AN OBSTRUCTION TO THE RESOLUTION
OF HOMOLOGY MANIFOLDS

Frank Quinn

The author’s paper [2] asserts that an ENR homology manifold of dimension
>4 has a resolution. Unfortunately there is an error in the proof, and it is cur-
rently unknown whether unresolvable homology manifolds exist. The proof daes
show that there is at most a single integer obstruction, heuristically the index of a
0-dimensional subobject (a “point”). The properties of this obstruction are the
subject of this paper.

The obstruction can be roughly described by: let U C X" be an open set with a
proper degree 1 map f: U — R". Make f transverse (in a sense to be made precise
below) to 0; then the local index is defined by i(X) = index f ~!(0). If X is a man-
ifold and we use manifold transversality then f ~!(0) can be arranged to be a
single point, so /(X ) =1. If X is not a manifold then some other form of trans-
versality must be used, and the ones currently available might yield inverses with
indices different from 1. This index must be congruent to 1 mod 8, so for example
there might be homology manifolds with “points” of index 9.

We discuss the transversality to be used. There is currently no direct transver-
sality construction for homology manifolds, so we pass to Poincaré complexes
or chain complexes. In the Poincaré context there is a dimension restriction (=4)
for transversality. Therefore we have to raise the dimension, for example by mul-
tiplication by CP2, to apply it to the situation at hand. This leads to an inverse
image of positive dimension, which may have a nontrivial index. If chain com-
plexes are used there are no dimension restrictions to transversality, so we can
get a 0-dimensional chain complex as the “inverse image” of 0 in R”. However, 0-
dimensional chain complexes can have nontrivial index. In either case the index
gives the obstruction.

There are some curious niches in manifold theory for unresolvable homology
manifolds. It seems likely that a homology manifold has a canonical topological
normal bundle (see Section 5). In this case we could classify normal bundles of
homology manifolds by maps to (Btop) X Z, the Z factor being (i(X)—1)/8.
Project to B as usual, then the fiber is (G/TOP)x Z. One of the wonderful
things about G/ TOP is that it is nearly periodic; there is a natural equivalence
Q*(G/TOP) = (G/TOP) x Z. Including homology manifolds in the picture would
give an exactly periodic fiber. Exact periodicity in the classifying space would
lead to (minor) improvements in the formal properties of surgery theory.

In Section 1 we state the main theorem, and indicate corrections to the state-
ments in [2]. Section 2 explains the error in the original proof, and gives coun-
terexamples to easy repairs. In Section 3 we indicate how the correct parts of the
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proof imply Theorem 1.1. Section 4 develops another view of the invariant, using
a “transversality” construction for controlled quadratic Poincaré chain complexes.
Finally, remarks and questions are given in Section 5.

1. The main result. Recall that a resolution of a homology manifold X is a
proper map from a manifold f: M — X, such that £ ~!(3.X) = dM and the point
inverses of f are nonempty and contractible in any neighborhood in M.

1.1. THEOREM. For every non-empty connected ENR homology manifold
there is a “local index” i(X) € (1+ 8Z) defined, which satisfies
(@) ifUcCX isopen then i(U)=i(X),
(b) i@BX)=i(X)ifoX#D, i(XXY)=i(X)i(Y), and
(©) if dim(X) =S5, or dim(X) =4 and 30X is a manifold, then there is a reso-
lution if and only if i(X)=1.

The strong invariance properties allow easy evaluation in many situations. The
most useful observation seems to be that if X has an open set which is resolv-
able (e.g., if it is a polyhedron), then the local index must be 1, so X itself is
resolvable.

This theorem replaces the first statement of [2]. Consequently the “characteri-
zation of manifolds” should assert that X is a manifold of dimension =5 if and
only if it is an ENR homology manifold of local index 1, and satisfies the dis-
joint disks property. The statements 1.1-1.3 of [2] should be modified by replac-
ing “homology manifold” by “homology manifold of local index 1.”

2. Analysis of the proof. The error in [2] occurs in the paragraph at the top
of page 282, after foreshadowing at the bottom of 280. The obstruction is nar-
rowed down to a single integer (it will turn out to be (1—i(X))/8). Framed nor-
mal maps M — Y and Y — 7% are constructed (M a manifold and Y Poincaré).
The obstruction is correctly identified as the codimension 4k component of the
surgery obstruction of M — Y, in L4 (Z[Z**]). This component of the surgery
obstruction is then asserted to vanish for dimension reasons. This last assertion
is not valid. )

Given a surgery map M ** - N** - T4 with M and N both closed manifolds,
we can take the transverse inverse images of a point in 7% to get a surgery map
of manifolds of dimension 4(*x— k). The (simply connected) surgery obstruction
of this map is the codimension 4k component of the Z[Z*¥] obstruction. In par-
ticular if k£ = * then these inverse images are points, so the codimension 4k com-
ponent must vanish. Unfortunately in the situation we want to apply this obser-
vation, /N is only a Poincaré space.

Sylvain Cappell pointed out to me that the implicit presumption (that this ar-
gument would work for N Poincaré) is in general false because there are prob-
lems with transversality in Poincaré spaces. We give examples to show that in
fact the presumption is false in the case we need it.

First we observe that in the case of interest the composition M — T is also
a (framed) surgery map. The composition formula implies that the obstruction
is the sum of the obstructions of M — Y and Y — T%*. Further, since M and T**
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are both closed manifolds the argument above applies to show the codimension
4k component of the sum is trivial. Therefore the codimension 44 component
of M — Y is the negative of that of ¥ — 7T*k. This allows us to work directly with
Y. In particular, to show the implicit assumption used in [2] is false, it is sufficient
to show there is a Poincaré degree 1 normal map Y * - 7 whose surgery obstruc-
tion has nontrivial codimension 4 component.

Let R denote Z[Z*], and suppose (R*,\) is a form representing an element in
L4(R). Let Y= (Wvks?)uU, D*, where T*= WUK;D4 and the map which col-
lapses the S? to points takes « to 8. The collapse then defines a degree 1 map
g:Y— T* which is 2-connected and has H3(g; R) = R*. By properly choosing «
(B plus Whitehead products of w; multiples of the S?) we can arrange the prod-
uct structure on Y to induce the form X on H3. The nonsingularity of N\ implies
that Y is Poincaré. Since suspensions of Whitehead products are trivial, the at-
taching map of the 4-cell of Y is stabily trivial. This implies that the normal fibra-
tion of Y is trivial, so g is a framed normal map. Finally since arbitrary forms can
be realized this way, we can get ones with nontrivial codimension 4 component.

We also observe that it does not help that the Y constructed in [2] has the addi-
tional property that it is 6 Poincaré over 7%, for small 6. The Y constructed
above are r Poincaré for some r. Taking (6/r)-fold covers in each coordinate in
T4 gives Y~ — T* which is 6 Poincaré. But the codimension 4 component of the
surgery obstruction is invariant under such covers, so can still be nontrivial.

Section 4 of [2] becomes correct (I believe) if references to vanishing are de-
leted, and the conclusion of the “first reduction” on page 4.1 is changed to: “Then
for sufficiently small 6 the obstruction of 3.2 is the negative of the codimension
4k component of the surgery obstruction of 4.”

3. Proof of the theorem. We begin by considering surgery obstructions in more
detail. Suppose f: M™ — Y is a surgery map (i.e., degree 1, normal, and dM — 3Y
is a homotopy equivalence). Suppose also that g: ¥ — 7#" induces an isomorphism
of fundamental groups of Y and 9Y. If m=6 (or m=5 if Y = ¢) then f can be
“split” over 7" ~! C T". This means g can be made transverse to 7"~ ! and f can
be made transverse to g (7"~ ') so that the induced map of boundaries is a
homotopy equivalence. The fact that the Poincaré space Y can be made trans-
verse is equivalent to the calculation of the surgery group of Z[Z"], since in gen-
eral there are obstructions to Poincaré transversality [3, §1]. If M is a manifold
and manifold transversality is required, then the hard part of the splitting is to
get the map on the boundary to be a homotopy equivalence [6; 7, §13A.8]. If M
is only required to be Poincaré then we can replace dM by the homotopy equiv-
alent 9Y, and df by the identity. Then dM is automatically split, and the non-
trivial step is to make the rest of M transverse. As remarked above this requires
the calculation of the surgery group. In either case the description of the codi-
mension # component of the obstruction is: split repeatedly over a complete se-
quence 7" DO T" !> ... 579 and take the simply connected obstruction of the
inverse image of 7°°. If at some point the dimension gets too low to split, mul-
tiply by CP? and continue. Multiplication by CP? does not change surgery ob-
structions.
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Note that if Y, M are both closed manifolds then the splitting is very easy.
There is no boundary to worry about, and no obstruction to transversality. [n
this case the codimension n obstruction is just obtained by making things trans-
verse to a point in 77", If Y is Poincaré then transverse images generally may not
exist, and are often not unique (even up to bordism) when they do exist. The
splitting procedure serves to avoid these problems. '

In the case of concern, Y is Poincaré, f: Y — T* is the surgery map, and the
reference map g is the identity. The prescription is therefore to split down until the
dimension restriction stops us, at f4: Y* — T, cross with CP2to get Y*x CP% -
T*x CP?— T*, and continue splitting. The result is ¥* - CP? - T°, and the ob-
struction is (index (V') —index( CPZ))/S.

We see that the error encountered above comes from the dimension restriction
in the splitting procedure. If it were not necessary to multiply by CP? then we
would split down to a O-dimensional surgery map, which must have obstruction
0. The fact that arbitrary obstructions occur for Poincaré Y * — 7% shows that this
multiplication is generally necessary.

We define the invariant i{(X), for a homology manifold X. Multiply X by
some Euclidean space to make the dimension a multiple of 4, say 4k. Transfer
a piece of X to a Poincaré space Y — 7"%f as in [2, §4.1]. Make Y x CP? Poincaré
transverse to T*x CP>>T*~'xCP?D> --- DT°x CP?, ending with a Poin-
caré normal map V — CP?2. Then define i (X) =index(V).

Since ¥ — CP? is a normal map index(V)=index(CP?) (mod8), so i(X)e
(14+8Z). Technically this definition depends on choice of a point in X (as in
[2, §3.2]), so defines a map X — Z. The identification as part of a surgery ob-
struction shows that it is well defined and locally constant. Therefore there is a
single value i (X) for connected X. This also makes the restriction property (a) of
the theorem clear. Further it is shown above that (1—i(X))/8 is the resolution
obstruction of [2, §3.2], so part (¢) of the theorem follows from [2, §3.3].

Finally we consider the product formula (b). Suppose all the data specified
above is chosen for X and Y, and i(X) =index(V), i(Y)=index(W). Taking
the product of the data gives data for X X Y, except there is an extra product with
CP?; the end of the splitting is ¥V x W — CP?x CP?. Muliplication by CP? does
not change the surgery obstruction, so /(X X Y)=index(V x W). The formula
now follows from the multiplicative property of the index.

4. Another description of the invariant. Ranicki [5] has developed a theory of
Poincaré chain complexes which can be used in place of Poincaré spaces in the
development. Some simplification is possible in this context because Yamasaki
[8] has worked out a controlled version.

Given a (finite complex) Poincaré space Y, the cellular chains of Y can be given
the structure of a symmetric Poincaré complex [5, §11.2]. Next suppose Y — X is
a 6 Poincaré space over X [2, §2.2]. Choose a triangulation with cells of radius
< 8, and consider the cellular chains as a geometric Z complex over X. This com-
plex can be given a symmetric Poincaré structure with radius <4§, which we de-
note by o5(Y).
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The next lemma is modeled after a transversality remark: suppose f: M —»R”
is a proper degree 1 normal map, and M is a manifold. Using transversality we
can arrange that f~}(D")— D" is a homeomorphism. By pushing the comple-
ment of D" to co we can get a degree 1 normal bordism of f to a homeomorphism.
On the chain level we get a 6 quadratic Poincaré structure over R” on the relative
chains of f. The bordism constructed gives an algebraic bordism of this quad-
ratic complex to the trivial complex. We think of the trivial complex over R"” as
o5(R")®(0), where (0) denotes the trivial 0-dimensional quadratic complex.

LEMMA. Given n,e> 0 there is 6 >0 such that a strictly n-dimensional quod-
ratic geometric Z-module complex over R", which is & Poincaré over D", is €
Poincaré bordant over (D")™ ¢ to a complex of the form os(R")QV, where V
is a O-dimensional quadratic complex over a point. Further if ¢ is small enough
then V is unique up to bordism.

This follows from a splitting argument. Given §, there is §,,_; so that a quad-
ratic complex of radius <é6,,_; is 6, equivalent to a union of two complexes, one
lying over R”~!x [0, «0) and one lying over R”~!x (— o0, 0]. This is Yamasaki
[8, §2.4], except there a stabilization is required to avoid a controlled Whitehead
group problem. The stabilization is not necessary here because the controlled
Whitehead group with coefficient ring Z is trivial (|4, §8]). Denote the common
(n—1)-dimensional complex in the union (over R”~!') by C"~!, then there is a
bordism of the original to o5(R)® C"~!, disjoint union with pieces lying over
R""!%x[0, o) and over R"~!x (—o0,0]. There are null bordisms of these extra
pieces constructed by pushing them to *+oco in the second coordinate. This gives
a bordism of the original to o5(R)® C”"~!. If we repeat this argument » —1 more
times we get the decomposition required in the lemma.

The uniqueness follows in the same way, by splitting bordisms. Slightly more
generally, it is useful to observe that a sufficiently small (n + k)-dimensional quad-
ratic Poincaré complex over R” with boundary of the form o5(R")® W, is bor-
dant rel boundary to a complex of the form o5(R”)® V, where V is a k-dimen-
sional complex with boundary W.

PROPOSITION. Given n, there is € >0 such that if X is an ENR homology
manifold, f: X — R" is a degree 1 proper normal map, and the relative chain
complex of f is bordant as geometric quadratic complexes e Poincaré over D" to
a complex of the form o (R")XV, then i(X)=1+index(V).

We recall that a O-dimensional quadratic Poincaré complex over Z is simply an
even symmetric bilinear form [5, §1.2], and the “bordism class” is determined by
the index.

Proof. The local index i(X) is defined by grafting part of X into a Poincaré
space Y over a torus, geometrically splitting ¥ x CP? to get N— CP?2, and tak-
ing the index of N. Taking universal covers gives a normal degree 1 bordism of
X over R” to the universal cover of Y. The radius of this as a controlled Poin-
caré space is at least bounded since it comes from the universal cover of a com-
pact object. Contraction in R” then can be used to get 6 control for any 6 >0.
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Next apply the chain construction to the geometric splitting, and the argument
of Lemma 1 gives a quadratic Poincaré bordism of the chains of X x CP? to
os(R"® C, (N, CP?). Take an algebraic bordism as specified in the lemma, and
tensor with the chains of CP2. The “slightly more general” version of the unique-
ness argument mentioned in the proof of the lemma implies that for sufficiently
small ¢, C.(CP?)®V is quadratic Poincaré bordant to C,(CP?2, N). In particu-
lar the indices are the same, proving the proposition. ]

COROLLARY. Given n, there is € >0 such that if X is an ENR homology n-
manifold and X — R" is a proper degree 1 map which is an € homotopy equiva-
lence over D", then i(X)=1.

This is because the relative € chains of an e homotopy equivalence are trivial, so
are equal (over D") to o.(R")®(0). By the proposition i(X) =1+index(0) =1.

The point of the corollary is that e is independent of X, and is measured in
D". The proof of 1.1 shows that “near resolvability” implies resolvability, in the
sense that given X there is € > 0 such that if M is a manifold and M — X is an ¢
homotopy equivalence then /(X ) =1. This would be much more difficult to ar-
range, since the measuring takes place in X.

5. Remarks. The main question is: is there an unresolvable homology mani-
fold?

We note some geometric properties which imply resolvability. Suppose X has
an open set U with a proper degree 1 map f: U — R", and there is a sequence of
subspaces R”DR"7 !> ... DR such that £ ~}(R’) is an i-dimensional homology
manifold. Then i{(X) =1. This follows from the splitting procedure used in the
lemma in Section 4 to give the chain complex description of i(X).

Alternatively if there is U, f with f a 6 homotopy equivalence over D” for suf-
ficiently small 6, then i(X)=1. This is the corollary in Section 4. There are cri-
teria for f to be a 6 homotopy equivalence in terms of contractibility of £ ~!(A4)
in £ ~1(B), for appropriate A C B. It may be possible to construct such f by using
the local contractibility of X.

Do homology manifolds have canonical topological normal bundles? A “to-
pological normal bundle” is a topological structure on the normal spherical fibra-
tion. Given a structure 7, there is a corresponding degree 1 normal map M, - X.
We suggest the following criterion for “canonical”: Yamasaki [8] identifies the
controlled surgery obstruction as an element o(7) e HY (X;L,), L, the spec-
trum of quadratic Poincaré chain complexes. On the other hand a topological
manifold has a canonical orientation [M]e H'(X;L*), L* the spectrum of
symmetric Poincaré chain complexes. Interpret (i(X)—1)/8 as a multiple of
the generator in Hy(pt; L,), then the pairing L*A L, — L, interprets the product
[M,](i(X)—1)/8 as an element of the same group as the surgery obstruction.
We say 7 is canonical if o(7) =[M,](i(X)—1)/8. This fits nicely with Section 4
above, and [2, §3.3] where canonical structures are shown to exist locally. If
such a structure is unique in the appropriate sense, then global existence follows
from this.
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If a homology manifold X has a topological normal bundle then there is a
1— LC embedding in codimension 3 in a manifold. To see this begin with a degree
1 normal map M — X. Crossing with S? gives a degree 1 normal map M x S*>—
X x S? with trivial controlled surgery obstruction over X. Proceed as in [2, §3.3]
to construct N — X x S2 which is an e homotopy equivalence over X, for every
e. The mapping cylinder of N — X is then an ENR homology manifold with lots
of manifold points and the disjoint disk property, hence is a manifold, and it
contains X in the desired way.

This remark suggests trying to construct examples by constructing decomposi-
tions of manifolds with decomposition elements the shape of a sphere.

Finally, in contrast to codimension 3, we note that if a homology manifold
embeds locally homotopically unknottedly in a manifold in codimension 2, then
it is resolvable. There is a mapping cylinder neighborhood ([4], Theorem 1.4),
with map M — X which is an approximate S' fibration. Assume (by restriction if
necessary) that this is fiber homotopically trivial, and let W — X be the infinite
cyclic cover of M. Then W has a tame locally 1-connected end over X, which has
a completion. The new boundary in the completion is a resolution of X.
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