THE ASYMPTOTIC BOUNDARY OF A SURFACE
IMBEDDED IN H? WITH NONNEGATIVE CURVATURE

Charles L. Epstein

Introduction. From a function-theoretic standpoint, a noncompact complete
Riemann surface M with nonnegative curvature has only one point “at infinity.”
If M is imbedded isometrically in hyperbolic space then one can identify an as-
ymptotic boundary d. M as the limit points of M on the ideal boundary of hyper-
bolic space. We will usually work in the ball model, B>. The ideal boundary of
H? is naturally identified with the unit sphere. The asymptotic boundary of M
is the set of limit points of M on the unit sphere with respect to the Euclidean to-
pology of B3. We will prove the following theorem.

THEOREM. If Misa C > complete imbedding of R? into H? with nonnegative
Gauss curvature then the asymptotic boundary of M is a single point.

The proof uses the hyperbolic Gauss map defined in [4] and draws heavily on
results obtained there on surfaces represented as envelopes of horospheres. To
apply the machinery of [4] we will prove several propositions on the Gauss map
of convex surfaces in H?> which generalize known results from Euclidean space.
By a convex surface M we shall mean a surface which bounds a geodesically con-
vex region D. This is equivalent to the condition that every point of M have a
supporting plane, [7, p. 8.10].

It is an easy consequence of Cohn-Vossen’s inequality (see [5]),

SM KdA=<2my,

which always holds for complete surfaces with nonnegative curvature, that M is
topologically equivalent to a sphere, plane, or cylinder. If X is nonzero at any
point then M must be a plane or a sphere. The horospheres are examples of im-
beddings of R? into H? with nonnegative curvature. It is reasonable to inquire if
there are any nontrivial examples. In the third section we construct a family of
deformations of the horosphere through embedded surfaces with strictly positive
curvature.

It would be interesting to know if the hypotheses:

(a) M is complete

(b) M is immersed

(¢) M has nonnegative curvature
imply that M is imbedded. If one appends the hypothesis that d., M is a single
point then it follows that M is imbedded. In fact a stronger result is true.
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COROLLARY 4.4. If Y is a complete immersion of a topological surface M into
H?3 such that
(a) every point p of M has a neighborhood N such that y(N) is part of the
boundary of a strictly convex body, and
(b) 0¥ (M) is a single point,
then W(M) is the boundary of a convex region and homeomorphic to R>.

This result is a consequence of an easy extension to hyperbolic space of Van
Heijenoort’s theorem on locally convex sets in Euclidean space. For 9., ¢ (M)
consisting of two points, a counterexample is described.

In this paper the words line, plane, arc, etc. will refer to a hyperbolic geodesic,
a hyperbolic plane, an arc of a hyperbolic geodesic, etc. If p and g are two dis-
tinct points in H? or its ideal boundary, then Ypq 1s the unique arc between them.

ACKNOWLEDGMENT. I would like to acknowledge the inspiration of the pa-
pers [2] and [1] where questions of a similar nature are treated for surfaces of
constant mean curvature. I also want to thank Peter Lax for suggesting I include
the results of Section 3.

1. Convex surfaces and the Gauss map. We will establish a well-known fact
that an imbedded surface with everywhere positive extrinsic curvature bounds a
convex set. We will also show that the Gauss map for a convex surface is injec-
tive. We orient M so that both principal curvatures (k;, k) are positive.

PROPOSITION 1.1. If M is a complete, smooth, properly imbedded, connecied
surface in H> with both principal curvatures positive then the inner component
of H>*\ M is a convex set.

REMARKS. (1) The fact that M is properly imbedded implies that H>\ M has
two components.

(2) The inner component of H*\ M is the one into which the oriented unit
normal field points.

Proof. Let the inner component of H*\ M be denoted by D. The hypothesis
on the principal curvatures implies that for each point p on M there is a neigh-
borhood N, such that N, lies on one side of the tangent plane to M at p. To see
this, one considers the intersections of M and its tangent plane with planes con-
taining the normal line to A at p. From the existence of a local supporting plane
it follows easily that each point p on M has a neighborhood N, such that for
every q € N, the line v, lies in D. 1f N, equals M for every p in M then D must
be a convex set. Otherwise we could find a pair of points #2 and 7 in D such that
vmn is not contained in D. As M is complete and properly embedded, v,,,\M
must contain at least two points. Therefore we could find two points p,q in M
such that v,, lies in D°.

To prove that N, equals M we will show that NV, is both open and closed. That
N, is closed is obvious; let {g,} C N, converge to g. As each arc vyq, lies inside
D, v,, must as well.
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If N, is not open then there is a sequence of points g, in N, tending to a point
q in N,. Therefore each arc v,4, has points in D¢. As above we can find pairs of
points (r,,s,) on ypq, M such that the arcs v, s, lie in D¢. Either the distance
between r,, and s, tends to zero or it does not. In the latter case we can choose
subsequences r, and s, tending to distinct points r and s. The arc v,; must lie in
M, for v, is a subset of v,, which lies in D but it is the limit of {v,,s,} which lie
in D€. This is not possible, since the principal curvatures are both positive, and
therefore the second fundamental form of M is positive definite. If M contained
a geodesic arc the second fundamental form would be indefinite on this set. Thus
r, and s,, must tend to a common limit.

The arcs 7ypq, lie in a ball of radius R >0 about p, B(p, R). M is smooth and
therefore the neighborhoods N,, (for me B(p, R)YNM) each contain a ball of
a fixed size. The sequences {r,} and {s,} are contained in B(p, R)NM and the
distance from r, to s, tends to zero. Thus r, € Ns, for large enough 7, an obvious
contradiction to the fact that v,,, C D°. Therefore N, is both open and closed;
as p was an arbitrary point in M, the proposition is proved. ]

REMARK. The surface need not be smooth, as three derivatives suffice for
the argument.

An immediate consequence of Proposition 1.1 is the following.

LEMMA 1.2. Under the hypotheses of Proposition 1.1, the arc between any
two points in M lies in D.

To apply the methods of [4] we need to study the Gauss map of M with respect
to the outer normal. We will denote this map by G(p).

PROPOSITION 1.3. If M is an imbedded surface which bounds a convex region
D then the outer Gauss map of M is injective into Sz\am M.

Proof. The injectivity is an easy consequence of hyperbolic geometry: suppose
there are two points p and ¢ in M with G(p) = G(g) =g. The points p, g, and g
determine a hyperbolic plane /; the convex curve #NM bounds the convex re-
gion AN D. Let ¢, and ¢, denote the supporting lines to MM at p and g respec-
tively. It follows easily that the triangle pgg has angle sum at least =, for ¢, and
¢, are orthogonal to vy, and v,, (respectively) while v, lies in the interior of
DN hA (see Figure 1).

To prove that G(M) C S?\ 8., M, we observe that supporting plane H at P lies
exterior to D. From this it is apparent that d., M cannot have a point in the inte-
rior of the region of $?\ 8., M determined by the outer normal to M at p. G(p)
lies in this region and therefore in S\ 8. M. ]

To use the formulae derived in [4] we must invert the Gauss map and repre-
sent M as an envelope of horospheres. Let § = G(p) and define p(0) so that
H(8, p(08)) is the horosphere through € and p. H(0, p(0)) is contained in the ex-
terior half space determined by the support plane to M at p. From Lemma 1.2
it follows that H (8, p(0)) meets M only at p. The technical hypothesis which we
must check is that p(8) is at least in C*(G(M)). As this is a local question it is
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Figure 1

convenient to represent M as an immersion i: U — H?. Assume that / is a C* map
from an open set in R? into H>. At each point i(x) there is a unit normal vector
Nix); Nisa C*~! vector field.

The Gauss map of M can be represented as a real analytic function in the coor-
dinate functions of /(x) and N, induced from the representation of H? in B3 c R>.
From this is it evident that Gei(x) is a ck-1 map from U into V=G(i(U)).

A point pe B> and a point ¢ € S? uniquely determine a horosphere in H?,
3C,, ». The horocyclic distance (p, ¢) is defined by:

|(p,#)|= inf d(0,q), 0=(0,0,0).
qe JCp’d,

(p, ¢) is positive if 0 is in the exterior of 3C, , and negative otherwise; (p, ¢) is a
real analytic function in the coordinates of p and ¢. Thus g(x) = (i(x), Gei(x))
is in C¥~Y(U). Suppose G-i is invertible; let F(8) = (G~i)~'(8). The function
p(0) defined above is given by p(8) = p(F(9)). If we show that F(0) is a c!
mapping then it follows that p(8) is a C*~! function. By the inverse function
theorem it suffices to show that the Jacobian of Gei is invertible. As i is an im-
mersion, its Jacobian is everywhere of rank two; thus we only need to show that
the Jacobian of G is everywhere invertible.

To study the Jacobian of G we will use the theory of parallel surfaces devel-
oped in [4] to compute the Jacobian determinant. Recall that ¢/(p, X) is the
geodesic with initial point p and velocity X. Define i,(x) =y (i(x), Ni(xy). Then

Goi(x)= lim i,(x).
{ — oo
The limit is taken in the Euclidean topology on B>.

Let X; denote the coordinate vector field di,(dx;). As observed in [4], X; is a
solution to the Jacobi equation
D?X;

D¢?

(1.1) +R(N, X;)N =0.
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We normalize so that the point pe M is (0,0,0) and the unit normal N is
(0, 0,1). Furthermore, we choose coordinates (x;, x,) so that X;(0) are unit prin-
cipal directions. In this case we can solve (1.1) explicitly to obtain

Xi()y=1[0—k)e'+(A+k)e '1X:(2),

where X;(¢) is the parallel translate of X;(0) along ¢'(p, N). We can express
X;(¢) in terms of the Euclidean parallel translate X;(¢) = X;(0) by

Xi(1)=(ch t/2)72X;(1).

The differential of P, = i;oi ' is expressed at p in terms of X;(¢) by dP,(X;(0)) =
X;(¢). If M is C?, then

dG(X;)= lim dP,(X;)
(1.2) e
=2(1—k;) Xi(0).

As X, and X, are orthogonal it follows that J(p), the Jacobian determinant of
G as p, is given by

(1.3) J(p)=16(1—k;)*(1—k3)>.

We derived (1.3) under the normalization described above. As this normaliza-
tion is accomplished by applying a hyperbolic isometry, it follows that for any
compact set K C X there are positive constants C; and C, such that

(1.3) Ci(1—k)*(1—k2)’ = J(p) = C2(1—k1)* (1 —ky)?
To sum up, we have proven the following.

LEMMA 1.4. (a) If M is a C*-immersion then the Gauss map of M is C*~.

(b) If k =2 and neither principal curvature of M (relative to the normal vector
used to define G) is +1 then M is locally represented as an envelope of horo-
spheres {H (0, p(8))}; p(0) is a Ck_lfunction defined on a domain in S2.

A convex surface has nonpositive principal curvatures relative to the outer
normal vector; thus Proposition 1.3 and Lemma 1.4 combine to show that a
C¥*-convex surface M is globally represented as an envelope of horospheres
{H (0, p(0)): 0 € G(M)}. p(0) is a C*~! function on G(M). Thus if M is at least
C? the theory presented in [4] can be applied to study ds2 = e?’do 2, where do? is
the round metric on S2.

PROPOSITION 1.5. If M is a complete convex C> imbedded surface then the
metric ds?2 is complete as well.

REMARK. C? is very probably more than is required; C? should suffice.

Proof. Let (x, y) denote a stereographic coordinate system on S? centered at
0 = G(p). Proposition 5.1 of [4] states that the metric tensor of M at p is given in
these coordinates by
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" 1
——+(pxx+—2—(p3—p;}—l))€_p (ny—pxpy)e—p
gij(p) = p
—p e 1, 5 —p
(Pxy—pxpy)e 7"' pyy+—2_(px"'py_1) €

It follows from Proposition 5.3 and equation (5.11) of [4] that
tr(h,-j) =€p(1—K°o)
a.5) _ ePQ+ki+ky)
A+k)(1+ky)’

and, by Proposition 5.5,
K,
det hjj = ?62’)

(1.6) S

T A+k)U+ky)

k; and k, are the principal curvatures of M at p with respect to the inner normal,
and thus are nonnegative. By a rotation of the (x, y) coordinates we can diago-
nalize g;;(p) while retaining the conformal nature of ds2. Using (1.4) through
(1.6) to calculate the eigenvalues of g;;(p) we obtain that, in the rotated coor-
dinates,

1+k)7! 0 2
1. (p)=e2e (1T

(1.7) gij(p)=e ( o A+k)~' )’
while

(1.8) ds2 | =e**O(dx2+dy?).

As both &, and k, are positive, it is evident from (1.7) and (1.8) that ds2 domi-
nates the metric on M. The Gauss map is proper and M is assumed to be com-
plete; hence ds2 is complete as well. O]

REMARKS. (1) The results in this section are true in any number of dimensions
under the assumption that all principal curvatures relative to the inner normal

of the imbedded hypersurface M are positive.
(2) Formulae (1.7) and (1.8) can be used to prove Proposition 5.4 in [4].

PROPOSITION 5.4. The Gauss map of a surface ¥ is conformal if and only if
X is either totally umbilic or has mean curvature 2.
2. Proof of the theorem. In this section we prove the main theorem; the prin-

cipal curvatures are relative to the inner normal and are therefore nonnegative.

THEOREM. If M is a C’ imbedding of R? into H? as a complete surface with
nonnegative Gauss curvature then d. M is exactly one point.
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Proof. If 0., M is empty, then M is a compact surface and therefore not an
imbedding of R2. The Gauss curvature of M is K =k, k,—1. K is positive and
therefore k; k5 is never zero. The results of the preceding section apply to show
that M bounds a convex region and therefore is represented as a smooth enve-
lope of horospheres {H(0, p(8)):0e€ G(M)}; ds2=e*ds? is a complete con-
formal metric, and the curvature of ds2 is given by

_ kik,—1
T A+ k)1 +ky)
K

T U+k)U+k)

Thus K is clearly nonnegative. G(M) is a simply connected planar region con-
tained in S?\ 8. M. We apply a theorem of Huber.

THEOREM 15 [5]. If S is an open Riemann surface with a complete conformal
metric ds? with curvature K such that K~ =min(K, 0) satisfies
’SK “dA ‘ < o,
then S is a parabolic surface.

We conclude that G(M) is a parabolic surface. G(M) is simply connected and
thus the uniformization theorem implies that G(M) =S 2\ {6}. From this the the-
orem follows immediately. ]

REMARKS. The hypothesis that the Gauss curvature of M be nonnegative can
be weakened to: K > —1 everywhere and

< o0;

SMK‘dA

for KdA=K, dA. and G preserves orientation thus:

SM K~ dA= SG(M) K3 dAw.

3. Examples. In this section we will use the representation of surfaces as enve-
lopes of horospheres to construct complete imbedded surfaces of positive curva-
ture. Let ¢ be a diameter of the unit ball and N the north pole with respect to ¢;
define @ to be the azimuthal angle measured with respect to N. Let

pa(0)=—((1—a)log(l—cosb).

When o =0, £(p,) is a horosphere tangent to S? at N. For a >0, T (p,) is a sur-
face of revolution with axis of symmetry . We will prove the following.

PROPOSITION 3.1. For o sufficiently close to zero, X(p.) is a complete im-
bedded surface with positive curvature.
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As X (p,) is a surface of revolution it suffices to study the generating curve. Let
h be a plane containing ¢; AN X(p,) is a generating curve for X (p,). We will call
it ¥o; Yo is the envelope of the family of horocycles in 4 defined by p,(0) |s_ #,
where 0 is now taken as a coordinate for S' = 3. 4. As p,(8) is even there is no
ambiguity arising from the fact that @ initially ran from 0 to w; henceforth 6 will
run from O to 2. We can use the simpler two-dimensional theory of envelopes to
study v.. The following formulae are easily derived from formulae in [4, §§3-6].

LEMMA 3.2. If p(8) is a smooth function on a domain Q in S', then the enve-
lope of the horocycles H (0, p(0)) is given by the formula

G.1) R,(0) = Pjiézil)g (cos 6, sin §) + ,2+‘:‘£;+1)2 (—sin®, cosf).
If k£ is the geodesic curvature of R,(0), then

(3.2) 20" =p 2 +14+ 0+ k)1 —k) 'e?;

the induced line element of R, is

(3.3) dsf=e**(1—k)2do>.

One can also consider R,(#) as a curve in the Euclidean plane. The Euclidean
line element is related to the hyperbolic line element by

(1—R?)?

ds?.
4 SH

dsg =

Using (3.1) and (3.3), we easily obtain

e?f 2 de?
. dsp= :
3.4) SE (p12+(ep+1)2> (l_k)z

Putting p, into (3.1) and simplifying somewhat, we obtain
(xa(ﬁ) 4! (cos 0+ (1—cos 0)1_2“[a cosf(acosf+a—2)+2—2«]
(3.5)

s

Yal(6) sin 0[1+a(1—cos 8)!72*(a cos 0 +a—2)]
A=(1—a)’(1+cosf)(1—cos ) ~2*+ (14 (1—cos ) ~*)2.
Putting p, into (3.2), we obtain
(3.6) A+k)1—k) '=—a(l— cos0)! 2% [a+ (a—2)cos §].
From (3.6) it follows that for o < J there are constants a, and b, such that
3.7 —o<a,<k(@)=b,<1.

Using (3.7) and (3.4), one easily sees that when o <1 , ds} is bounded above
and below by constant multiples of d62. Finally, using (3 5) we see that R, (0) =
(x(0), ¥y,(8)), considered as a curve in the Euclidean plane, has continuous non-
zero tangent vector so long as a < . In fact,

(3.8) sgP(|Ra—R5|+|Ra—R6|)=O(|B—o¢\)
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if v, B are both smaller than 1. Here |- | denotes the Euclidean metric and R, is
differentiation with respect to . Altogether we have proven the following.

LEMMA 3.3. For a«€[0,3), R.(0) is a continuous family of C'-curves im-
mersed in R>.

From this fact it follows easily that R,(6) is imbedded for small .

LEMMA 3.4. Let ¢, (0): [0, ¢e)xS'— R? be a family of C' immersions of S'
such that

(3.9) S;lp(lca(ﬁ)—ca(ﬂ)l +[¢a(0) —C(O)]) = w(|B—a|);

w(-) is a continuous monotone function with «(0) =0. Suppose that co(0) is im-
bedded; then c,(0) is imbedded for small enough .

Proof of Lemma 3.4. Suppose not; then we can find «, — 0 and 6} 62 such
that

Ca,(07) = Ca, (07).

Without loss of generality we can suppose that |é,(8)| =c >0 for all (a, 0). As
co(8) is imbedded it follows easily that, as n — oo, |9,1,—8,?| tends to zero. From
(3.9) it follows that

(3.10) lim ¢, (61) =1lim ¢, (67).

N — co
Suppose that 0! precedes 67 in some fixed orientation of S'. At the point of inter-
section there are four possible configurations.

mas A

transverse intersection or tangent contact

One of them must occur infinitely often. We will show this leads to a contradiction.
In case a, (3.10) implies that the angle between the two branches must tend to r;
from this it follows that the variation in the direction of the tangent vector betwesn
can(ﬂ,l) and can(ﬁ,f) must tend to at least 27, an obvious contradiction. In caseb,
(3.10) implies that the variation in the direction of the tangent vector must tend
to at least 2x. (3.10) and case ¢ are mutually exclusive; case d requires the varia-
tion in the tangent vector to tend to at least 2«. Thus the lemma is proved. [J
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As yo(0) is circle, Lemma 3.4 implies that v, (0) is imbedded for « sufficiently
small. Thus X (p,) is a smoothly imbedded surface for smalil enough «. (3.7) and
(3.3) imply that ds% is complete on Y« and thus X (p,) is complete as well. The
curvature of ds2 = e?’«do? is always positive:

Ko(a)=(1—Ag2p,)e 2Pa
=4a(1—cos8)?~ 2,

From (3.7) and the fact that (p,) is a surface of revolution it follows that the
Gauss map is orientation preserving; hence K(«) has the same sign as K. («).
This completes the proof of Proposition 3.1. ]

4. Convexity and imbeddedness. For surfaces in Euclidean space, various local
convexity assumptions along with completeness have been shown to imply that
a surface is actually imbedded and the boundary of a convex region. The names
usually associated with this fact are Hadamard, Bouligand, Stoker, Van Heije-
noort and Sacksteder. The theorem took a definitive form in [8], where noncom-
pact, nonsmooth surfaces are considered. A generalization of these results to
spaces of constant curvature is proved in [3]. The surface is required to be com-
pact. In hyperbolic space some hypothesis about the behavior of the surface near
infinity is required. If one appends Hypothesis F below, then Van Heijenoort’s
theorem and his proof extend to surfaces in hyperbolic space.

HYPOTHESIS F. Suppose there exists a smooth foliation of H?® by planes
{H,:t e R} such that

(@) Forall t, MNH, is a compact set.

(b) Hy is a local support plane at a point where M is locally strictly convex.

We have the following extension of Van Heijenoort’s theorem.

THEOREM 4.1 [8]. Let M be a connected topological surface and  an immer-
sion of M into H? such that:
(1) ¢ is locally one-to-one;
(2) every point p in M has a neighborhood N such that y(N) is part of the
boundary of a compact convex set;
(3) ¥ (M) is locally strictly convex at some point (as in Hypothesis F);
(4) the metric on M defined by pulling back the hyperbolic metric via { is
complete; and
(5) Hpypothesis F holds.
Then (M) is the boundary of a convex set in H>.

Van Heijenoort’s proof works essentially without modification, so we will not
reproduce it. The foliation H, serves as the family of parallel planes used in his
proof. The corollary of his theorem is as follows.

COROLLARY 4.3. M is either homeomorphic to a sphere or to a plane. If M is
homeomorphic to a plane then 3y (M) is a single point.

REMARK. The compact case is mentioned in [3].



ASYMPTOTIC BOUNDARY OF A SURFACE 237

Proof. The compact case is obvious. If M is noncompact but Hypothesis F
holds, then (M) lies in the half-space {H,: t =0}. y(M)NH, is a point, and
v(M)NH, (for each positive ¢) is a compact convex set and therefore a disk
compactly contained in H,. The topological part of the corollary follows from
this. Since the planes H, foliate H?, it is clear that H, tends to a point on S? as ¢
tends to infinity. As (M )N H, is compactly contained in H, it also tends to a
point on S2. L1

This corollary has the following partial converse.

COROLLARY 4.4. If y(M) is everywhere sirictly locally convex, complete as
in Theorem 4.1(4) and if 3.y (M) is a single point, then Yy (M) is imbedded.

Proof. Let 6 be the asymptotic boundary of Y (M). The hypotheses of the cor-
ollary imply that some geodesic v with endpoint # meets ¥ (M) transversally. Let
p €Y (M) be a point of transverse intersection; let H be a local support plane to
V(M) at p which is transverse to y. We define the foliation of H? by parallel
translating H, along . Let H, be the parallel plane such that the distance from
HoN~ to H,N+~ is t. We orient time so that H, tends to @ as ¢ tends to infinity.
This foliation clearly satisfies the conditions in Hypothesis F; thus the corollary
follows from Theorem 4.1. L]

If 3., ¥ (M) has two points, then Y (M) need not be convex even if it is locally
strictly convex. We construct a counterexample in the Klein model. This is a
model of H? on B? in which a surface is locally (strictly) convex in the hyperbolic
sense if and only if it is locally (strictly) convex in the Euclidean sense. For de-
tails see [7, pp. 2.7, 8.10].

Let N and S be antipodal points on the unit sphere, ¢ the diameter of B> con-
necting them, and P the equatorial plane perpendicular to £. Our example is con-
structed as the double cone of a curve C lying in P. C is shown in Figure 2.

Figure 2
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¢ passes through P at 0. We form the double cone with respect to NV and S to ob-
tain M (see Figure 3).

S

Figure 3

Inflating M a little, we obtain a smooth locally strictly convex surface with self
intersections. From simple topological considerations it is clear that this surface
cannot have everywhere nonnegative curvature.

This example was suggested by one in [6, p. 172] and a conversation with Bill

Thurston.
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