INNER FUNCTIONS AND DIVISION IN DOUGLAS ALGEBRAS

Keiji Izuchi and Yuko Izuchi

1. Introduction. Let H^{∞} be the space of boundary functions for bounded analytic functions in the open unit disk D, and C be the space of continuous functions on ∂D . It is well known [14] that $H^{\infty} + C$ is an essentially supremum norm closed subalgebra of L^{∞} . Guillory and Sarason began the study of division in $H^{\infty} + C$, and they showed the following.

THEOREM A [6]. There is a positive integer N with the following property: if I is an inner function and f is a function in $H^{\infty} + C$ such that $|f| \leq |I|$ on $M(H^{\infty} + C)$, the maximal ideal space of $H^{\infty} + C$, then $f^{N}\overline{I} = f^{N}/I \in H^{\infty} + C$.

Guillory and Sarason posed the problem of finding the best value of N. We solve this problem here. It has been shown [1; 7] that if I is a finite product of interpolating Blaschke products, then we may take N=1. As a consequence, we have the following.

THEOREM B [7]. If I is an inner function which is not a finite product of interpolating Blaschke products, then we can not take N=1.

In §2, we show that one may take N=2 in Theorem A. The technique used to prove this is almost the same as that used in [6]. For a function f in $H^{\infty}+C$, put $Z(f) = \{x \in M(H^{\infty}+C); f(x)=0\}$. The condition $|f| \le |I|$ on $M(H^{\infty}+C)$ implies $Z(I) \subset Z(f)$. The following question is given in [7, p. 5]: If I is an inner function and $f \in H^{\infty}+C$ with $Z(I) \subset Z(f)$, does there exist a positive integer K, depending on I and f, such that $f^K \overline{I} \in H^{\infty}+C$? We shall give its negative answer (Theorem 2). Also we shall show that Theorem B can not be extended to general Douglas algebras (Theorem 3). This is a negative answer to another question in [7, p. 5].

In §3, we shall study the factorization of Blaschke products. Let b be an inner function such that $\operatorname{Ord}_b(x)$, the zero's order of b at $x \in Z(b)$, is uniformly bounded. By [12], b is a finite product of interpolating Blaschke products. By [10], there are interpolating Blaschke products $\{b_k\}_{k=1}^n$ and a finite Blaschke product b_0 such that $b = \prod_{k=0}^n b_k$ and $Z(b) = Z(b_1) \supset Z(b_2) \supset \cdots \supset Z(b_n)$ if and only if Z(b) is an interpolation set for H^{∞} , that is, if $H^{\infty} \mid Z(b)$ coincides with the space of continuous functions on Z(b). It is known that there exists a finite product of interpolating Blaschke products q such that Z(q) is not an interpolation set for H^{∞} (see [11]). We shall show that if I is an inner function such that $\operatorname{Ord}_I(x) = k$ for every $x \in Z(I)$, then there are interpolating Blaschke products $\{b_n\}_{n=1}^k$ and a finite Blaschke product b_0 such that $I = \prod_{n=0}^k b_n$ and $Z(I) = Z(b_n)$ for $1 \le n \le k$ (Theorem 4).

Received November 27, 1985. Revision received February 14, 1986. Michigan Math. J. 33 (1986).

2. Division by inner functions. For a function f in L^{∞} , put $\operatorname{dist}(f, H^{\infty} + C) = \inf\{\|f + h\|; h \in H^{\infty} + C\}$ and $\|f\|_1 = \int_{\partial D} |f| \, d\theta/2\pi$.

THEOREM 1. Let I be an inner function. If f is a function in $H^{\infty} + C$ such that $|f| \le |I|$ on $M(H^{\infty} + C)$, then $f^{k+1}\overline{I}^k \in H^{\infty} + C$ for every k = 1, 2, ...

To prove Theorem 1, we need a lemma.

LEMMA 1 [6, Theorem, p. 176]. Let I be an inner function and $f \in H^{\infty} + C$. Then $f\overline{I}^n \in H^{\infty} + C$ for every positive integer n if and only if

$$f = 0$$
 on $\{x \in M(H^{\infty} + C); |I(x)| < 1\}.$

Proof of Theorem 1. As in the proof of Theorem [6, pp. 177–179], for a small positive number ϵ there is a system Γ of simple closed rectifiable curves in \overline{D} with the following properties:

- (a) the curves in the system Γ have mutually disjoint interiors;
- (b) there is an absolute constant K (independent of I and ϵ) between 0 and 1 such that $\{z \in D; |I(z)| < \epsilon\}$ is contained in the interior of Γ and $|I| < \epsilon^K$ on Γ ;
- (c) arc length measure on $\Gamma \cap D$ is a Carleson measure such that $\int_{\Gamma} |h(z)| |dz| \le K_1 \epsilon^{-2} ||h||_1$ for every $h \in H^{\infty}$, where K_1 is another absolute constant. Take a positive integer N such that NK > 3. We shall first prove that

(1)
$$(f\overline{I})^m I^N \in H^{\infty} + C \text{ for every } m = 1, 2, \dots$$

To see this, take m arbitrarily. Note $|f|^m \le |I|^m$ on $M(H^{\infty} + C)$ and $\epsilon^m \le |I|^m$ on Γ by (b). Using the corona theorem [5, p. 323], we have $|f|^m/|I|^m < 2$ on $\Gamma \cap \{z \in D; |z| > \delta\}$ for a positive number δ with $0 < \delta < 1$. Hence

(2)
$$\frac{|z|^n |f(z)|^m}{|I(z)|^m} < 2 \quad \text{on } \Gamma \text{ for sufficiently large } n.$$

By almost the same argument as the one in [6, pp. 177-179],

$$\operatorname{dist}((f\bar{I})^{m}I^{N}, H^{\infty} + C) = \inf_{n} \operatorname{dist}((f\bar{I})^{m}I^{N}, \bar{z}^{n}H^{\infty})$$

$$= \inf_{n} \sup_{n} \left\{ \left| \frac{1}{2\pi} \int_{\Gamma} \frac{z^{n}f(z)^{m}I(z)^{N}h(z)}{I(z)^{m}} dz \right|; h \in H^{\infty}, \|h\|_{1} = 1 \right\}$$

$$\leq \sup_{n} \left\{ \frac{2}{2\pi} \int_{\Gamma} |I(z)|^{N}|h(z)||dz|; h \in H^{\infty}, \|h\|_{1} = 1 \right\} \text{ by (2)}$$

$$\leq \sup_{n} \left\{ \frac{\epsilon^{NK}}{\pi} \int_{\Gamma} |h(z)||dz|; h \in H^{\infty}, \|h\|_{1} = 1 \right\} \text{ by (b)}$$

$$\leq K_{1} \epsilon^{NK-2}/\pi \text{ by (c)}$$

$$\leq K_{1} \epsilon/\pi \to 0 \quad (\epsilon \to 0).$$

Thus we obtain (1).

We denote by B the Douglas algebra generated by H^{∞} and $f\bar{I}$. By (1), we have

$$(3) I^N B \subset H^\infty + C.$$

By the Chang-Marshall theorem [2; 13], for a fixed positive integer k there are sequences of H^{∞} functions $\{h_n\}$ and $\{j_n\}$, with j_n inner, such that $\|f^k\bar{I}^k-\bar{j}_nh_n\|\to 0$ $(n\to\infty)$ and $\bar{j}_n\in B$. By (3), $I^N\bar{j}_n^m\in H^{\infty}+C$ for every $m,n=1,2,\ldots$ By Lemma 1, I=0 on $\{x\in M(H^{\infty}+C); |j_n(x)|<1\}$. By our assumption,

$$f = 0$$
 on $\{x \in M(H^{\infty} + C); |j_n(x)| < 1\}.$

Again by Lemma 1, $f\bar{j}_n \in H^{\infty} + C$ for every n. Hence

$$\operatorname{dist}(f^{k+1}\overline{I}^k, H^{\infty} + C) \leq \|f^{k+1}\overline{I}^k - f\overline{j}_n h_n\|$$

$$\leq \|f\| \|f^k \overline{I}^k - \overline{j}_n h_n\| \to 0 \quad (n \to \infty).$$

Thus we obtain $f^{k+1}\overline{I}^k \in H^{\infty} + C$ for k = 1, 2, ...

THEOREM 2. There are inner functions I and J such that $Z(I) \subset Z(J)$ and $J^N \overline{I} \notin H^{\infty} + C$ for every positive integer N.

To prove the above theorem, we need some notations and lemmas. For a subset F of L^{∞} , we denote by [F] the closed subalgebra generated by F. We put $X = M(L^{\infty})$, the maximal ideal space of L^{∞} . The Shilov boundary of H^{∞} may be identified with X [8, p. 174]. We denote by π the fiber projection from $M(H^{\infty} + C)$ onto ∂D ; $\pi(x) = z(x)$ for $x \in M(H^{\infty} + C)$. For $\lambda \in \partial D$, we put $X_{\lambda} = \{x \in X; \pi(x) = \lambda\}$ and $M_{\lambda}(H^{\infty} + C) = \{x \in M(H^{\infty} + C); \pi(x) = \lambda\}$.

For a Douglas algebra B, the pseudo-hyperbolic distance between x and y in M(B), the maximal ideal space of B, is

$$\rho_B(x,y) = \sup\{|f(y)|; f \in B, ||f|| \le 1, f(x) = 0\}.$$

If $x, y \in D$, then we have $\rho_{H^{\infty}}(x, y) = |y - x|/|1 - \bar{x}y|$. For $x \in M(B)$, $P_B(x) = \{y \in M(B); \rho_B(y, x) < 1\}$ is called the Gleason part of B containing x. If $P_B(x) \neq \{x\}$, $P_B(x)$ is called nontrivial. We abbreviate $\rho = \rho_{H^{\infty}}$ and $P = P_{H^{\infty}}$. For $x \in M(B)$, we denote by μ_x the unique representing measure on X for a point x, and denote by supp μ_x the closed support set of μ_x .

LEMMA 2. Let B be a Douglas algebra. If $x \in M(B)$, then $P(x) \subset M(B)$ and $P_B(x) = P(x)$.

Proof. By the Chang-Marshall theorem,

$$B = [H^{\infty}, \{\overline{I}; I \text{ is an inner function with } \overline{I} \in B\}],$$

and

$$M(B) = \{ y \in M(H^{\infty}); |I(y)| = 1 \text{ for every inner function } I \text{ with } \overline{I} \in B \}.$$

Hence $M(B) = \{y \in M(H^{\infty}); B \mid \text{supp } \mu_y = H^{\infty} \mid \text{supp } \mu_y\}$. Let $x \in M(B)$. By [4, p. 143], supp $\mu_x = \text{supp } \mu_y$ for every $y \in P(x)$. Thus $P(x) \subset M(B)$. Since $H^{\infty} \subset B$, $P_B(x) \subset P(x)$. To see $P_B(x) = P(x)$, suppose $P_B(x) \subsetneq P(x)$. Then there are $y_0 \in P(x) \setminus P_B(x)$ and a sequence $\{f_n\}$ in B such that

$$f_n(x) = 0$$
, $||f_n|| = 1$, and $f_n(y_0) \to 1$ as $n \to \infty$.

Since supp μ_x is a weak peak set for H^{∞} [8, p. 207], there is a sequence $\{g_n\}$ in H^{∞} [4, p. 58] such that

$$g_n(x) = 0$$
, $||g_n|| = 1$ and $g_n(y_0) \to 1$ as $n \to \infty$.

Thus $y_0 \notin P(x)$. This contradiction leads to $P_B(x) = P(x)$.

LEMMA 3 [16]. Let I be an inner function. Then there is an interpolating Blaschke product b with $[H^{\infty}, \bar{b}] = [H^{\infty}, \bar{I}]$.

For a positive singular measure μ with respect to $d\theta/2\pi$,

$$S(\mu)(z) = \exp\left(-\int_{\partial D} \frac{e^{i\theta} + z}{e^{i\theta} - z} d\mu(\theta)\right)$$
 for $z \in D$

is called a singular inner function.

LEMMA 4. Let $S(\mu)$ be a singular inner function and let I be a product of finitely many interpolating Blaschke products. Then $I\overline{S}(\mu) \notin H^{\infty} + C$.

Proof. Let λ be a point in the support set of μ . Then there is a sequence $\{z_n\}$ in D such that $z_n \to \lambda$ and $S(\mu)(z_n) \to 0$ as $n \to \infty$. We may assume that $\{z_n\}$ is an interpolating sequence. Let x_0 be a cluster point of $\{z_n\}$ in $M(H^{\infty})$. Then $x_0 \notin D$. By the work of Hoffman [9], $P(x_0)$ is nontrivial, $S(\mu) = 0$ on $P(x_0)$, and $I \neq 0$ on $P(x_0)$. To see $I\overline{S}(\mu) \notin H^{\infty} + C$, suppose $I\overline{S}(\mu) \in H^{\infty} + C$. Put $h = I\overline{S}(\mu)$. Then $I = hS(\mu)$. Hence $0 \neq I \mid P(x_0) = hS(\mu) \mid P(x_0) = 0$. This is a contradiction.

Proof of Theorem 2. Put $\lambda_n = e^{\pi i/n} \in \partial D$. Then $\lambda_n \to 1$. Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of positive numbers with $\sum_{n=1}^{\infty} na_n < \infty$. Let δ_{λ_n} be the unit point mass at λ_n . Put

$$S_1 = S\left(\sum_{n=1}^{\infty} n a_n \delta_{\lambda_n}\right)$$
 and $S_2 = S\left(\sum_{n=1}^{\infty} a_n \delta_{\lambda_n}\right)$.

By Lemma 3, there is an interpolating Blaschke product b with zeros $\{z_n\}_{n=1}^{\infty}$ in D such that

$$[H^{\infty}, \bar{b}] = [H^{\infty}, \bar{S}_1].$$

Then $\pi(Z(b)) = \pi(Z(S_1)) = \pi(Z(S_2)) = \{1, \lambda_n; n = 1, 2, ...\}$. We divide $\{z_n\}_{n=1}^{\infty}$ into countably many disjoint infinite subsets such that

(2)
$$\bigcup_{k=1}^{\infty} \{z_{k,n}; n=1,2,\ldots\} = \{z_n\}_{n=1}^{\infty},$$

and

(3)
$$z_{k,n} \to \lambda_k \ (n \to \infty)$$
 for each k .

Let b_k be an interpolating Blaschke product with zeros $\{z_{k,n}\}_{n=1}^{\infty}$. By (2) and (3), $b = \prod_{k=1}^{\infty} b_k$ and $[H^{\infty}, \bar{S}(a_k \delta_{\lambda_k})] = [H^{\infty}, \bar{S}(ka_k \delta_{\lambda_k})] = [H^{\infty}, \bar{b}_k]$. By Lemma 4, $b_k^m \bar{S}(a_k \delta_{\lambda_k}) \notin H^{\infty} + C$. By [14, p. 401], there is $\lambda \in \partial D$ such that $b_k^m \bar{S}(a_k \delta_{\lambda_k}) | X_{\lambda} \notin H^{\infty} | X_{\lambda}$. Since $\bar{S}(a_k \delta_{\lambda_k}) | X_{\lambda}$ is constant whenever $\lambda \neq \lambda_k$, we have

(4)
$$b_k^m \bar{S}(a_k \delta_{\lambda_k}) | X_{\lambda_k} \notin H^{\infty} | X_{\lambda_k}$$
 for every m and k .

Take a sequence of positive integers $\{m_k\}_{k=1}^{\infty}$ such that

$$\sum_{k=1}^{\infty} m_k \sum_{n=1}^{\infty} (1-|z_{k,n}|) < \infty,$$

(5)
$$m_k \le m_{k+1}$$
, and $m_k \to \infty \ (k \to \infty)$.

Let ψ be a Blaschke product with zeros $\{z_{k,n}; k, n=1, 2, ...\}$ and corresponding multiplicities $\{m_k; k=1, 2, ...\}$, that is, $\psi = \prod_{k=1}^{\infty} b_k^{m_k}$. Put $I = \psi S_1$ and $J = \psi S_2$. We note that $\pi(Z(I)) = \pi(Z(J)) = \{1, \lambda_n; n=1, 2, ...\}$. We shall show that I and J satisfy our assertions.

To see $Z(I) \subset Z(J)$, let $x \in M(H^{\infty} + C)$ with I(x) = 0. If $\psi(x) = 0$, then evidently J(x) = 0. Suppose $S_1(x) = 0$. There occur two cases.

Case 1. Suppose $\pi(x) = \lambda_n$ for some n. Then $S(na_n \delta_{\lambda_n})(x) = 0$. Hence

$$S(a_n \delta_{\lambda_n})(x) = 0$$
 and $S_2(x) = 0$.

Thus J(x) = 0.

Case 2. Suppose $\pi(x) = 1$. By (1), |b(x)| < 1. Then we have

$$|\psi(x)| = \left| \left(\prod_{k=1}^{\infty} b_k^{m_k} \right)(x) \right|$$

$$= \left| \left(\prod_{k=p}^{\infty} b_k^{m_k} \right)(x) \right| \quad \text{for every } p \text{ by (3)}$$

$$\leq \left| \left(\prod_{k=p}^{\infty} b_k^{m_p} \right)(x) \right| \quad \text{by (5)}$$

$$= |b(x)|^{m_p} \quad \text{by (3)}$$

$$\to 0 \quad (p \to \infty) \quad \text{by (5)}.$$

Hence $\psi(x) = 0$. Thus we get $Z(I) \subset Z(J)$.

To finish the proof, let N be a positive integer. Take a positive integer k as k > N. Then

$$J^{N}\overline{I} | X_{\lambda_{k}} = \psi^{N} S_{2}^{N} \overline{\psi} \overline{S}_{1} | X_{\lambda_{k}}$$

$$= ab_{k}^{(N-1)m_{k}} \overline{S}((k-N)a_{k} \delta_{\lambda_{n}}) | X_{\lambda_{k}} \text{ for some constant } a \text{ with } |a| = 1$$

$$\notin H^{\infty} | X_{\lambda_{k}} \text{ by (4)}.$$

Hence $J^N \overline{I} \notin H^{\infty} + C$ for every positive integer N.

For a Douglas algebra B and $f \in B$, we put $Z_B(f) = \{x \in M(B); f(x) = 0\}$. For a subset E of ∂D , we put $L_E^{\infty} = \{f \in L^{\infty}; f \text{ is continuous at each } x \in E\}$. By [3], $H^{\infty} + L_E^{\infty}$ is a Douglas algebra.

THEOREM 3 (cf. [7, Corollary 2]). Let $B = H^{\infty} + L^{\infty}_{\partial D \setminus \{1\}}$. Then there is an inner function I satisfying the following conditions.

- (i) I vanishes identically on a nontrivial Gleason part of B.
- (ii) If $g \in B$ with $Z_B(I) \subset Z_B(g)$, then $g\overline{I} \in B$.

To prove Theorem 3, we need some lemmas.

LEMMA 5 [9, Lemma 4.2]. Let b be an interpolating Blaschke product with zeros $\{z_n\}_{n=1}^{\infty}$. Then there exist δ (0 < δ < 1) and r (0 < r < 1) satisfying the following properties: The set $\{z \in D; |b(z)| < r\}$ is the union of pairwise disjoint domains V_n , $z_n \in V_n$; and $V_n \subset \{z \in D; \rho(z, z_n) < \delta\}$. If |w| < r, then $b_w(z) =$

 $(b(z)-w)/(1-\bar{w}b(z))$ is an interpolating Blaschke product having one zero in each V_n .

LEMMA 6 [1; 7]. Let B be a Douglas algebra and I be an interpolating Blaschke product. If $g \in B$ satisfies $Z_B(I) \subset Z_B(g)$, then $g\overline{I} \in B$.

LEMMA 7 [5, p. 314]. Let $\{z_n\}$ and $\{w_n\}$ be interpolating sequences in D. If $\inf\{\rho(z_n, w_m); n, m = 1, 2, ...\} > 0$, then $\{z_n\} \cup \{w_m\}$ is interpolating.

Proof of Theorem 3. Put $\lambda_n = e^{\pi i/n} \in \partial D$. It is well known that there is an interpolating Blaschke product b with zeros $\{z_n\}_{n=1}^{\infty}$ in D such that $\pi(Z(b)) = \{1, \lambda_n; n=1, 2, ...\}$. We divide $\{z_n\}$ into countably many disjoint infinite subsets as

(1)
$$\bigcup_{k=1}^{\infty} \{z_{k,n}; n=1,2,\ldots\} = \{z_n\}_{n=1}^{\infty},$$

and

(2)
$$z_{k,n} \to \lambda_k \ (n \to \infty)$$
 for each k .

We may assume

(3)
$$\sum_{k=1}^{\infty} k \sum_{n=1}^{\infty} (1 - |z_{k,n}|) < \infty.$$

By Lemma 5, there exist δ and r ($0 < \delta < 1$, 0 < r < 1) and there is a sequence of pairwise disjoint domains $\{V_{k,n}; k, n = 1, 2, ...\}$ such that $z_{k,n} \in V_{k,n}$,

$$(4) V_{k,n} \subset \{z \in D; \rho(z,z_{k,n}) < \delta\},$$

and

(5) if
$$|w| < r$$
, then $b_w(z) = (b(z) - w)/(1 - \bar{w}b(z))$ is an interpolating Blaschke product having one zero in each $V_{k,n}$.

Let $\{w_n\}$ be a distinct sequence of complex numbers with $w_1 = 0$, $|w_n| < r$, and $w_n \to 0$ $(n \to \infty)$. For i and k with $1 \le i \le k$, let $\zeta_{k,i,n}$ be the point in $V_{k,n}$ with $b_{w_i}(\zeta_{k,i,n}) = 0$. By (5), $\{\zeta_{k,i,n}\}_{n=1}^{\infty}$ is an interpolating sequence for each k and i with $1 \le i \le k$. Let i and j with $i \ne j$ and $1 \le i$, $j \le k$. Since $b_{w_i}(\zeta_{k,i,n}) = 0$, $b(\zeta_{k,i,n}) = w_i$. Hence for $n, m = 1, 2, \ldots$,

$$\rho(\zeta_{k,i,n},\zeta_{k,j,m}) \ge |b_{w_j}(\zeta_{k,i,n})|$$

$$= \left| \frac{w_i - w_j}{1 - \overline{w}_j w_i} \right| > 0 \quad \text{by (5)}.$$

By Lemma 7, for each fixed k, $\{\zeta_{k,i,n}; 1 \le i \le k, n = 1, 2, ...\}$ is an interpolating sequence. Let b_k be the interpolating Blaschke product with zeros $\{\zeta_{k,i,n}; 1 \le i \le k, n = 1, 2, ...\}$. Since $\zeta_{k,i,n} \in V_{k,n}$, by (4) we have

$$\delta > \rho(\zeta_{k,i,n}, z_{k,n}) = \left| \frac{z_{k,n} - \zeta_{k,i,n}}{1 - \overline{\zeta}_{k,i,n} z_{k,n}} \right|$$

$$\geq \frac{|z_{k,n}| - |\zeta_{k,i,n}|}{1 - |\zeta_{k,i,n}| |z_{k,n}|}.$$

By elementary calculations, $1-|\zeta_{k,i,n}| \leq ((1+\delta)/(1-\delta))(1-|z_{k,n}|)$. Then

$$\sum_{k=1}^{\infty} \sum \{1 - |\zeta_{k,i,n}|; 1 \le i \le k, n = 1, 2, ...\}$$

$$\le \frac{1 + \delta}{1 - \delta} \sum_{k=1}^{\infty} \sum \{1 - |z_{k,n}|; 1 \le i \le k, n = 1, 2, ...\}$$

$$= \frac{1 + \delta}{1 - \delta} \sum_{k=1}^{\infty} k \sum \{1 - |z_{k,n}|; n = 1, 2, ...\}$$

$$< \infty \quad \text{by (3)}.$$

Hence $\prod_{k=1}^{\infty} b_k$ is a Blaschke product. Put $I = \prod_{k=1}^{\infty} b_k$ and we shall show that I is a desired inner function. By (2) and (4), $\pi(Z(I)) = \{1, \lambda_n; n = 1, 2, ...\}$. Since $w_1 = 0$, $I\bar{b} \in H^{\infty}$, so $Z(b) \subset Z(I)$. Take a sequence $\{x_k\}_{k=1}^{\infty}$ in Z(b) with $\pi(x_k) = \lambda_k$. Then $x_k \in M(B)$. Let x be a cluster point of $\{x_k\}_{k=1}^{\infty}$. Then $x \in Z(b)$ and $\pi(x) = 1$. By the work of Hoffman [9], P(x) is a nontrivial Gleason part and I = 0 on P(x). To see (i), it is sufficient to prove $x \in M(B)$. Since

$$B = [H^{\infty}, \{\bar{J}; J \text{ is an inner function with } Z(J) \subset M_1(H^{\infty} + C)\}],$$

we have |J(x)| = 1 for every inner function J with $\overline{J} \in B$. Because if |J(x)| < 1 then $|J(x_k)| < 1$ for some k, so $\overline{J} \notin B$. Thus we obtain $x \in M(B)$, hence $P_B(x) = P(x) \subset M(B)$ by Lemma 2.

To see (ii), let $g \in B$ with $Z_B(g) \supset Z_B(I)$. Let $\lambda \in \partial D$ with $\lambda \neq 1$. If $\lambda \neq \lambda_n$ for every n, then $\overline{I} \mid X_{\lambda}$ is constant, so $g\overline{I} \mid X_{\lambda} \in H^{\infty} \mid X_{\lambda}$. Suppose that $\lambda = \lambda_n$ for some n. Then $I \mid X_{\lambda_n} = cb_n \mid X_{\lambda_n}$ for some constant c with |c| = 1. Put

$$B_n = \{ f \in L^{\infty}; f \mid X_{\lambda_n} \in H^{\infty} \mid X_{\lambda_n} \}.$$

Then B_n is a Douglas algebra. Since $Z_{B_n}(g) \supset Z_{B_n}(I) = Z_{B_n}(b_n)$, by Lemma 6 we have $g\bar{b}_n \in B_n$. Hence $g\bar{I} \mid X_{\lambda_n} = cg\bar{b}_n \mid X_{\lambda_n} \in H^{\infty} \mid X_{\lambda_n}$. Thus we obtain $g\bar{I} \in B$, because $B = \{ f \in L^{\infty}; f \mid X_{\lambda} \in H^{\infty} \mid X_{\lambda} \text{ for every } \lambda \text{ with } \lambda \neq 1 \}$.

In the last part of this section, we shall give some comments. Let B be a Douglas algebra with $B \supset H^{\infty} + C$. An inner function I is called B-interpolating if there is an interpolating Blaschke product b such that |b| = |I| on M(B). Then we have the following.

PROPOSITION. Let I be an inner function. If I is B-interpolating, then I satisfies the following condition.

(#) If J is an inner function with $Z_B(I) \subset Z_B(J)$, then $|J| \leq |I|$ on M(B).

Proof. Let b be an interpolating Blaschke product with |b| = |I| on M(B). Then $Z_B(b) = Z_B(I)$. Let J be an inner function with $Z_B(I) \subset Z_B(J)$. By Lemma 6, $J\bar{b} \in B$. Put $h = J\bar{b}$; then h is unimodular and J = bh. Thus $|J| \le |b| |h| \le |b| = |I|$ on M(B).

Theorem 3 says that the converse of this proposition is not true for $B = H^{\infty} + L^{\infty}_{\partial D \setminus \{1\}}$. To see this, let *I* be an inner function in Theorem 3. By (i) of Theorem 3, *I* is not *B*-interpolating. By (ii) of Theorem 3, *I* satisfies (#).

We do not know whether the converse of the proposition is true or not for $B = H^{\infty} + C$. We note that by [10, Theorem 1], if I is an $(H^{\infty} + C)$ -interpolating inner function then $I = b_0 b_1$, where b_0 is a finite Blaschke product and b_1 is an interpolating Blaschke product.

3. Factorization of Blaschke products. Let $h \in H^{\infty}$ and $x \in M(H^{\infty} + C)$ with h(x) = 0. If P(x) is a nontrivial Gleason part, P(x) carries the structure of an analytic disk, so we can define $\operatorname{Ord}_h(x)$, the order of zero of h at x. If P(x) is trivial, we define $\operatorname{Ord}_h(x) = \infty$.

THEOREM 4. Let I be an inner function with $\operatorname{Ord}_I(x) = k$ for every $x \in Z(I)$. Then there are interpolating Blaschke products $\{b_n\}_{n=1}^k$ and a finite Blaschke product b_0 such that $I = \prod_{n=0}^k b_n$ and $Z(I) = Z(b_n)$ for $1 \le n \le k$.

To see our theorem, we need two lemmas.

LEMMA 8. Let b be an inner function, let $\{x_j\}_{j=1}^{\infty}$ be a sequence in Z(b) such that $\operatorname{Ord}_b(x_j) = n$ for every j, and let x_0 be a cluster point of $\{x_j\}_{j=1}^{\infty}$ in $M(H^{\infty} + C)$. If $\{y_j\}_{j=1}^{\infty}$ is a sequence in Z(b) such that $\{x_j\}_{j=1}^{\infty} \cap \{y_j\}_{j=1}^{\infty} = \emptyset$, $\operatorname{Ord}_b(y_j) = m$ for every j, and $\rho(x_j, y_j) \to 0$ as $j \to \infty$, then $\operatorname{Ord}_b(x_0) \ge n + m$.

Proof. It is enough to prove this for the case $\operatorname{Ord}_b(x_0) < \infty$. Let $k = \operatorname{Ord}_b(x_0)$. By [9, Theorem 5.3], there are interpolating Blaschke products b_1, \ldots, b_k and an inner function b_0 such that $b = \prod_{j=0}^k b_j$ and $b_j(x_0) = 0$ for $1 \le j \le k$. Since x_0 is a cluster point of $\{x_j\}_{j=1}^{\infty}$, we may assume that $b_0(x_j) \ne 0$ for any j. Moreover, since $\rho(x_j, y_j) \to 0$ as $j \to \infty$, we may assume that $b_0(y_j) \ne 0$ for any j.

For each j, $Z(b_j)$ is an interpolation set for H^{∞} [8, p. 205]; thus there exists $\epsilon_j > 0$ such that $\rho(x, y) \ge \epsilon_j$ for any $x, y \in Z(b_j)$. Let $\epsilon = \min_{1 \le j \le k} \epsilon_j$. Without loss of generality we may assume that $\rho(x_j, y_j) \le \epsilon/2$ for all j. By assumption, b has a zero of order n at x_j . Since $b_0(x_j) \ne 0$, there exist n factors of b other than b_0 which vanish at x_j . None of these factors can vanish at y_j , for $x, y \in Z(b_\ell)$ forces $\rho(x, y) \ge \epsilon_\ell$ and $\rho(x_j, y_j) \le \epsilon/2 \le \epsilon_\ell/2$. Hence m factors of b distinct from these and b_0 must vanish at y_j . Therefore $k \ge n + m$.

LEMMA 9 [10]. If I is an inner function such that Z(I) is an interpolation set for H^{∞} , then there is an interpolating Blaschke product b such that $I\bar{b} \in H^{\infty}$ and Z(I) = Z(b).

Proof of Theorem 4. Let I be an inner function with $Ord_I(x) = k$ for every $x \in Z(I)$. By [12], there are interpolating Blaschke products $\{\psi_1, \psi_2, ..., \psi_n\}$ and a finite Blaschke product ψ_0 such that $I = \prod_{i=0}^n \psi_i$. By Lemma 8, there is $\epsilon > 0$ such that $\rho(x, y) \ge \epsilon$ for every $x, y \in Z(I)$ with $x \ne y$. By Varopoulos [15], $Z(I) = \bigcup_{i=1}^n Z(\psi_i)$ is an interpolation set for H^{∞} . By Lemma 9, there is an interpolating Blaschke product b_1 such that $I\bar{b}_1 \in H^{\infty}$ and $Z(b_1) = Z(I)$. Applying Lemma 9 k times, there are interpolating Blaschke products $\{b_1, b_2, ..., b_k\}$ such that $I\bar{b}_1\bar{b}_2\cdots\bar{b}_j \in H^{\infty}$ and $Z(b_j) = Z(I)$ for $1 \le j \le k$. Since $Z(I\prod_{j=1}^k \bar{b}_j) = \phi$, $b_0 = I\prod_{j=1}^k \bar{b}_j$ is a finite Blaschke product. This completes the proof.

The authors would like to thank the referee for shortening the proof of Lemma 8.

REFERENCES

- 1. S. Axler and P. Gorkin, *Divisibility in Douglas algebras*, Michigan Math. J. 31 (1984), 89–94.
- 2. S.-Y. Chang, A characterization of Douglas subalgebras, Acta Math. 137 (1976), 81–89.
- 3. A. M. Davie, T. W. Gamelin, and J. Garnett, *Distance estimates and pointwise bounded density*, Trans. Amer. Math. Soc. 175 (1973), 37-68.
- 4. T. W. Gamelin, Uniform algebras, Prentice-Hall, Englewood Cliffs, N.J., 1969.
- 5. J. Garnett, Bounded analytic functions, Academic Press, New York, 1981.
- 6. C. Guillory and D. Sarason, Division in $H^{\infty}+C$, Michigan Math. J. 28 (1981), 173–181.
- 7. C. Guillory, K. Izuchi, and D. Sarason, *Interpolating Blaschke products and division in Douglas algebras*, Proc. Roy. Irish Acad. Sect. A 84A (1984), 1–7.
- 8. K. Hoffman, Banach spaces of analytic functions, Prentice-Hall, Englewood Cliffs, N.J., 1962.
- 9. ——, *Bounded analytic functions and Gleason parts,* Ann. of Math. (2) 86 (1967), 74–111.
- 10. K. Izuchi, Zero sets of interpolating Blaschke products, Pacific J. Math. 119 (1985), 337-342.
- 11. K. Izuchi and Y. Izuchi, *Annihilating measures for Douglas algebras*, Yokohama Math. J. 32 (1984), 135-151.
- 12. A. Kerr-Lawson, Some lemmas on interpolating Blaschke products and a correction, Canad. J. Math. 21 (1969), 531-534.
- 13. D. Marshall, Subalgebras of L^{∞} containing H^{∞} , Acta Math. 137 (1976), 91–98.
- 14. D. Sarason, Functions of vanishing mean oscillation, Trans. Amer. Math. Soc. 207 (1975), 391-405.
- 15. N. Th. Varopoulos, Sur la réunion de deux ensembles d'interpolation d'une algèbre uniforme, C. R. Acad. Sci. Paris Sér. A-B 272 (1971), A950-A952.
- 16. R. Younis, *Division in Douglas algebras and some applications*, Arch. der Math. 45 (1985), 555-560.

Kanagawa University Yokohama 221, Japan

and

Kanagawa Dental College Yokosuka 238, Japan