INNER FUNCTIONS AND DIVISION
IN DOUGLAS ALGEBRAS

Keiji Izuchi and Yuko Izuchi

1. Introduction. Let H * be the space of boundary functions.for bounded ana-
lytic functions in the open unit disk D, and C be the space of continuous functions
on dD. It is well known [14] that H “ + C is an essentially supremum norm closed
subalgebra of L. Guillory and Sarason began the study of division in H*+C,
and they showed the following.

THEOREM A [6]. There is a positive integer N with the following property:
if I is an inner function and f is a function in H” + C such that |f| < |I| on
M(H®+ C), the maximal ideal space of H®+ C, then fNT=f~/ITe H®+C.

Guillory and Sarason posed the problem of finding the best value of N. We
solve this problem here. It has been shown [1; 7] that if 7 is a finite product of in-
terpolating Blaschke products, then we may take N=1. As a consequence, we
have the following.

THEOREM B [7]. If I is an inner function which is not a finite product of in-
terpolating Blaschke products, then we can not take N =1.

In §2, we show that one may take N =2 in Theorem A. The technique used to
prove this is almost the same as that used in [6]. For a function f in H*+ C, put
Z(f)={xe M(H>*+C); f(x)=0}. The condition |f|=<|I| on M(H*+ C) im-
plies Z(I)C Z(f). The following question is given in [7, p. 5]: If 7 is an inner
function and fe H”+ C with Z(I') C Z(f), does there exist a positive integer K,
depending on 7 and f, such that fXI' e H*+ C? We shall give its negative answer
(Theorem 2). Also we shall show that Theorem B can not be extended to general
Douglas algebras (Theorem 3). This is a negative answer to another question in
[7, p. 5].

In §3, we shall study the factorization of Blaschke products. Let » be an in-
ner function such that Ord,(x), the zero’s order of b at x € Z(b), is uniformly
bounded. By [12], b is a finite product of interpolating Blaschke products. By [10],
there are interpolating Blaschke products {b,}¥ - and a finite Blaschke product
bo such that b=TI1%—-0 by and Z(b)=Z(b1) D Z(b3) D --- D Z(b,) if and only if
Z(b) is an interpolation set for H <, that is, if H* | Z(b) coincides with the space
of continuous functions on Z(&). It is known that there exists a finite product of
interpolating Blaschke products g such that Z(g) is not an interpolation set for
H ™ (see [11]). We shall show that if 7 is an inner function such that Ord,;(x) =k
for every x € Z(I), then there are interpolating Blaschke products (b} _,and a
finite Blaschke product by such that I = I4_0b,and ZUI)=Z(b,) for l<=n<k
(Theorem 4).
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2. Division by inner functions. For a function f in L®, put dist(f, H*+ C) =
inf(|f+h]; he H*+C} and | f]=§,p|.f| d6/2.

THEOREM 1. Let I be an inner function. If f is a function in H™ + C such that
|fl=<|I| on M(H®+C), then f**'I*e H®+C for every k=1, 2, ....

To prove Theorem 1, we need a lemma.

LEMMA 1 [6, Theorem, p. 176]. Let I be an inner function and fe H*+ C.
Then fI"e H™+ C for every positive integer n if and only if

f=0o0n (xeMHT+C); |I(x)|<1}.

Proof of Theorem 1. As in the proof of Theorem [6, pp. 177-179], for a small
positive number e there is a system I" of simple closed rectifiable curves in D with
the following properties:

(a) the curves in the system I" have mutually disjoint interiors;

(b) there is an absolute constant K (independent of 7 and €) between 0 and 1
such that {z € D; |I(z)] <€} is contained in the interior of I" and |7]| < €eX
onI';

(c) arclength measure on I'N D is a Carleson measure such that {|h(z)]|dz| =
K e _2||h||1 for every he H*, where K, is another absolute constant.

Take a positive integer N such that NK > 3. We shall first prove that

(D (fH™INe H®+C for every m=1,2,....

To see this, take m arbitrarily. Note | f|” <|7|" on M(H “+C) and " < |I|"
on I' by (b). Using the corona theorem [5, p. 323], we have | f|"/|I]" <2 on
I'N{z e D; |z| > 8} for a positive number é with 0 < < 1. Hence

lz]" S =)™
II(Z)Im
By almost the same argument as the one in [6, pp. 177-179],

dist(ST)™IN, H* + C) = inf dist ((fT)"I™, " H )
n

) <2 onT for sufficiently large .

=inf sup
n

2
<sup {E [ 1r@IMr@l1dels e m, uhul:l} by 2)

1 S z2"f(2)"1(z) h(z)
(a1

Ty Az he H Il =1

N/

ENK
ssuph- [ 1r@))|dz)s he =, ||h||1=1] by (b)
<K, eN5=2/1 by (c)
=K e/r—>0 (e—0).

Thus we obtain (1).
We denote by B the Douglas algebra generated by H* and fI. By (1), we have

3) INBCH>™+C.
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By the Chang-Marshall theorem [2; 13], for a fixed positive integer k there are se-
quences of H* functions {4,} and {j,}, with j, inner, such that ||f"T"—J_'n h,|—0
(n—> ) and j,eB.By(3), INje H*+C foreverym,n=1,2,.... By Lemmal l,
I=0on {xe M(H*+C); |j.(x)| <1}. By our assumption,

f=0on {xeM(HT+C); |j.(x)<1}.
Again by Lemma 1, fj,e H*+ C for every n. Hence
dist (f “*'T*, H®+ C) < | f**'T*— £, hy

<|SNfT = bl 0 (n—0).
Thus we obtain fX¥*'T*e H*+C for k=1,2,.... O

THEOREM 2. There are inner functions I and J such that Z(I)C Z(J) and
JNT & H® + C for every positive integer N.

To prove the above theorem, we need some notations and lemmas. For a sub-
set F of L™, we denote by [F] the closed subalgebra generated by F. We put X =
ML), the maximal ideal space of L. The Shilov boundary of H* may beiden-
tified with X [8, p. 174]. We denote by = the fiber projection from M(H”+ C)
onto dD; w(x)=z(x) forxe M(H ™+ C). For A\ € 8D, we put X),={xeX; w(x)=X\}
and M \(H"+C)={xe M(H”+C); m(x)=2\]}.

For a Douglas algebra B, the pseudo-hyperbolic distance between x and y in
M(B), the maximal ideal space of B, is

pp(x,y)=sup{|f(»)|; feB, |f|=1, f(x)=0}.

If x, ye D, then we have py«(x, ¥) =|y—x|/|1 —Xy|. For xe M(B), Pp(x) =
fye M(B); pg(y,Xx) <1} is called the Gleason part of B containing x. If Pg(x) #
{x], Pg(x) is called nontrivial. We abbreviate p = py- and P=Py.. For xe
M(B), we denote by u, the unique representing measure on X for a point x, and
denote by supp u, the closed support set of u,.

LEMMA 2. Let B be a Douglas algebra. If x e M(B), then P(x) C M(B) and
Pp(x)=P(x).

Proof. By the Chang-Marshall theorem,
B=[H®, {I; I is an inner function with 7e B}],
and
M(B)={ye M(H%); |I(y)| =1 for every inner function 7 with I € B}.

Hence M(B) ={ye M(H%); B |supp p, = H* |supp p,}. Let xe M(B). By [4, p.
143], supp p=supp pu, for every y € P(x). Thus P(x) C M(B). Since H*C B,
Pp(x) C P(x). To see Pg(x)= P(x), suppose Pg(x) g P(x). Then there are yp€e
P(x)\ Pg(x) and a sequence {f,]} in B such that

Ju(x)=0, |ful=1, and [f,(yo)—1 as n—oo.

Since supp p, is a weak peak set for H™ [8, p. 207], there is a sequence {g,]} in
H™ [4, p. 58] such that
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g:(x)=0, [g.]=1 and g,(y9)—>1 as n—co.
Thus yg ¢ P(x). This contradiction leads to Pg(x) = P(x).

LEMMA 3 [16]. Let I be an inner function. Then there is an interpolating
Blaschke product b with [H®,b]1=[H>,I].

For a positive singular measure g with respect to df/2x,
eif+z
elf—z

S(n)(z)=exp (—- SaD d,u(G)) for ze D

is called a singular inner function.

LEMMA 4. Let S(p) be a singular inner function and let I be a product of fi-
nitely many interpolating Blaschke products. Then IS(n) ¢ H” + C.

Proof. Let \ be a point in the support set of x. Then there is a sequence {z,} in
D such that z,, » X and S(x)(z,) = 0 as n — co. We may assume that {z,} is an in-
terpolating sequence. Let xy be a cluster point of {z,} in M(H ). Then xo ¢ D.
By the work of Hoffman [9], P(x() is nontrivial, S(x) =0 on P(xg), and 70
on P(xg). To see IS(pn) ¢ H® + C, suppose IS(p) e H*+ C. Put h=15(p). Then
I=hS(n). Hence 0= I | P(xg9) =hS(un) | P(xo)=0. This is a contradiction. 3

Proof of Theorem 2. Put \,=e™/"e dD. Then A\, — 1. Let {a,}Z-, be a se-
quence of positive numbers with >, —; na, <oo. Let &), be the unit point mass
at A,,. Put

S1=S z na,,6)\n) and S2=S< E ané)\n).

n=1 n=1

By Lemma 3, there is an interpolating Blaschke product b with zeros {z,}, = in
D such that

¢y [H®,b1=[H%,S].

Then 7 (Z(b))=7(Z(S1))=7(Z(S,))={1,\,; n=1,2,...}. We divide {z,},= into
countably many disjoint infinite subsets such that

(2) kUl {zk,n;nzlsza‘“}:{Zn}lc;o=la
and -
3) Zk,n— Mg (n—o00) for each k.

Let by be an interpolating Blaschke product with zeros {zx, »},»=1- By (2) and (3),
b=TI7=1bx and [H%, S(ax b)) = [H%, S(ka,6x,)1=[H*, b;]. By Lemma 4,
bi'S(ax éy,) € H”+ C. By [14, p. 401], there is X € 3D such that b{'S(ax 6),) | X &
H> | X\. Since S(ax Ox,) | X is constant whenever \ # A\;, we have

4) bi'S(aréy,) | X\ ¢ H” | X, for every m and k.

Take a sequence of positive integers {m} i, such that

kEl my 2 (1—|2k,n|) < oo,

n=1
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(5) my<my.,1, and my —> oo (k— ).

Let ¢ be a Blaschke product with zeros {zx .; k,n=1,2, ...} and corresponding
multiplicities {my; k=1,2,...}, that is, y =115~ b'*. Put I=¢ S, and J=¢S,.
We note that #(Z(I)) = w(Z(J))={1, \;; n=1,2,...}. We shall show that 7 and J
satisfy our assertions.

To see Z(I)C Z(J), let xe M(H*+ C) with I(x)=0. If y(x)=0, then evi-
dently J(x) = 0. Suppose S;(x) =0. There occur two cases.

Case 1. Suppose w(x) =\, for some n. Then S(na, s, )(x)=0. Hence

S(a,,&xn)(x)=0 and Sz(X)—_—O.

Thus J(x)=0.
Case 2. Suppose w(x)=1. By (1), |b(x)| <1. Then we have

yeol=| (I 6 )eo|

— ( ﬁ b;:lk>(x)| for every p by (3)
k=p

< (ﬁ b,:”v)(x)l by (5)
k=p

=[b(x)|"» by (3)
-0 (p—x) by (5).

Hence ¢ (x)=0. Thus we get Z(I)C Z(J).
To finish the proof, let NV be a positive integer. Take a positive integer k£ as
k> N. Then

INT | X, =¥ VSHUS | Xy,
=ab{N V"3 ((k—N)ax8y,) | Xy, for some constant a with |a|=1
¢ H”| X, by 4).
Hence JVT ¢ H® + C for every positive integer N. 1

For a Douglas algebra B and fe B, we put Zg(f) ={xe M(B); f(x)=0}. For
a subset E of 0D, we put Lg ={feL”; f is continuous at each x € E}. By [3],
H>*+Lg is a Douglas algebra.

THEOREM 3 (cf. [7, Corollary 2]). Let B=H *+ L3p\y1)- Then there is an in-
ner function I satisfying the following conditions.

(i) I vanishes identically on a nontrivial Gleason part of B.

(ii) If ge B with Zg(I)C Zg(g), then gI € B.

To prove Theorem 3, we need some lemmas.

LEMMA 5 [9, Lemma 4.2}. Let b be an interpolating Blaschke product with
zeros {Zpln—=1. Then there exist 6 (0<6<1) and r (0 <r <1) satisfying the
Sollowing properties: The set {z € D; |b(z)| <r} is the union of pairwise dis-
joint domains V,, z,€ V,; and V,, C {z € D; p(z,2,) < 6}. If |w| < r, then b,,(z) =
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(b(z)—w)/(1—wb(2)) is an interpolating Blaschke product having one zero in
each V,,.

LEMMA 6 [1; 7). Let B be a Douglas algebra and I be an interpolating Blaschke
product. If g € B satisfies Zg(I) C Zg(g), then gI € B.

LEMMA 7 [5, p. 314]. Let {z,} and {w,} be interpolating sequences in D. If
inf{p(z,, wn); n,m=1,2,...} >0, then {z,}U{w,,]} is interpolating.

Proof of Theorem 3. Put \,=e™/"edD. It is well known that there is an
interpolating Blaschke product b with zeros {z,},,=; in D such that w(Z(d)) =
f1,\;; n=1,2,...}. Wedivide {z,} into countably many disjoint infinite subsets as

) U lamin=1,2..1= (5,7,
and
2) Zk,n—> M (n—> o) for each k.
We may assume
3) S k3 (1= |zkq]) <o
k=1 n=I
By Lemma 5, there exist 6 and r (0<é<1, 0<r<1) and there is a sequence of
pairwise disjoint domains { V% ,; k,n=1,2,...} such that zx ,€ Vi, .,
C) Vi,n C{z € D; p(z, 2k, n) <6},
and

if |w| <r, then b,,(z) = (b(z) —w)/(1 —wb(z)) is an interpolating
Blaschke product having one zero in each Vi ,,.

(%)

Let {w,} be a distinct sequence of complex numbers with w; =0, |w,|<r, and
w,—~>0 (n—> ). For i and k£ with 1<i/=<k, let {4 ;, be the point in V; , with
by ($k,i,n) =0. By (5), {$x,i,n}n=1 is an interpolating sequence for each k and
i withl=i=<k. Leti and j with i j and 1<, j < k. Since by, ($k,in) =0,
b($k,in)=w;. Hence forn,m=1,2,...,

P(fk,i,ns g—k,j,m) = |bwj(§_k.i,n)|

l Wi—W;

>0 by (5).
I—WJW, Y()

By Lemma 7, for each fixed &k, {{,in; 1<i<k, n=1,2,...}is an interpolating se-
quence. Let b, be the interpolating Blaschke product with zeros {{ ;. .. 1<i =<k,
n=1,2,...}. Since $x, ;i n€ Vi, n, by (4) we have

Zkn— Sk, in
l_fk,i,nzk,n

5>P(§‘k,i,ﬂ:zk,n) =

|zk,n|’—|§‘k,i,n|
- l—lfk,i,nHZk,nl )
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By elementary calculations, 1— ¢z, i | =< ((14+6)/(1—6))(1—]|zk,n|). Then

2 z{l_lg‘k,i,nl; l<i<k,n=1,2,...}
k=1

146 =
s—+—~ > S{l—|zgals1=i<k,n=12,...}
1—-6 £=1 ’

146 &
= — E kz{]——]zk’nl;n=1,2,...}
1—6 /=,

<o by (3).

Hence I157—, by is a Blaschke product. Put I =117~ bx and we shall show that 7

is a desired inner function. By (2) and (4), #(Z(I))={1,\,;; n=1,2,...}. Since

w1=0, Ibe H*®, so Z(b)C Z(I). Take a sequence {xi}r—1in Z(b) with w(xx)=Nx.

Then x; € M(B). Let x be a cluster point of {x;};~=,. Then xe Z(b) and w(x)=1.

By the work of Hoffman [9], P(x) is a nontrivial Gleason part and /=0 on P(x).
To see (i), it is sufficient to prove x € M(B). Since

B=[H®, {J; J is an inner function with Z(J) C M (H"+C)}],

we have |J(x)| =1 for every inner function J with Je B. Because if [J(x)| <1 then
|J(xx)| <1 for some k, so J & B. Thus we obtain x € M(B), hence Pg(x) =P(x) C
M(B) by Lemma 2. .

To see (ii), let ge B with Zg(g) D Zg(I). Let Ae oD with AX1. If A=\, for
every n, then I | X, is constant, so gI | X\ € H® | X,.. Suppose that A = \,, for some
n. Then I'| X, =cb,| X, for some constant ¢ with |c|=1. Put

B,=(feL™; f| X\, e H"| X))}

Then B, is a Douglas algebra. Since Zg (g) D Zp, (I)=Zp (b,), by Lemma 6 we
have gb, € B,. Hence gI | X, =cgbh, | X\ € H” | X, . Thus we obtain gl € B, be-
cause B={feL”; f|X,e H” | X, for every A with X5 1}. !

In the last part of this section, we shall give some comments. Let B be a Doug-
las algebra with B D H * + C. An inner function 7 is called B-interpolating if there
is an interpolating Blaschke product b such that |b| = |/| on M(B). Then we have
the following.

PROPOSITION. Let I be an inner function. If I is B-interpolating, then I satis-
fies the following condition.

(#) If Jis an inner function with Zg(I) C Zg(J), then |J| < |I| on M(B).

Proof. Let b be an interpolating Blaschke product with |b|=|/| on M(B).
Then Zzg(b)=Zg([). Let J be an inner function with Zg(I) C Zg(J). By Lemma
6, Jb € B. Put h=Jb; then h is unimodular and J = bh. Thus |J| =< |b||h|=|b| =
|| on M(B). (]

Theorem 3 says that the converse of this proposition is not true for B =
H ™+ L3p\1;- To see this, let 7 be an inner function in Theorem 3. By (i) of Theo-
rem 3, 7 is not B-interpolating. By (ii) of Theorem 3, 7 satisfies (#).
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We do not know whether the converse of the proposition is true or not for B =
H® + C. We note that by [10, Theorem 1], if I is an (H ©+ C)-interpolating inner
function then I = bo b;, where by is a finite Blaschke product and b, is an inter-
polating Blaschke product.

3. Factorization of Blaschke products. Let Ae H™ and x e M(H “ + C) with
h(x)=0. If P(x) is a nontrivial Gleason part, P(x) carries the structure of an
analytic disk, so we can define Ord,(x), the order of zero of A at x. If P(x) is
trivial, we define Ord;,(x) = co.

THEOREM 4. Let I be an inner function with Ord;(x) =k for every xe Z(I).
Then there are interpolating Blaschke products {b,}X_, and a finite Blaschke
product by such that I=T1%_o b, and Z(I)=Z(b,) for 1 <n<k.

To see our theorem, we need two lemmas.

LEMMA 8. Let b be an inner function, let {x;}j=1 be a sequence in Z(b)
such that Ord,(x;) =n for every j, and let xo be a cluster point of {x;};-, in
M(H®+C). If {y;}7=1 is a sequence in Z(b) such that [x;};7-1N{y;}j=1= 9,
Ord,(y;) = m for every j, and p(x;,y;) — 0 as j — o, then Ord,(xo) = n+m.

Proof. 1t is enough to prove this for the case Ord,(xg) <oo. Let &k = Ordy(xyp).
By [9, Theorem 5.3], there are interpolating Blaschke products by, ..., by and an
inner function by such that b =Hf=0 b; and b;(xo) =0 for 1< j=<k. Since x is
a cluster point of {x;}7~;, we may assume that bo(x;)# 0 for any j. Moreover,
since p(x;,y;) — 0 as j — oo, we may assume that bo(y;) # 0 for any j.

For each j, Z(b;) is an interpolation set for H* [8, p. 205]; thus there exists
€; >0 such that p(x,y)=¢; for any x,ye Z(b;). Let e =min;<;<4 ¢;. Without
loss of generality we may assume that p(x;, y;) <e¢/2 for all j. By assumption, b
has a zero of order # at x;. Since bo(x;) # 0, there exist n factors of b other than
bo which vanish at x;. None of these factors can vanish at y;, for x, y € Z(b,)
forces p(x,y)=¢, and p(x;, y;) <e/2 <¢; /2. Hence m factors of b distinct from
these and by must vanish at y;. Therefore k = n+m. B

LEMMA 9 [10). If I is an inner function such that Z(I) is an interpolation set
for H®, then there is an interpolating Blaschke product b such that Ibe H* and
Z(I)=Z(b).

Proof of Theorem 4. Let I be an inner function with Ord;(x) =k for every
x e Z(I). By [12], there are interpolating Blaschke products {¢,, ¥, ..., ¥,} and
a finite Blaschke product ¢ such that 7=]]7_o ¢;. By Lemma 8, there is ¢ >0
such that p(x, y) = € for every x, y € Z(I) with x = y. By Varopoulos [15], Z(/) =

"_1 Z(y;) is an interpolation set for ™. By Lemma 9, there is an interpolating
Blaschke product b; such that 7b,e H* and Z(b,) =Z(I). Applying Lemma 9

k times, there are interpolating Blaschke products {b;, b, ..., bg} such that
Ib,by---b;e H® and Z(b;)=Z(I) for 1=j=<k. Since Z(U [15_,B5;)=¢, bo=
I T15_, b; is a finite Blaschke product. This completes the proof. 1

The authors would like to thank the referee for shortening the proof of Lem-
ma 8.
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