HYPERBOLIC ENDS AND CONTINUA

James T. Rogers, Jr.

1. Introduction. Let F be a closed orientable surface of genus greater than
one. The Nielson-Thurston theorem states that every homeomorphism of F is
isotopic to a homeomorphism of F that (1) has finite order, or (2) is reducible, or
(3) is pseudo-Anosov. The last case is the most common and the most interesting.

The behavior of the isotopy class of a pseudo-Anosov homeomorphism is cap-
tured in a unique pair of projective classes of measured laminations preserved by
the homeomorphism. The underlying geodesic laminations are indecomposable
continua with only points and arcs as subcontinua.

Such a geodesic lamination G is best understood by considering its preimage G
in the universal covering space of F, hyperbolic 2-space H. In the Poincaré disc
model of H, each leaf of G lifts to a (complete) geodesic in H, an arc of a circle
in the Euclidean plane.

How can one see that G is not homogeneous? An interesting answer is to show
that if G has the micro-transitivity property of Effros, then so does G. This is a
contradiction, since close to each point x of G is a point y of G such that the geo-
desic G, of G containing x and the geodesic G, of G containing y are ultraparal-
lel, so no bounded homeomorphism can move G, onto G,.

This suggests that if X is a homogeneous curve in F and x is a point of its pre-
image X in H, then it is possible to assign to x a set of points in the circle at o in
such a way that this set is a local invariant of X as well as an invariant of the com-
ponent of x in X. How could one do this for an arbitrary homogeneous curve?

If X is a curve with nontrivial shape and Q is the Hilbert cube, then X has an
essential embedding into FF X Q. Let pX1: HX Q — F X Q be the universal cover
of Fx Q, and let X be the preimage of X. If K is a component of X, it will be
shown that one can associate with K a certain subset E(K) of the circle at oo; this
will be called the set of ends of XK.

THEOREM. If X is a homogeneous curve, then the set E(K) of ends of K is a
local invariant of X.

Given any natural number 7, there exists a curve X in F X Q and a component
K of X such that E(K) is an n-point set. The same holds for various infinite sub-
sets of the circle at co. For homogeneous curves, however, the topological type of
E(K) is quite restricted.

THEOREM. If X is a homogeneous curve, then E(K) is either a two-point set
or a Cantor set.
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In the proof a certain deck transformation ¢ X1 is defined, and the two-point
set is the pair of fixed points of the hyperbolic isometry ¢. Other hyperbolic iso-
metries and the homogeneity of X are used to show that if £(K) contains more
than these two points, then it is a Cantor set.

This invariant set can be used to eliminate a number of possible candidates
for homogeneous curves. In particular, it can be used to show that, for homo-
geneous curves, trivial cohomology implies trivial shape. This follows from the
next theorem.

THEOREM. If X is an acyclic curve (of nontrivial shape), then E(K) does not
contain a fixed point of a hyperbolic isometry ¢ such that ¢ X1 is a deck trans-
formation.

COROLLARY. A homogeneous, acyclic curve is tree-like.

The author has proposed a four-part program (Questions 2, 6, 7, and 8 of [6])
to classify homogeneous curves. The above corollary gives an affirmative answer
to Question 7.

The author would like to thank Andrew Casson for giving a beautiful lecture
at the 1983 USL Mathematics Conference and attracting the author’s attention to
stable laminations.

2. Homogeneous continua. A continuum is a compact, connected, nonvoid
metric space. A space is homogeneous if its homeomorphism group acts transi-
tively on it.

A metric space X has the Effros property if given € > 0, there exists 6 > 0 such
that whenever y and z are points of X satisfying d(y, z) < é, there exists a homeo-
morphism /4: X — X such that A(y) =z and d(x, h(x)) <e, for all x in X. Such a
6 is called an Effros é for e. Effros [2] has shown that each homogeneous con-
tinuum has the Effros property.

The standard Cantor set C is a homogeneous subset of the real line. Hence the
fact that some of its points are accessible from its complement in R and some not
is a property of the embedding and not a topological property of the Cantor set.
Similarly, the fact that some of the arc components of a subcontinuum X of a
surface are accessible from the complement and some not does not imply the non-
homogeneity of X.

An interesting example of a homogeneous continuum is the dyadic solenoid S.
It is defined as the limit of the inverse sequence (S, f) of unit circles S! in the
complex plane and bonding maps £, *1: S - S! defined by £, *1(z) = z2. Since S!
is a topological group and £7*! a homomorphism of topological groups, it fol-
lows that S is a topological group and hence homogeneous.

We may analyze S by constructing a covering group S. The space S is the limit
of an inverse sequence (X, f), where X,, = R x {2"th roots of unity}, g,: X, — S'
is the natural covering map, and ;7! is the obvious lift of £,/ *!.g,.

Formally, we have the following commutative diagram:
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X, «— X; «— ---:S=RxC
iql lqz le

S «— St «— ...:5,
where
' gn(r,t)=texpwir) and fF Yr,t)=r,t?).

Let go: S— S be the covering map induced by {g,].

By considering this covering space S, we see that (1) the dyadic solenoid S is
locally homeomorphic to Rx C, and (2) S is the union of uncountably many arc
components or “leaves,” each dense in S.

A continuum is indecomposable if it is not the union of two of its proper sub-
continua. The following theorem gives a useful condition to determine if a con-
tinuum is indecomposable; in particular, it follows that the dyadic solenoid and
the perfect laminations described in the next section are indecomposable con-
tinua.

THEOREM 2.1. If each proper, nondegenerate subcontinuum of the continu-
um X is an arc, then X is an arc, a circle, or an indecomposable continuum.

3. Geodesic laminations and indecomposable continua. Let A be the interior
of the closed unit disk D in the Euclidean plane, and let S! be its boundary.

A geodesic in H is the intersection of H and a circle C in the Euclidean plane
that intersects S! orthogonally (straight lines through the origin are considered
circles centered at o).

A reflection in the geodesic CMNH is Euclidean inversion in the circle C. An
isometry of H is a product of reflections in geodesics.

The set H, with this set of isometries, is a surface of constant negative curva-
ture isometric to hyperbolic space. This model of hyperbolic space is called the
Poincaré disc. The boundary S! of H, which is not in H, is called the circle at .

Let F be a closed, orientable surface of genus two. The universal cover of F
can be chosen to be H, and the group of deck transformations to be a subgroup
of the orientation-preserving isometries of H. Each of these deck transforma-
tions (except the identity map) is a hyperbolic isometry. The pertinent property
for us is that a hyperbolic isometry, when extended to the circle at oo, has exactly
two fixed points in S! and none in H.

Let p: H — F be the universal covering map. The map p can be chosen to be a
local isometry.

A geodesic in F is the image under p of a geodesic in H. A geodesic is simple
if it has no transverse intersections. A simple closed geodesic is a geodesic that is
also a simple closed curve.

A simple closed curve F is essential if it does not bound a disk. Each essential
simple closed curve in F is isotopic to a unique simple closed geodesic.

A geodesic lamination is a closed subset of F that is a disjoint union of simple
geodesics (called /eaves).
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Here is a continua theorist’s perception of a certain part of the Nielson-Thur-
ston construction. Let C be an essential simple closed curvein F, and let 4: F > F
be a pseudo-Anosov homeomorphism. Let C, =A"(C), and let C, denote the
unique simple closed geodesic isotopic to C,,.

THEOREM 3.1. In the space of subcontinua C(F) of F (with the Hausdorff
metric), some subsequence of {C,} converges to a geodesic lamination L with
uncountably many leaves.

A leaf of a lamination is isolated if one of its points is accessible by arcs from
both sides in F. If we discard the isolated leaves from a lamination, the remain-
ing leaves form a new lamination called the derived lamination. A lamination is
perfect if it has no isolated leaves.

THEOREM 3.2. If G is the derived lamination of L, then G is a perfect lamina-
tion and every leaf of G is dense in G. Furthermore, G is an indecomposable con-
tinuum locally homeomorphic to the product of R and a Cantor set.

Since G shares so many topological properties with the dyadic solenoid, one
might wonder if G is homogeneous. As remarked earlier, the fact that a finite
number of leaves of G are accessible from the complement in F is not sufficient
reason alone to conclude G is not homogeneous.

Here is an interesting proof that G is not homogeneous. If G were homoge-
neous, then G would have the Effros property. From a proof similar to that of
Theorem 2 of [7], it would follow that G = p~!(G) has the Effros property. The
space G is pictured in Figure 1. Close to each point x of G is a point y of G such
that the geodesic G, of G containing x and the geodesic G, of G containing y are
ultraparallel (this means that not only are the geodesics disjoint, but they do not
meet even on the circle at c0). This contradicts the existence of a bounded homeo-
morphism of G taking x to y.

In the next section, we extend this idea to apply to any curve with nontrivial
shape.

The remainder of Section 3 is devoted to applying [8] to the stable geodesic
lamination G of a pseudo-Anosov homeomorphism. The reader interested only
in homogeneous continua can move directly to Section 4.

Choose € >0 so that each e-homeomorphism of G lifts to an e-homeomor-
phism of G. Such an e exists, by the proof of [7, Theorem 2], but its existence
does not follow from the usual theory of covering spaces, since G is neither path-
connected nor locally path-connected.

Let H(G) be the group of homeomorphisms of G with the compact-open to-
pology, and let B(G) be the closed subgroup of H(G) generated by the e-homeo-
morphisms. The orbit of a point x in G under B(G) is exactly the leaf of G con-
taining x (slide along the product structure to get all the leaf in the orbit; note
that no e-homeomorphism can change leaves, since its lift must be bounded).

Hence B(G) is a Polish transformation group acting on the indecomposable
continuum G so that the orbits are exactly the leaves of G. The next theorem,
therefore, follows immediately from [8, Theorem 3.3] and the Effros’ theorem [2].
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Figure 1 The lift G of a perfect geodesic lamination G

THEOREM 3.3. Let G be the stable geodesic lamination associated with a pseu-
do-Anosov homeomorphism of a hyperbolic surface. Then G is an indecompos-
able continuum with the following properties:

(1) G does not have a Borel transversal to its leaves (i.e., there does not exist

a Borel subset B of G such that B intersects each leaf of G in exactly one
point).

(2) G admits a nontrivial ergodic Borel measure p in the sense that (a) the p-

measure of each leaf of G is zero, and (b) if the measurable set M is the
union of some leaves of G, then either M or G — M has p-measure zero.

4. The ends of a homogeneous curve of nontrivial shape. Assume the univer-
sal covering space (H, p, F) of F is constructed with the following properties.
The geodesic H N x-axis maps to a simple closed geodesic C,. The geodesic HN y-
axis maps to a simple closed geodesic C,. Furthermore, the union of C; and C; is
a figure-eight W, and the intersection of C, and C, is a single point v.

Let W= p~!(W); hence W is the universal cover of a figure eight, the “infinite
snowflake” pictured in Figure 2. The set CI(W)NS! is a Cantor set; call it Z.
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A
v

a

Figure 2 The universal cover W of W in the hyperbolic plane H
and labeled as the Cayley graph of G,

Let O be a Hilbert cube, and let p X 1: H X Q — F X Q be the universal covering
space of FFx Q. Let X be a continuum embedded essentially in W x Q (this means
that the inclusion map is essential; note that this eliminates some continua from
consideration). Let f: X — W be the projection map.

Let X = (p x1)"!(X), and let f: X — W be the projection map. Let K be a com-
ponent of X. The proof of the next theorem is essentially that of [9, Theorem 8].
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THEOREM 4.1. The component K is unbounded in H x Q (and hence f(K) is
unbounded in W). .

Define E(K) = {z € S': z is a (Euclidean) limit point of f(X)}. Call E(K) the
set of ends of K. The set E(K) is a closed subset of S!.

THEOREM 4.2. If X is homogeneous, then X (and hence K) has the Effros
property.

Theorem 4.2 is essentially proved in [9, Theorem 3]. It follows, therefore, that
the set of ends is a local invariant of X, which is the content of the next theorem.

THEOREM 4.3. If X is homogeneous, then there exists a 6 >0 sych thatif ke K
and k’'e K’ and d(k, k') <é (where K and K’ are components of X), then E(K)=
E(K’).

Proof. This is an immediate consequence of Theorem 4.2, since each bounded
homeomorphism of X preserves ends. U

Assume that each of the geodesics C; and C, has length greater than one and
that 26 is an Effros 6 for e=1.

Cover {v}x Q with a finite collection @3 of §-balls. Since K is unbounded and
locally compact, there exists a ball B in ® and two lifts By and B,, of B and a sub-
continuum M of € meeting both By and B,,,.

Let ¢ X1: HXx Q — H X Q be the deck transformation that maps B, to B,,,.

THEOREM 4.4. If X is homogeneous, then E(K)=E({(¢ X1)(K)).
Proof. Let m; belong to BoNM and m, belong to B,,NM. Hence
d(my, (¢ X1)(my)) <26.
By Theorem 4.3, E(K)=E({(¢Xx1)(K)). O

Compactify H x Q with S'x Q. Shrink each set of the form {z} x O, where z is
a point of S', to a point to obtain another compactification of H x Q. This time
the remainder is S!.

Let 7: (Hx Q)US! > HUS! be the map of this latter compactification onto
the disk D obtained by naturally extending the projection map. Note that the re-
striction of 7 to X is just f.

Since ¢ is a hyperbolic isometry, it has an attracting point and a repelling point,
both on S'.

THEOREM 4.5. If X is homogeneous, then the attracting point of ¢ belongs
to E(K).

Proof. Let K,=Cl[(¢"x1)(K)] in (HXQ) US!. By taking a subsequence if
necessary, we may assume that the sequence {K,} of subcontinua of (H x Q)US!
converges to a subcontinuum P of (H x Q)US! (this convergence is in the space
of subcontinua with the Hausdorff metric). Therefore n(K,) converges to w(P).

Since (K, ) NS'=E{(¢" x1)(K)) = E(K) for all n, by Theorem 4.4, and since
7 (K,)NS! converges to w(P)N S, it follows that 7 (P)NS! = E(K). If d belongs
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to w(K) and z is the attracting point of ¢, then ¢"(d) converges to z in D. Since
dew(K), it follows that ¢"(d)en((¢" x1)(K)), and so ze w(P). Thus ze€ E(K).
O

THEOREM 4.6. If X is homogeneous, then the repelling point of ¢ belongs to
E(K).

Proof. The repelling point of ¢ is the attracting point of ¢ ~!. Hence the theo-
rem follows from the previous one. Ol

THEOREM 4.7. If X is homogeneous, then E(K) is either a two-point set or a
Cantor set. Furthermore, E(K) contains a dense subset each point of which is a
Jixed point of a hyperbolic isometry ¢ such that ¢ X1 is a deck transformation.

Proof. Suppose E(K) contains more than two points. Since
E(K)=E((¢"x1)(K))

for each positive integer #, and since ¢ fixes only two points of S!, it follows that
E(K) is infinite. In fact, there exists a sequence of points {z;} in E(KX) that con-
verges to the attracting point z of ¢.

Furthermore, if z’€ E(K), then arbitrarily close to z’ is a point z” in £(KX) such
that z” is the attracting fixed point of a hyperbolic isometry ¢” such that ¢” X1 is
a deck transformation. Such a hyperbolic isometry is constructed in the same
manner as was ¢. In particular, ¢” enjoys the same properties as ¢. It follows
that £ (K) is perfect and hence a Cantor set. L]

We conclude this section by deriving a quick proof of the main result of [9].
A space X is hereditarily indecomposable if each continuum in X is indecom-
posable.

THEOREM 4.8. Each hereditarily indecomposable, homogeneous continuum
is tree-like (i.e., one-dimensional and of trivial shape).

Proof. It is known [3] that each hereditarily indecomposable continuum that is
not tree-like can be embedded essentially in W x Q. In the proof of Theorem 4.4,
we find that if X is a homogeneous continuum embedded essentially in W x Q,
then X contains the decomposable continuum M U /(¢ X 1) (M). The author [9,
Theorem 10] has shown that if X is hereditarily indecomposable, so is X. The
theorem follows. 1

Bing [1] showed that the pseudo-arc is homogeneous. The pseudo-arc is hered-
itarily indecomposable. Whether there exists another homogeneous, tree-like
continuum is an important problem.

5. Acyclic curves of nontrivial shape. A curve is a one-dimensional continu-
um. A curve X has frivial shape (or is cell-like or tree-like) if each map of X into
a figure-eight W is inessential. A continuum X admits an essential map into W if
and only if X can be embedded essentially in W x Q, where Q is the Hilbert cube
(this means the inclusion map is essential).



HYPERBOLIC ENDS AND CONTINUA 345

A curve X is acyclic if each map of X into S! is inessential. This is equivalent
to H'(X) =0, where H'(X) is the first Cech cohomology group with integral co-
efficients.

Consider the following two inverse sequences of groups (i.e., pro-groups):

mzEz~E

@ zLz L. ..,
where Z denotes the integers, g(z) =0, and f(z) = 2z. In both cases, the inverse
limit is the trivial group. In the category of pro-groups, however, (Z, g) =0, while
(Z, f)#0 (a pro-group (G, h) =0 if, by replacing (G, #) with a subsequence,
each bonding map is the zero map). This is a typical example to show that pro-
groups contain more information than their inverse limits.

The second pro-group (Z, f) is the pro-homology sequence of the dyadic sole-
noid S. Hence the Cech homology group H;(S) =0, but pro-H,(S) # 0. The dy-
adic solenoid has nontrivial cohomology; in fact, H'(S) is isomorphic to the dy-
adic rational numbers. This example illustrates a theorem due to Lacher [4, Cor-
ollary 3.3].

THEOREM 5.1. If X is a curve, then H'(X)=0 & pro-H(X) =0.

The first shape group #;(S) = 1{i_1_1_1[S‘, S} of the dyadic solenoid is trivial, since
pro-m(S) = pro-H;(S). Hence a trivial shape group does not imply a trivial co-
homology group. The converse, however, is true for curves.

THEOREM 5.2, If X is an acyclic curve, then #(X, *) is trivial.

Proof. Let X be the limit of an inverse sequence (X, f) of graphs. With the
pointed graph (X;, *) is associated the Hurewicz homomorphism

¢t m(X;, *) > H(X;).

Since ¢ is a natural transformation, the following diagram commutes.

m1(X, *) ‘fﬁ (X3, *) «— ---

ld’: l¢2

HXx) < Hx) — -

Since X is acyclic, we can apply Theorem 5.1 and assume, by taking subse-
quences if necessary, that each f, is the zero map. It follows that fu(7;(X;, *)) is
contained in the commutator subgroup of 7w;(X;_,, *).

Let G; = m1(X,, *), and let G, = (/") s(71(X,, *) C G;. It follows that G, C
Gl("), the nth derived group of G,. From Theorem 6.2 of the next section, it fol-
lows that M, {G,} is trivial. Since the same result holds for each 7; (X, *), it fol-
lows that #;(X, *) is trivial. ‘

Theorem 5.2 is a one-dimensional phenomenon; the projective plane P2, for
instance, has trivial first cohomology, while #;(P?2) = 7;(P2) is nontrivial.
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6. The ends of a group. Let X be a curve embedded essentially in W x Q. With-
out loss of generality, we may regard X as the intersection of a decreasing se-
quence {H,} of cubes-with-handles (i.e., regular neighborhoods of graphs) each
of which is embedded essentially in W x Q. For convenience, we assume that
Hi=WXx 0.

Let K be a component of X, and let K,, be the component of (p x 1)~ !(H,) that
contains K. Each K, has a set of ends E(K,) contained in Z. The next theorem is
obvious.

THEOREM 6.1. E(K)CN,{E(K,)]}.

If G, is the free group on the two generators ¢ and b, then W is a K(Gy, 1)
complex and W is the Cayley graph associated with the generators a and b of G;.
To define the ends of G, pick finite complexes My C M; C --- whose union is W
and define the set of ends E(G) of G, to be lim{mo(W\M;)}. Clearly E(G;) =
EW)y="~Z.

Thus a point z in S! belongs to E(G,) if and only if there is a sequence {g,} of
elements of G, such that the sequence {g;,2122,..., €182 &x, ...}, viewed as ver-
tices of the Cayley graph W, converge to z. In this case, of course, we could re-
quire that each g, belong to {a*!, b *!}.

If L is a subgroup of G,, then define the ends of L to be E(L) ={z € E(G;):
there is a sequence {g,} of elements of L such that {g,,g,g2,..., 2182 &n, ...}
converges to z}.

If f{": H, - H, denotes the inclusion map, then define

Gn=(T)s(m(Hy, *)) Cm (Hy, *)=G.

Hence this is a decreasing sequence of subgroups G; D> G, D --- of G,. Clearly
E(G,)=E(H,), for all n.

Let G’ denote the commutator subgroup of a group G. Set G = G’ and set
G =(GY VY, the commutator subgroup of GY~V. The group G is the ith
derived subgroup of G. The following theorem is well known (see, for example,
[5, p. 14]).

THEOREM 6.2. If G is a free group, then N;{G ¥} is trivial.

If G is a finitely generated free group, then £(G’) = E(G). The next theorem
essentially says that quite the opposite is true for the set of ends of a finitely gen-
erated subgroup of a derived subgroup of G.

THEOREM 6.3. Let G, be a finitely generated subgroup of G, the nth de-
rived subgroup of the free group G. Choose a fixed finite set of generators of G,.
Each such generator of G, is a word in the generators of G. If ge GV -G
then there exists a natural number M such that m > M implies that g # wc, where
we G, and c is an initial segment of a generator of G,,.

Proof. Since G"~V/G ™ is free abelian and g ¢ G, it follows that g” ¢ G,
for all natural numbers m.
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Let ¢ be an initial segment of one of the generators of G,. If g"”" = wc, where
we G, then this is the only such m, for otherwise g” =w’c and m’> m imply
g M=wwleG,.

Since there are only a finite number of generators of G,, and hence only a finite
number of initial segments of generators, the theorem follows. J

THEOREM 6.4. If X is acyclic, then E(K) does not contain a fixed point of a
hyperbolic isometry ¢ such that ¢ X1 is a deck transformation.

Proof. Let Gy=m(H,, *), and let G,,= (Sf1")s(7w1(H},, *)) < G;. As in the proof
of Theorem 5.2, it follows that G, ,; C G".

Let ¢ be a hyperbolic isometry such that ¢ X1 is a deck transformation. A
point z in E(G)) is a fixed point of ¢ if and only if there is an element g in G, such
that the sequence {g”} converges to z. The theorem now follows from the pre-
ceding theorem. [

COROLLARY 6.5. An acyclic homogeneous curve is tree-like.
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