AN INVARIANT FOR UNITARY REPRESENTATIONS
OF NILPOTENT LIE GROUPS

C. Benson and G. Ratcliff

1. Introduction. In this paper, we define an invariant for the irreducible uni-
tary representations of a simply connected nilpotent Lie group G. The invariant
i(p) for a representation p is an element of H*(G), the real cohomology of the
Lie algebra G of G. The cohomology class i(o) is constructed using the coadjoint
orbit © corresponding to p and has degree dim(O)+1. If we view dim(0O) as a
primary invariant, then i(p) is a more subtle secondary invariant that can be used
to distinguish between representations whose orbits have the same dimension.

The definition of i(p) in terms of orbits is given in Section 2. The remaining
sections address two central questions concerning i(p). Firstly, is the invariant
computable in examples and can it be non-zero? Secondly, what information
does the invariant contain about a representation —that is, what does it measure?

Examples are presented in Section 4. These show that the invariant is relatively
easy to compute and is frequently non-zero. The second question is more difficult
and provides a direction for further research. Here we present three results along
these lines. In Section 3, we show that if two representations differ by a multiplic-
ative character then the invariants for these representations coincide. In Section
5, we prove that for groups with one-dimensional center, i(p) is non-zero for
representations p that are square integrable modulo the center. In Section 6, we
show that for a class of groups (the 3-step groups with one-dimensional center),
the invariant vanishes for certain representations.

In Section 7, we discuss some unsolved problems concerning i(p).

2. Definition of the invariant. We begin with the symplectic structure for co-
adjoint orbits. Throughout, G will denote a Lie group with Lie algebra G. We
write O, for the orbit of fe G* under the coadjoint action of G on G*. We have
a projection map

@.1) 7G>0y, ws(g)=Ad*(g) /.
If w is the 2-form on Oy constructed in [8], then we have
2.2) TEw) = —df. |

Here we view f as a left invariant 1-form on G, and &f is the exterior derivaiive
of f in the de Rham complex (2(G), €).

The left invariant forms on G are a subcomplex of Q(G) which can be identi-
fied with the exterior algebra A(G*). The cohomology of this complex is denoted
by H*(G) and agrees with the algebraic notion of Lie algebra cohomology with
trivial (real) coefficients [3]. :
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Let 2g be the dimension of ©, which is necessarily even.
2.3. LEMMA. For f€ O, fA(Lf) e A*?1(G*) is a closed form.

Proof.
LSfN(LS)) =(df)H!

= (=mpwnH?*
— (—1)q+l7l';(wq+l).
Here w?+! =0 since it is a (2g + 2)-form on a manifold O of dimension 24. Ol

One obtains a cohomology class [fA(Lf)?1e H?*?71(GQ). When G is con-
nected, this depends only on O.

2.4. LEMMA. Let G be connected and f, f'€ O. Then
ALY N =1L'N(LS)].

Proof. Since f and f’ belong to the same orbit, we can write f’= Ad*(g)f for
some g € G. We now require a few facts about Lie algebra cohomology for which
we refer the reader to [3]. The representation Ad* extends multiplicatively to all of
A(G*) and each Ad*(g) commutes with the exterior derivative. One obtains then

LA (L) ] = Ad* (&)« (LS A(LS)D),

where Ad*(g).: H*+*1(Q) - H??*1(Q) is the map induced by Ad*(g) in coho-
mology. When G is connected, Ad*(g). is the identity map for every ge G. U

Simple examples show the necessity of the connectivity assumption in Lemma
2.4. From now on, we will assume that all our Lie groups are connected and
make the following definition.

2.5. DEFINITION. Let O C G* be a coadjoint orbit of dimension 2q. Then the
invariant of O is

HO) =[S L) e H**(Q),
where f is any point in O.

One motivation for this seemingly ad hoc definition comes from foliation
theory. The definition of i(©) is similar to that for the secondary characteristic
classes of a foliation [2]. In fact, {(©) can be viewed as a Lie algebraic version of
a characteristic class for (exact) transversely symplectic foliations arising in [1].

In what follows we will be referring to connected, simply connected nilpotent
Lie groups as “nilpotent groups.” If G is a nilpotent group with Lie algebra G, we
will denote the exponential map by exp: G — G. We will refer to coadjoint orbits
as “orbits.” All representations of G are assumed to be unitary. There is a one-
one correspondence between the orbits in G* and (equivalence classes of) irre-
ducible representations of G [5]. If p is such a representation, then we write i(p)
for ((O,), where O, is the orbit corresponding to p.

The invariant satisfies a useful naturality property.
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2.6. LEMMA. Let ¢: Gy— G, be a homomorphism of nilpotent groups and
p: Gy, —> U(H) be an irreducible representation.
(@) If poo is irreducible then i(p-¢)=¢*(i(p)) (wWhere ¢*: H*(G,) - H*(G)
is induced by ).
(b) If poo is not irreducible then ¢*(i(p)) =0.

Proof. Suppose fe O,. So

Hp)=[SA(LS)] and o*(i(p))=[d*(SIN(L(S*(SN)],
where 2g =dim(0O,). When p-¢ is irreducible, ¢*: G5 - GT maps O, diffeomor-
phically to O,.4. This proves (a) since, in this case, dim(09,) = dim(0,.4) and
o*(f) € O,.4. If pog is not irreducible then ¢*(O,) is a union of lower-dimen-
sional orbits. In this case we have (d(¢*(f))N?=0. O

3. Characters. When an orbit O consists of a single point {f}, the invar-
iant becomes i(Q) = [f1e H!(GQ). Note that f is fixed by every Ad*(g) so that
SUSG,81)=0 and hence df=0. There are no non-zero exact left invariant 1-
forms on G, so H'(Q)=Ker(d: G*— A%2(G*)). We see that [f]={f}; the invar-
iant for a one-point orbit is simply the orbit itself viewed as a cohomology class.
In the nilpotent case, one has the following result for G, the set of characters
of G.

3.1. LEMMA. For G nilpotent, i: G — H'(Q) is an isomorphism.

Proof. The characters x € G correspond to one-point orbits { f} C G*. In fact,
one has x(exp x) =e”/™ for xe G [5]. If xo, x1 are characters corresponding to
{fo} and {11}, then this formula shows that x¢x; corresponds to {fo+.f1}. This
shows that the bijection i: G — H'(Q) is an isomorphism between the multiplica-
tive group G and the additive group H'(Q). ]

An irreducible representation of a nilpotent group G is either a character or
infinite-dimensional [5]. If p: G —» U(H) is a representation and x € G, then we
obtain a new representation x p by pointwise multiplication: (xp)(g) = x(g)p(g).

3.2. THEOREM. Let G be nilpotent, p: G —» U(H) an infinite-dimensional ir-
reducible representation, and x € G a character. Then
i(xp) =i(p).
Proof. Suppose that O C G* is the orbit corresponding to p and that {f} cor-
responds to x. It is a well-known fact that xp is given by the orbit O+ f=

{h+f|he O}. This orbit is diffeomorphic to O in an obvious way.
Let he O. Then

ixp)=[(h+NHINE(h+ Y I=[AN(LR) + fA(Lh)?] as Lf=0.

Here 2g = dim(0) is positive since p is infinite-dimensional. Using ¢ =1 and
df =0, we see that

AR I =d(—fARN(LR)T .
Hence i(xp) =[AAN(Lh)? ] =i(p). , O
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4. Examples. In this section we explicitly compute our invariant for a number
of examples.

4.1. The Heisenberg group. Let H, be the (2n+1)-dimensional Heisenberg
group with Lie algebra 3C,,. 3C, has basis X, ..., X,, Y1, ..., Yn, Z with non-zero
brackets [X;, Y;]1=06;; Z. 3C} has dual basis uy, ..., g, ¥1, ..., ¥n, N\, with coordi-
nates (a, b, ¢) where a,b e R"” and ceR.

The co-adjoint orbits in JC} consist of single points (a, b, 0) (discussed in §3),
and 2#n-dimensional hyperplanes {(a, b, ¢): a, ; e R"} with ¢ # 0. An orbit of the
latter type contains an element f=c\, ¢ 0. We have

df =cd\

n
=C(_2] Vi/\l'l'i)a
i=

O =ntc" T NINAVIAA -« AV Ap,],

so that

which is non-zero since the volume form ANAv;Ap A --- Av,Ap, is not an exact
form.
Note that if » is even i(0Oy) is distinct for distinct orbits.

4.2. A 3-step group. The simplest 3-step nilpotent group SH is 4-dimensional
with one-dimensional center. A general class of 3-step groups is discussed in Sec-
tion 6. The Lie algebra 83C has basis S, X, Y, Z with non-zero brackets [S, X ]=Y,
[X, Y]=Z. Note that the Heisenberg group H is a subgroup of SH. Letc, u, v, \
be a basis for 83C* with coordinates (a, b, c,d).

If fe83C* f=(a,0,0,d) with d # 0, then

Or={(a—3c¥d,b,c,d): b,ceR} and i(Oy)=d*[AAvAp]#0.
If f=(0,0,c,0) with c#0, then
Or={(a,b,c,0):a,beR} and i(Of)=0.
All other orbits are single points.

4.3. A 4-step group. Let G be a Lie algebra with basis X, Y, Y», Y3, Y, and
non-zero brackets [ X, Y;1=Y;.1, i=1, 2, 3. Then the corresponding group G is a
4-step group with one-dimensional center. Let G* have dual basis u, vy, v2, v3, ¥4
and coordinates (a, b,c,d, e).

If feG* f=(0,b,c,0,e) with e 0, then

Or={(a, b+cd/e+Ld>*/e? c+3d*/e,d, e):a,d eR}.

Then we have i((‘_)f)=—e2[V3A vaApl+2ce[vaAvsApn]. Note that if b=c=0,
we still have i(Of) #0.
If f=(0,b,0,d,0) with d =0, then

Or={(a,b+3ic%d,c,d,0):a,ceR} and i(Oy)=—d?*[vaArsApl=*0.
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4.4. A group with 2-dimensional center. If we look at the group of 4 X 4 upper-
triangular matrices modulo its center, we get a 5-dimensional group 7" with 2-
dimensional center. The Lie algebra 3 has basis X, X,, X3, Z;, Z, with non-zero
brackets [ X, X>2]1=2Z; and [X,, X3]=Z,. 3* has a dual basis u;, #2, 13, A1, A2
and coordinates (a, b) where a e R3 and b e R2

If £=(0,0, a3, b) with be R?, b; #0, then

Or={(ay,az,a3—a1b> /by, b):a;,ae R} and
i(Op) = —bIINA AR ] —=2b1 b2 [N A pa A ps] — D3I Apa Aps] #0.
If f=(a;,0,0,0, b,) with b,# 0, then
Oy ={(ay, @2,a3,0,b5): az,a3€ R} and i(Oy) = —b3[NaApaAp3]#0.

4.5. A semi-simple group. We conclude this section with a different sort of
example. Consider the compact semi-simple group SU(q +1) of unitary matrices
with determinant 1. Its Lie algebra su(qg +1) consists of the skew Hermitian ma-
trices (A*= —A) of trace zero. The formula

1
S(B)= Tb"’

for B=(b; ) € su(q+1), defines an element of su(qg+1)*.
One can check that the stabilizer of f under the coadjoint action is

— 0 —

SU(g+1), = :CelU(q), adet(C)=1 ,,

C

— O — |8\

which is isomorphic to U(q). The orbit Oy is diffeomorphic to SU(g+1)/SU(q+1) s
which is the complex projective space CP? with its usual symplectic structure.
Note that here O is compact, a situation that does not arise for simply connected
nilpotent groups [5]. For a discussion of this example we refer the reader to [8].

It is known that H*(su(q+1)) is an exterior algebra A(u», us, ..., ug4+1) where
the generator u; has degree 2i—1 (these are the suspensions of the universal
Chern classes). It is shown in [1] that i{(O,) is a non-zero multiple of u,,; in
H?*Y(su(q+1)). This shows that an orbit in a non-nilpotent group can have a
non-trivial invariant.

5. Square integrable representations. In this section we will prove a general
non-vanishing theorem for i(p).

5.1. THEOREM. Let G be nilpotent with a one-dimensional center. If p is an
irreducible representation of G that is square integrable modulo the center then
i(p)=0.

Proof. Let (Z, X, X5, ..., X,) be a basis for G where Z spans the center. The
dual basis for G* will be denoted (A, oy, a2, ..., @).
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Since Z is fixed by the adjoint action of G, any coadjoint orbit is contained in
a hyperplane {cA+2; ai\; | ay, ..., a, € R} for some fixed c € R. In [6], it is shown
that irreducible square integrable representations p correspond to flat orbits O,
of codimension dim(Z(G)). In the present case, this means that O, is an entire
hyperplane as above with ¢ 0 (as {0} is a one-point orbit, we must have c = 0).
In particular, O, = O, and r =2g =dim(0O,).

The condition [Z, G] =0 implies that &\ € A*(ay, ..., 024). SO

(N =kajNoa A -+ Noyg

for some k € R. However, we can also write (d\)? = 7¥(w?), where ) is the pro-
jection map (2.1) and w is the symplectic form on O,. Since w?0 and 7, is a
submersion, we conclude that £ # 0.

Thus we can write:

(5.2) i(p)=kcT  NA QA -+ Aoyl

which is a non-zero multiple of the class of the volume form AA oA --- Aazg. Itis
easily seen that a volume form always yields a non-zero cohomology class. O

Notice that formula (5.2) shows that i(p) is, up to signs, a complete invari-
ant for the irreducible square integrable representations. Indeed, different square
integrable representations correspond to different values of c. If g is even (where
2g+1=dim(G)), then i is a complete invariant for such representations.

6. 3-step groups. In this section we take a close look at our invariant for 3-step
groups with one-dimensional center. As a generalization of Example 4.2, con-
sider the Lie algebra 3C, (n=2) of the (2n+1)-dimensional Heisenberg group
(Example 4.1). 3C, can be written as a sum JC, = "W® Z, where Z=(Z) is the
center, and W =X ®Y with X =<(X1,..., XD, Y=<(Y1,..., Y;).

The Lie algebra bracket defines a symplectic form on W, so we can make sense
of the action of the symplectic group Sp,, on “W. Let S, be the subgroup of Sp,,
which fixes Y. S,, is isomorphic to the (abelian) group of (n X #) symmetric ma-
trices, and the semi-direct product SH, of S,, and H, is a 3-step nilpotent group
with one-dimensional center.

It is shown in [7] that every 3-step nilpotent group with one-dimensional center
is a subgroup of SH, for some n. We use this theorem to prove the following.

6.1. THEOREM. Let G be a 3-step nilpotent group with one-dimensional cen-
ter. If © is a non-generic orbit of maximal dimension in G*, then i(0)=0.

Proof. First we compute our invariant for non-generic orbits of maximal di-
mension in 83C;. Let 83C, have basis S;;, X4, Yy, Z (i=j and i, j, k,{=1,...,n)
with [Sij, Xil=Y], [S,'j,Xj] =Y;, [X;, Y] =5,'J'Z. 83C7 has dual basis Tijs Bks Vos A,
and coordinates (A4, b, c,d) where A= (A4;;)€8,, b,ceR”", deR.

The orbits of maximal dimension 2z in 83C;; are of two types. Firstly, if

(6.2) f=(A,0,0,d) with d=0,
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then Oy is a parabolic orbit. Secondly, if f= (A, 0, ¢, 0) with ¢ # 0, then O is flat.
We compute our invariant for the second type of orbit.
We have f=7+v», where 7=%;<; A;;7;; and v =37 ¢;v;. Then

(ff=6€11= E BiNTj,
Jj=1

where 7; € $*. Hence
(LAY '=nt y ATIA - App ATy
=xnlunT,

where py=pu A - Appand 7=7A - A7p.
We now have fA(Lf)"” as a linear combination of two terms, 7TAuA7 and
VARUNT. Let i=psA - Apy, 7=73A -+ A7,. Then

LWATAAATY=pATINTALNT
=xTApANT.
Thus [7ApAT]=0. Let g=37_, CipaA -+ AjiA --- Ap, € A"~ 1(83C}). Then

n
ENARATY= D viApiARAT
i=1
n
=), CiviNuNT

i=1
=VAUANT.
Thus we also have [rAuAT]=0, so

(6.3) HOp) =[S N(Lf)"]=0.

Now suppose G is as in the statement of the theorem. Then there is an injec-
tion J: G - 83C, for some n, such that J(G) is an ideal in 83C,. The dual map
J*: 83C;; — G* is Ad*-equivariant.

It is shown in [7] that if fe 83C;; is given by (6.2), then J*: Oy — O+, is an iso-
morphism. (Note that J maps the center of G onto the center of $3C,,.)

If O is a non-generic orbit in G* of maximal dimension 2#, then J* is an iso-
morphism between a non-generic orbit O’ in 83C} and O. We know from (6.3)
that {(O’) =0, so by Lemma 2.6 we have i(QO)=J*(i(0’)) =0. O

NOTE. As O is flat, it corresponds to a representation p which is square inte-
grable modulo its kernel [6].

7. Further questions. Theorem 5.1 is false for nilpotent groups with center
of dimension greater than one. Consider the 2-step group with Lie algebra § =
(X1,X,,1,Y>,Z,, Z,) and non-zero brackets

(X1, h1=2Z,=[X,Y,] and [X,Y:]=2,.
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)

If \; € G* is the basis element dual to Z;, then O), corresponds to a square-inte-
grable representation, but {(Oy,) =0. We hope to generalize Theorem 5.1 in a
different direction as follows.

CONJECTURE. If G is nilpotent with one-dimensional center and A\ G* is
dual to a basis element for the center of G, then i(©),) # 0.

Theorems relating the invariant for an orbit to its differential geometric prop-
erties would be of interest. We are encouraged by recent work concerning the
geometric meaning of the characteristic classes for a foliation [4].

Observe that by 3.1, every element of H'(Q) is the invariant for some char-
acter. How many classes in H29*1(Q) are invariants for irreducible representa-
tions? One can also ask how much of H*(G) is generated by taking products of
invariants of irreducible representations.

Finally, it seems natural to try to generalize the invariant itself. One could con-
sider non-irreducible representations, non-nilpotent groups, or related invariants.
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