e.g. [4]). Various recipes exist then for constructing
the solutions.
A dual version of (NP) has also been studied.

(NP). Given a collection {wy, ..., wx-} of complex numbers with |w;| <1, a set
of vectors {£&,, ..., &} in C™ and a set of vectors {7, ..., 7%} in C”, find
all m X n matrix functions F analytic on the unit disk such that
(i) |F(z)|=1 for |z|j<1, and
(i)« &F(w;))=9; for1=j=<k’.

Note that F is a solution of (NP), if and only if F*(z) = F(Z)* is a solution of a
problem of the type (NP). Thus (NP), has a solution if and only if the Pick matrix
ErEi— i ]

I1—wiw; |1<i,j=<k
is positive semidefinite. It is also possible to combine these. For simplicity we
assume that z; = w; forl1<i<kandl=j<k’.

A*(!L_"’s gs 2) = [

(NPYN(NP), Find all matrix functions F which solve (NP) and (NP).
simultaneously.

The Pick matrix A(z,x,y, w, & 1) for this problem is more involved but can be

computed; it is given in [5].
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One can give an alternative (perhaps more cumbersome) operator-theoretic
formulation of (NP) and (NP),; this will lead to our nonlinear operator gen-
eralization. If G is any matrix function in L;,x, we let Mg: L2 — L2, be the
multiplication operator Mg: h— Gh for all he L%. The operator norm |Mg| =
sup{|Mg(f)|.2,: f€ L3, | f].2 =1} turns out to be identical to the co-norm |G| =
sup{|G(z)|:|z]|=1} of G. Operators T of the form T= Mg are characterized
among all the operators from L2 into L2, by the conditions

(1.1) T is linear, that is, T(cih1+c2hy) = c;T(hy) +c, T(hy) for all Ay, hoe L2
and ¢, c; € C;

and
(1.2) T is shift-invariant, that is, TM, =M, T where x(z) =z.

If moreover G has bounded analytic continuation to the unit disk, then 7= Mg
in addition satisfies

(1.3) T is stable, that is, T maps zX¥H? into zXH? for k any integer.

[Of course, if T is shift-invariant (1.2), then one need check (1.3) for only one
value of k.] We denote the class of all stable mappings from L2 to L2, as S,,,xn.
We formulate the interpolation constraints (ii) and (ii), as follows.

(1.4) Suppose f e L2 is such that
k
f@z)— X cjz¥(z—z;) x;ezkH?
=1
for some choice of constants ¢;e C (1<j=<k). Then
k
(Tf)(z)~ X cjzk(z—z;) " ly;ez*HE,
j=1

and £37(f)(wp) =05 f(wy,) for l=p=<k’.

Then an operator-theoretic reformulation of NP N (NP), is: Find all operators
T: L2 — L2, which satisfy (1.1)-(1.4). A more general operator Nevanlinna-Pick
problem is obtained by dropping the linearity or shift-invariance conditions, for
example,

(ONP) Find all operators T: L2 — L2, which satisfy conditions (1.3) and (1.4)
together with |T'| =<1, where |T|=sup{|7T(h)|2: |A].2z=1}.

Let us say that a (possibly nonlinear) mapping 7': L2 — L2, is a strict contraction
provided that | 7| <1 (so |T(h)| 3, = c|A|| 2 for all 2 L, for some ¢ <1); the class
of all such mappings we denote by BN,,,« .; BN, denotes such mappings with
¢ = 1. We do not demand that such operators 7" be continuous. A more restrictive
condition is to demand that 7 be a strict Lipschitz contraction (also known as in-
crementally stable operator in the engineering literature), that is,

|7 (k1) —T(hy)| 3, < cllhy— h2| L2
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for all A, h, e L2 for some c < 1. The set of all strict Lipschitz contractions we
denote by BLN,,,«,. The class of Lipschitz contractions (¢ <1 in the above) we
denote by BLN,,, .

So far we have discussed only the existence question with regard to (NP)N
(NP).. The problem of parameterizing the set of all solutions is settled by the fol-
lowing result, at least for the case where there exist solutions with norm strictly
Iess than one.

PROPOSITION 1.1 (see [4; 5]). Suppose there exists some solution F of (NP)N
(NP). with |F|« <1. Then there exists a rational (m+ n) X (m+ n) function

Z11(z) Elz(z)]
E21(2)  E22(z)

such that F is a solution of (NP)N(NP). if and only if
F=(EnG+E;3)(EaG+Ez)™!
Jor some G € H;}y, with |G| <1. The matrix function ¥E(z) satisfies

(1.5) EEWIE(@R)=J

E(z)= [

whenever both z and Z~! are points of analyticity, and
(1.6) HEZ»EER)<J

whenever z is a point of analyticity with |z| <1, where

0o —-I,|
Moreover, 5 can be computed explicitly from the data z, x, Y W, &, 1 of the inter-
polation problem (see [6] for a very general case).

A=
Az A

any block matrix representing an operator from a space H@® K (say) to itself, we
let G4 represent the linear fractional map

T>Gu(T)=AnuT+Ap) (A T+ Axp)™!

defined on all (possibly nonlinear) mappings from K into H for which the inverse
mapping (A,; T+ A,,) ! exists; note that then the result G4(7) is also a mapping
from K to H. In particular, if

E(z)=[

For [Au Alz]

En(z) Einz) ]

E(z) E2(z)

is an (m+n) X (m+ n) matrix function as in the proposition, then

— [MEH MEIZ]

—
= -t

=21 =22
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is a mapping from LZ @ Lj into itself, and hence the linear fractional map Gy is
defined on all mappings 7" from L3 into L2, for which the inverse (Mz,, T+ Mzx,,)"!
exists. We can now state the main result of this paper. When the meaning is clear
we write Gz rather than Gas;. We let BH 7y, denote the set of all linear shift-
invariant operators in S,, %, BN,,x ; thus this is the class of all operators Mg
where G e H2y, and |G| <1. Again we often abuse notation and let G stand
also for the operator M. The closure of BH %y ,,, consisting of G € H, 5« with
|G| =1, we denote by BH 3y ,,.

THEOREM 1.2. Let there be given disjoint sets of complex numbers {z1, ..., 2}
and {wy, ..., wi'} in the open unit disk, sets of vectors {xi,...,xi} and {ny, ..., ng}
in C”, and sets of vectors {yi, ..., Vx} and {&,, ..., &} in C™,

(1) Then the following three conditions are equivalent.

(i) The problem (NP)N(NP), has a solution F with |F|« =<1, that is,
there exists a T e BH 2., which satisfies the interpolation conditions
(1.4).

(ii) There exists a (possibly not shift-invariant and/or nonlinear) T e
BLN,,«nNSxn Which satisfies the interpolation conditions (1.4).

(iii) There exists a (possibly not shift-invariant and/or nonlinear) T e
BN, % nN S, xn Which satisfies the interpolation conditions (1.4).

(2) Suppose (NP) N (NP), has solution F with |F|. <1, or (equivalently) that

there exists a stable T in BLN,,,«, or BN,,,, satisfying (1.4). Let the ma-

trix function
P~ "t
| = A2
Fo1 Eo2

be as in Proposition 1.1. Then:
(i) The set of all T in BH 2y, satisfying (1.4) is parameterized as
GE (BH;;:OX n)-
(ii) The set of all (possibly nonlinear and/or not shift-invariant)
T in BLN,,,x 2 NS, xn satisfying (1.4) is parameterized as
GE(BLmenmSmxn)-
Moreover, in each of (1) and (ii) in (2), the assertions continue to hold with B
in place of B throughout. Also Gz (T") is shift-invariant if and only if T’ is shift-
invariant.

Ix]

While the above theorem says that every interpolation set in BH ., arises as
the range Gz (BH P« ) of a linear fractional map Gz, the converse is also true in
the linear case (see [9; 10]). The converse also holds in the nonlinear case. To re-
cover the class of simple first-order interpolation conditions (1.4), we must as-
sume that 5 has only simple nonintersecting zeros and poles; more general inter-
polation problems will be considered in the next section.

THEOREM 1.3. Suppose Z(z) is a rational (m+ n) X (m+ n) matrix function
satisfying (1.5) and (1.6) such that the zeros and poles of = are all simple and
nonintersecting. Suppose also that 533 Fy € HZ«,. Then there is a set of inter-
polating conditions (1.4) such that the range of Gz on BLN,, x , equals the set of
all Lipschitz contractions satisfying (1.4).
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The reader should note that we do not obtain a linear fractional map parame-
terization of the class of all nonlinear 7 in BN,,x, satisfying the interpolation
conditions (1.4). The difficulty is that graphs of general nonlinear contractions
do not have a coordinate-free Krein space description as do graphs of Lipschitz-1
functions and of linear contractions (see Section 3). A similar remark applies to
the parameterization results in Theorem 2.2 for the more general interpolation
problem discussed there.

The basic principle that nonlinear solutions exist if and only if the linear ones
exist [(i) & (iii) in Theorem 1.2(1)] already appears in the article of Khargone-
kar and Poola [11] as a small piece in the solution of a more involved control the-
ory problem. Also, linear fractional maps have appeared before in a nonlinear
context in the work of Desoer and Liu [8] and Anantharam and Desoer [1] to pa-
rameterize stabilizing nonlinear controllers of nonlinear plants; here, however,
there is no a priori bound on a norm or a Lipschitz constant. Our Grassmannian
formulation and linear fractional parameterization of all solutions with Lipschitz
constant at most 1 appears to be new. Also we feel that without an article such
as this the fine ideas of [11], [8], and [1] might well be lost to the mathematical
Nevanlinna-Pick community.

2. The general interpolation problem. In this section we rewrite the interpo-
lation problem (NP)N(NP), in an equivalent form which then leads to a more
general problem with no extra burden in notation. This second form of the prob-
lem is also more convenient for our methods of proof to be presented in the next
section.

Let ¢(z) and ¥ (z) be rational m X m and n X n phase functions respectively;
thus ¢(z) and ¥(z) are respectively m x m and n X »n unitary valued for |z|=1.
Let K(z) be a rational m X n matrix function. Then a more general matrix Nevan-
linna-Pick interpolation problem is:

(GNP) Given ¢, ¢, K as above, find Fe K+ ¢H 5w, ¥ with |F|o <1.

To recover (NP) N (NP), from this more general problem (GNP), one first chooses
¢(z) to be a finite matrix Blaschke product having simple zeros at the points
fwi, ..., we-} with left zero vector £} at w;:

Efo(wj)=0 for 1l=sj=<k’.

Then choose ¥ (z) to be the finite matrix Blaschke product with simple zeros at
{z1, ..., 2k} and with right zero vector x; at z;:

¥(z;)x;=0 for 1=sj=<k.

Finally choose K to be any H;«, function (not necessarily with | K| =< 1) which
satisfies the interpolation conditions

K(izj))xj=y;, 1=<j=<k;
EK(wj)=n; 1=j=<k’.

With this choice of ¢, ¢, K, (GNP) reduces to the problem (NP) N (NP), discussed
in Section 1. By taking ¢ and y to be more general matrix Blaschke products in
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(GNP), we have a convenient way to discuss higher-order Nevanlinna-Pick inter-
polation problems involving interpolation of derivatives as well as functional
values. By choosing ¢ =1,,, ¥ =1,, and K = a general function in L;;«,, we ob-
tain the matrix Nehari problem.

It is easy to rewrite (GNP) in operator-theoretic form: Find a linear shift-in-
variant operator 7'e Mg+ My - Sy« n+ My with |T| < 1. This leads us to the non-
linear version of (GNP): ‘

(NGNP) Find T'e€ Mg +MyS 5+ M, with |T|<1.

We can also demand that 7T be shift-invariant and/or a (strict) Lipschitz contrac-
tion. With the special choice of ¢, ¥, K mentioned above it is easy to check that
the condition 7'e Mg+ My - S,,«n* My is equivalent to T satisfying the interpola-
tion conditions (1.4).

Results for the more general linear Nevanlinna-Pick interpolation problem
(GNP) parallel those mentioned in Section 1 for (NP)N(NP),; for a fuller dis-
cussion see [4]. The following summarizes the situation.

PROPOSITION 2.1. Let K, ¢, ¥ be as in (GNP). Let I": ¢ "\ H2 - ¢ H%* be de-
fined by

2.1) I‘=P¢H'%.LMKI¢I—1H3.

Then there exist solutions F of (GNP) with |F|« <1if and only if |T'| <1. More-
over, in this case there exists a rational (m+ n) X (m+ n) matrix function

7(Z)=[511(2) 312(2)]
a E21(2)  E22(2)

satisfying (1.5) such that F is a solution of (GNP) if and only if F=Gz(G) for
some G € Hy«,, with |G| <1.

The main goal of this paper is to obtain the analogues of Theorems 1.2 and
1.3 for the more general nonlinear interpolation problem (NGNP). Precisely they
are the following.

THEOREM 2.2. Let K, ¢, ¢ be as in (GNP).
(1) The following three conditions are equivalent.
(i) There exists FE K+ ¢H5xny With |Flo =<1, that is, |T'| <1
where T is as in (2.1).
(ii) There exists a (possibly not shift-invariant and/or nonlinear)
Te[Mg+MySnxnMy]INBLN,, %,
(iii) There exists a (possibly not shift-invariant and/or nonlinear)
Te[Mg+MyS,xn MyINBN,, % .
Suppose there exists a solution F of (GNP) with |F|- <1, or (equivalent-
ly) that there is a solution T of (NGNP) in either BLN,,«, or BNy, n, 50
IT|<1.
(2) Let the matrix function
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be as in Proposition 2.1. ’]an: ~
(i) [Mx+MySmxnMylNBLGxn=Gz(BLHx ).
(ii) [MK+M¢Smng¢] NBLN, xm= GEJ(BLmenn Smxn)-

Shift-invariant solutions of (NGNP) in BLN,,x, are obtained by plugging the
shift-invariant operators in BLN,,;x,NS,;x» into Gz.

THEOREM 2.3. Suppose E(z) is a rational (m+ n) X (m+ n) matrix function
satisfying (1.5) which is regular on the unit circle. Suppose also that B3 Ea €
H3m. Then there exist a rational mxXn matrix function K, an mXxXm matrix
Blaschke product ¢, and an n X n matrix Blaschke product y such that

GE(BLmennSmxn) = [MK+M¢Smng¢] nBLNan.
The first part of Theorem 2.2 is straightforward, so we give its proof now.

Proof of Theorem 2.2(1). The idea of the proof is essentially the same as that
of Khargonekar and Poola [11] for the analogous result in their context. Clearly
it suffices to prove only (iii) = (i) in (1). Thus suppose there exists a

T= My +MySM, e [My+MySM;1NBN,, .
Then for any Ae ¢ ~"1H?,

1T Al = |T(h)| = (M + My SM,) (h)]
=|PsrzL (Kh)|=|Th|,

so |[I'|=|T] =1 and (i) follows. O

3. Krein space preliminaries. A Krein space K by definition is the direct sum
K=K, ®K_ of two Hilbert spaces K. with indefinite inner product [, ] given by

ke @k_, ks @ kL] =Cky, koI, — <Ko, KK

A general reference for such spaces is Bognar’s book [7]. The invariant object of
interest is only the pair (K, [+, -]), that is, a linear space K with an indefinite in-
ner product. A decomposition of K of the form K, @ K_ is called a fundamental
decomposition and in general is not unique. In applications one may want to be
free to pick a fundamental decomposition to work with. The best intrinsic char-
acterization of a space is the following (see [7]): An indefinite inner product space
(K, [, ]) is a Krein space if and only if there is a Hilbert space inner product {:, -)
on K of the form {(x, y)=[Wx, y] with W invertible.

We say that a subset P of the Krein space (K, [, - 1) is positive if [x,x]=0 for
all x e P. A (linear) subspace P is said to be maximal positive if it is positive and
not contained in any larger positive subspace. We say that the linear subspace is
uniformly positive if the restriction of [-, -] to P makes P a Hilbert space. A subset
P is said to be incrementally positive if the difference set AP = {x;—x3: X1, x2€ P}
is a positive set. We say that P is maximal incrementally positive if it is incremen-
tally positive and not contained in any larger incrementally positive subspace.
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When we replace [-,-] by —[-, -] in the above, we get the notions of negative set
or subspace, maximal negative subspace, uniformly negative subspace, incremen-
tally negative subset and maximal incrementally negative. We shall be primarily
interested in “negative” rather than “positive.” For any subset S, we let S’ denote
its [, ]-orthogonal complement

S'={xeK:[y,x]=0 for all yeS}.

A subspace G is said to be regular (or ortho-complemented) if G+ G’ =K; equiv-
alently G+ G’ =K (i.e., G+ G’= K and GN G’ = (0)). This is the precise situation
when [, ] restricted to G makes G a Krein space in its own right. The uniformly
positive (resp., uniformly negative) subspaces are precisely the positive (resp.,
negative) subspaces which are regular. If P is uniformly maximal positive then its
orthogonal complement N = P’ is uniformly maximal negativeand K=P+Nisa
fundamental decomposition of K; moreover every fundamental decomposition
arises in this way. Equivalently, one could start with a uniformly maximal nega-
tive subspace N and set P =N".

Let us fix a fundamental decomposition K=K, @ K_ and write K in column

notation
K,
K= .
x|

Then it is well known that negative subspaces G are those of the form

o7

for some subspace D C K_ and linear contraction operator 7: D —» K, (with re-
spect to the Hilbert space norms on D C H_ and K, ). Also G is maximal negative
if and only if D =K_. Equivalently G is a maximal negative subspace if and only
if G is a negative subspace and
K,
G+ =K.
o]

By the remarks above concerning fundamental decompositions we may rephrase
this in yet another way: G is a maximal negative subspace if and only if G is a
negative subspace such that G+ P =K for some (or equivalently any) maximal
uniformly positive subspace P. All these facts have been reviewed in greater de-
tail elsewhere (see [4; 3; 10]).

Less standard are the corresponding facts for incrementally negative subsets.
We state the result formally as follows.

LEMMA 3.1. (a) A sybset G CK is incrementally negative if and only if

T
G= D
7]
Jor some D C K_ and (possibly nonlinear) Lipschitz-1 mapping T: D — K (i.e.,
|7(x1) — T(x2) |k, <|x1—x2|x_ for all x,, x> € D).
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(b) G is maximal incrementally negative if and only if D=X_, or equivalent-
Iy, G+P =K for some (or equivalently any) maximal uniformly positive sub-
space P.

Thus Lipschitz-1 mappings play the same role with respect to incrementally
negative subsets as linear contraction operators play with respect to negative sub-
spaces.

Proof. The only nontrivial part is the assertion in (b) that D = K_ if G is maxi-
mal incrementally negative. Equivalently any Lipschitz-1 mapping 7" from a sub-
set D C K_ into K, can be extended to a Lipschitz mapping defined on all of K_
into K, . The validity of this last statement is one of the main results of [13] (see
also [12]). ]

An indefinite inner product space (K, [, 1) we say is a pseudo-Krein space if the
quotient space K/(KNK’) is a Krein space in the indefinite inner product induced
by [, 1. A more intrinsic condition is to say that (K, [, ]) is a pseudo-Krein space
if there is a Hilbert space inner product (, ) on K of the form {(x, y)=[Wx, y],
where W is a bounded operator with closed range. The following extension of Lem-
ma 3.1 is obtained simply by applying Lemma 3.1 to the Krein space K/(KNK’).
For pseudo-Krein spaces there is a distinction between the notion of “maximal
uniformly positive subspace” (i.e., a uniformly positive subspace not contained
in any larger uniformly positive subspace) and “uniformly positive and maximal
positive subspace.” The correct condition in Lemma 3.2 is “maximal uniformly
positive.”

LEMMA 3.2. Let K be a pseudo-Krein space. Then a subset G C K is maximal
incrementally negative if and only if G+P =K for some (or equivalently any)
maximal uniformly positive subspace P.

4. The Grassmannian approach. The goal of this section is to derive the re-
maining portions of Theorem 2.2 concerning the linear fractional map parame-
terizations of solutions of the interpolation problem (NGNP) in various classes.
The method used here to analyze (NGNP) is that developed by Ball and Helton
in [4]; the basic idea is to translate the operator-theoretic problem to a problem
about the geometry of subspaces of a Krein space which in turn is easier to ana-
lyze. Here we simply adapt the development there to the present nonlinear setting.

The key observation is that the error class M, S,, x » My can be characterized as
those operators £ for which

4.1) EW ~'X*H}) C ox*H,

for k=0, =1, +2,...; this is a simple consequence of the definition of the class
S, xn Of stable operators. This suggests that for T any operator in N we let Gf be
its graph space with domain ¢ ~1x*H?2:

4.2) Gk = {[T(m

" ]:he;b‘lka,%}.



384 JOSEPH A. BALL, J. WILLIAM HELTON, AND C. H. SUNG

Note that G% is a (in general nonlinear) manifold in L2,® ¢ ~!x*H?2. For each
k=0, =1, ..., we form the auxiliary subspace M* of L2, @y ~1x*“H}? given by

M krr2
IK]'H&_]X]CH;}'*‘ I:d)XOHm].

Note that M* = M, rMP? due to the shift-invariance of the various operators in its
definition. From the observation (4.2) we deduce that T'e Mg+ MyS,, « n M, if
and only if

4.4) Gl Mk

4.3) MF = [

for k=0, x1,.... To express the condition 7€ BLN,,, in terms of the sequence
of graph spaces {G’f; k=0, +1, ...} we must introduce a sequence of Krein spaces
{(Kks [ > ]J); k=0, il, cos }’ Where

4.5) Kf=12 @y " Ix*HA.
By Lemma 3.1 we see that if 7€ BLN,,,x,, then

(4.6) G% is K¥-maximal incrementally negative

for k=0, +1,.... If all the graph spaces G% are coming from the fixed mapping
T, then we necessarily have the nesting condition

4.7) G4l Gk

for k=0, +1,.... We are now ready to state the converse.

PROPOSITION 4.1. Suppose {G*: k=0, +1,...} is a sequence of subsets of
L2,,,. Then Gk=G§‘~ (as defined in (4.2)) for some T e€[Myg+MyS,,xnMylN
BLN,, ., if and only if, for k=0, +1, ...,

(i) GXCM¥*, where M¥ is as in (4.3);

(ii) G* is K*X-maximal incrementally negative, where K* is as in (4.5); and

(iii) G*+1c G*.

Moreover, T is uniquely determined by the sequence {G*: k=0, x1,...}. We also
have the equivalences:

(1) T is shift-invariant & G*= M, «G° for all k.

(2) T is linear < G* is a linear subspace for all k.

Proof. The necessity of (i), (ii), and (iii) was established above. Conversely,
suppose G* satisfies (i), (ii), and (iii). By Lemma 3.1, condition (ii) implies that
G* has the form

1

for a unique Lipschitz-1 mapping 7T%:y ~1x¥H2?— L2,. By the nesting property
(iii), 7% is an extension of 7%*1, so there is a single Lipschitz-1 mapping 7 defined
on UF= _w ¥ ~“1x¥H?2 such that each 7} is a restriction of 7". Since any Lipschitz-1
mapping is continuous and U~ _. ¥ ~'x*H?2 is dense in L2, we see that T hasa
unique Lipschitz-1 extension to the whole space L2. Finally condition (i) in turn

k
Gk = [T ]lll—lka,%
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guarantees that 7'e Mg + M, S, xn My . The equivalences (1) and (2) are now rou-
tine to verify. (I

We are now ready to analyze when [Myg+MyS,,xnMy1NBLN,,x, is non-
empty. We first analyze the easier problem where the nesting condition (iii) in
Proposition 4.1 is dropped.

LEMMA 4.2. Let K, ¢, ¥ be given as above and let k be any integer. Then there
exists a subset G* satisfying (i) and (ii) of Lemma 4.1 if and only if |T'| <1, where
I':y " 1HZ2> ¢HZ2L is given by (2.1). [In particular, the condition is independent
of k.]

Proof. Suppose G¥C M¥ and G* is KX-maximal incrementally negative. By
Lemma 3.1,

L2 L2
. Gk " =Kk= " .
[l
When we intersect each side of this equation with M¥, since GX C M* we obtain
kHZ
(4.9) G"+[¢XO ’"]:M".

Since K, ¥, and ¢ are rational, one can show that at worst M¥* is a pseudo-Krein
space in the inner product [, ];. Since G¥Cc M* C K%, G* being K*-maximal in-
crementally negative forces G* to be M*-maximal incrementally negative. It is

also clear that -
¢X Hm
Pt =
e

is a uniformly positive subspace of MX. Now by Lemma 3.2, (4.9) implies that
P* is a M*-maximal uniformly positive subspace.

Conversely, suppose that P is a M*-maximal uniformly positive subspace and
let G* be any M*-maximal incrementally negative subspace. Then, by the con-
verse side of Lemma 3.2, equation (4.9) holds. But (4.9) clearly implies (4.8).

Since [Lg”] is a K¥*-maximal uniformly positive subspace, Lemma 3.1 implies that

G* is K¥-maximal incrementally negative. We have established: There exist K*-
maximal incrementally negative subsets contained in MX if and only if P* is M-
maximal uniformly positive.

It remains only to see that this last condition is equivalent to |[I'[<1. Let us
introduce the operator T'y: ¥ “Ix*H2Z— ¢x*H2, by T'y = M, «I'M, —«. Since M, is
unitary, [I'x|=|T| for all k. By using I'y we get a [, ],-orthogonal decomposi-
tion of M¥k:

'k
I

From this decomposition it is clear that P* is M*-maximal uniformly positive if

Mk = [ ]w—lka,%@JPk.

and only if [FI" ]11/ —1xkH? is a negative subspace, or (equivalently) if and only if
IT'| =T« =<1. The lemma follows. O
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By Lemma 4.2 combined with 4.1, we know that |[I'| <1 is necessary for
[Mg+MySMyINBLN,,«, to be nonempty. To impose additional structure on
the interpolation problem in its Grassmannian formulation (such as the nesting
property (iii) in Lemma 4.1) it is convenient to assume |I'| < 1; the case |[I'|<1
can then be handled by approximation. Then by the results of [4] as summarized
in Proposition 2.1, there is a rational (rmm + n) X (m + n) matrix function Z(z) such
that (among other things)

(4.10) M¥é=Ex*H2 ,
and
4.11) xR =J

(where £*(z) =2=(z ~1)*) for all k. We now can prove the parameterization re-
sults in Theorem 2.2.

Proof of Theorem 2.2(2). By Proposition 4.1, the angle operator-graph space
correspondence T <« {G&: k=0, 1, ...} gives a one-to-one correspondence be-
tween mappings

and sequences {G*: k=0, +1, ...} of subsets of L2, , satisfying (i), (ii), and (iii).
Thus, characterizing the set of such mappings 7 is equivalent to characterizing
such sequences {G*: k=0, +1,...}. By Lemma 4.2, since |I’| <1, conditions (i)
and (ii) simplify to

(4.12) G* is M*-maximal incrementally negative.

By properties (4.10) and (4.11) of =, the operator M= of multiplication by % is
a [, l1y-unitary transformation of x*H?2 ., onto M¥X for all k. Hence G¥* satisfies
(4.12) if and only if G* = M= - Gf, where

(4.13) G¥is (x¥H?2, ,)-maximal incrementally negative.

The nesting property (iii) on G* translates to a nesting condition on the pull-
backs Gf:

(4.14) Git'c Gf
for all k. A fundamental decomposition for the Krein space (x*HZ 4, [, 1s) is
kEr2
x"“Hj, 0
XkHr%+n=[ 0 ]@J I:XkH;%].

Thus by Lemma 3.1 the subspace Gf is (x*H?2 ,)-maximal incrementally nega-
tive if and only if

Gi= T

;= [ |

for some Lipschitz-1 mapping 7§ from x*H? into x*H?2. Now the nesting prop-

erty (4.14) means that there must be a single Lipschitz-1 mapping 7; from L2 into

]x"Hﬁ
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L2, such that each T is a restriction of 7;. Since each 7;* maps x*H? into x*H?2
we conclude that 73 maps x¥H? into xXH?2 for every k, that is, T; € S,,,x». Con-
versely, if

7

for some 7j€ BLN,,,x»NS,uxn, then Gf satisfies (4.13) and (4.14) for every k.
Putting all this together, we conclude that T € [Mx + MyS,,x n My1NBLN,, x,, if
and only if, for some 773 € BLN ;%NS ixn»

T
Gi= [ l]x"H,%

T T;
(.15) |7 |o a7 emz

for all k. Since both Uy ¢ ~Ix*H?and Uy x*H? are dense in L2, we conclude that
(4.15) holding for every k is equivalent to

T T
73]

_ GE(E) 2.
[

that is, 7= G=(7;). We have thus established
[Mg +M¢Smng¢] nBLmen = GE(ﬁLmenn Simxn)-

This proves (2.ii) in Theorem 2.2.
Note that the operator Mz is linear and shift-invariant, and hence if G¥=
M=G¥ as above then

G"=M G’ & Gf =M, G}
and
G* is linear & Gf is linear.

Combining these observations with statements (1), (2), and (3) in Proposition 4.1
completes the proof of the remaining statements in Theorem 2.2. O

With the machinery now all in place, the proof of Theorem 2.3 is also easy. The
first part of the proof is a simplification of the proof of Theorem 5.10 from [4].

Proofs of Theorems 1.3 and 2.3. Let 5(z) be a rational (m+n) X (m+ n) ma-
trix function satisfying (1.5) for which =5!E. € H m, and consider the M, -
invariant subspace M = Mz H2,. Define auxiliary invariant subspaces P C L2,

and NC /L2 by
P L2 0
=MnN m] and [ ]=P M.
Lo |=MnS N]=P18)

Since = is regular on the unit circle P and N are both full range simply invariant,
so by the Beurling-Lax-Halmos theorem there are phase functions ¢ and ¥ such
that

P=¢pH2 and N=y 1HZ.
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Since = is rational one can show that ¢ and ¢ must be rational as well. Choose K
to be any rational m X n matrix function such that

K1, _
[I]yb IxeM

for each vector x € C”. Then one can show that M has the form

K], - . [oHA
[ o ]

From the definition of ¢ we see that

EnHAZ+EpHZ=y 'H2.
From the hypothesis that 55, 5, € HZ n, We get in turn
4.16) Y HZ=F) Hy+ By Hf = By HE.

As E*JE=J, M=EH2,,, and 0@ H? is H3, ,-maximal [, ];-negative, we see

that
H12 H2 0
Hao H2

is M-maximal [, ] -negative. From (4.16) we read off that this space is K-maxi-
mal [, ],-negative, where K= L2, @ ¢ ~1H?2, and hence

=12 2 L;zn . Lzm
ES S ]

When we intersect with M we obtain

[le]Hz [qu,%]:M
H22 O )

From this it follows that [ ] is M-maximal uniformly positive. As in the proof

of Lemma 4.2, we get [I'|<1 where I" is as in (2.1). Since M is a [, ] -unitary
copy of the Krein space H?, , under M=, M is a Krein space and we must have
IT] < 1. We have thus constructed rational matrix functions K, ¢, ¥ such that =
arises from these K, ¢, Y exactly as does the = from the prescribed K, ¢, ¢ in the
proof of Theorem 2.2. We conclude that

GE(BLNIannSmXH) =[Mk +M¢Smngxp]nBLmem

and Theorem 2.3 follows.
Moreover, it is easy to see that Z(z)*JE(z)<J on the unit disk implies that

GE(]—;H;‘IOXH) CBH)%oxn-

In particular, K = Gz (0) € H« .. The error class ¢ H )« , ¢ is generated as a linear
space by the set of all differences Gz(G;) —Gz=(G>), with G, G, € BH; hence
dH R« nY CHYX«n and we have ¢ € H,5xn, ¥ € HiX . From
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- ¢ Ky~!

~ 31+n=M=|:0 Y1 Hp o n
we see that & has the same set of zeros and poles inside the unit disk D as [f; 1:,,‘(’__11 ] .
Clearly the zeros of [‘3 12//_—11] inside D coincide with the zeros of ¢ inside D and

the poles of [f; Iff__ll ] inside D coincide with the zeros of ¥ inside D, since K, ¢, ¥

are all analytic on D. If E has simple nonintersecting zeros and poles on D, then
¢ and ¢y have simple nonintersecting zeros on D. We are now finally in the situa-
tion where (NGNP) specializes to the nonlinear version of interpolation problem
(ONP) discussed in Section 1, and Theorem 1.3 follows as well. C
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