WILD SURFACES HAVE SOME NICE PROPERTIES

R. H. Bing

This paper was stimulated by hearing in lectures such remarks as the following:
“We consider only smoothable surfaces in 3-manifolds so that we can suppose
that their intersections with the 2-skeletons of triangulations are nice.” This led
me to wonder if we might not make the intersections nice even if the surfaces
were not smoothable but wild. See Theorem V.3.

I would prefer to give complete proofs of the results in this paper so that the re-
sults would be believed even by mathematical agnostics — those who doubt things
for which they do not have complete proofs. Complete proofs are given here for
the theorems in the main section (§V) of this paper but the proofs of the prelimi-
nary theorems come mostly from the literature. Section V deals with the inter-
section of wild surfaces in triangulated 3-manifolds with other objects in these 3-
manifolds, and the preceding sections deal with theorems related to this treatment.

Throughout this paper we deal with 3-manifolds without boundary. Surfaces
are 2-manifolds imbedded as closed sets in 3-manifolds. Although there are re-
lated results about 3-manifolds with boundaries and surfaces without boundaries,
they are not treated here. We do not suppose that manifolds and surfaces are com-
pact. Throughout this paper we use M3 to denote a triangulated 3-manifold with
metric p.

I. Pushing tame sets to polyhedral ones. One of the important results of the
fifties shows that homeomorphisms of 3-manifolds are not wild. A result [10,
Theorem 2; 2, Theorem 9] may be stated as follows. We use MS to denote a tri-
angulated 3-manifold (perhaps different from M 3).

THEOREM 1.1. Suppose
U is an open subset of M3,
h is a homeomorphism of U into M3, and
e(x) is a positive continuous function defined on U.
Then there is a homeomorphism g: U — h(U) such that
g is PL and
p(g(x), h(x)) <e(x) for each xe U.

At the expense of complicating the statement of Theorem I.1 we could have
added that if C is a closed subset of U on which 4 is locally PL, thereissucha g
that agrees with 4 on C.

QUESTION. Suppose U, & are as given in Theorem 1.1. Is there an isotopy H,
(0O=t=1) of U onto A(U) such that = Hy and each H; is polyhedral for se
(0, 1]? It would be especially nice to get an H, that connects /# with a nearby g in
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some canonical way —or even if g,, g, are two close approximations to #, to iso-
tope g; to g, in some canonical way.

Suppose T is a triangulation of M 3. A surface S in M3 is polyhedral if it is the
union of 2-simplexes of some subdivision of 7. It is tame if there is a homeomor-
phism £ of M3 onto itself such that A(S) is polyhedral. We say that S has a Car-
tesian product neighborhood if for some neighborhood V of S there is a homeo-
morphism A: (SX R, Sx0)— (V, S).

A surface S in M3 is called 2-sided if it separates some connected open subset
of M3 containing S. It is known that any 2-sphere in M3 is 2-sided and any sur-
face S in R3 is 2-sided in R3.

THEOREM 1.2. Each 2-sided tame surface in M3 has a Cartesian product neigh-
borhood.

Theorem 1.2 has the following converse.

THEOREM 1.3. A surface S in M3 is tame if it has a Cartesian product neigh-
borhood.

The proof comes from giving S a triangulation 7°(S) and extending 7(S) to a
prismatic triangulation 7y of SX R!=M,. Use Theorem 1.1 to get a homeomor-
phism g of Sx R! onto itself that is PL with respect to 7 on SX(0,1)= U and
the identity on My—U. Let f be a homeomorphism of Sx R! onto itself that is
fixed outside S x (—1, 1) and shoves S x 0 onto a surface in S X (0, 1) that is poly-
hedral with respect to 7. The homeomorphism that is gfg ~! on SX R! and the
identity on M3 —[Sx R!] shows that S is tame. We have pushed S to the side.

(I

A surface S is locally polyhedral at a point s € S if there is a polyhedral disk D
in S with s € Int D. Also S is locally tame at a point s € S if there is a homeomor-
phism H: M3 — M3 such that A(S) is locally polyhedral at A(s).

In our discussion of the proof of Theorem I.3 we could have considered push-
ing only a part of S. The next result follows.

THEOREM 1.4. Suppose
S is a 2-sided surface in M3,
U is an open subset of S on which S is locally tame, and
e(x) is a continuous non-negative function defined on M3 that is positive
on U.
Then there is an isotopy H, (0 <t =<1) of M3 onto itself such that
Hy is the identity,
each p(x, H,(x)) <e(x),
H,(S) is locally polyhedral at H,(s) if t >0, se U, and
H, (s1) # H,,(s2) for t, #1,, sie U, and s> € S.

We say that a surface S in M3 is bicollared if it has a Cartesian product neigh-
borhood. 1t is locally bicollared if for each point p € S there is a neighborhood N
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of p in M3 such that SN N is bicollared in N. Theorems 1.2 and 1.3 can be ex-
tended as follows.

THEOREM 1.5. A surface in M3 is tame if and only if it is locally bicoliared.

QUESTION. If one omits the requirement in Theorem 1.4 that S be 2-sided,
can one get an H, satisfying all but the last of the four restrictions?

II. Recognizing tame surfaces. Theorem 1.5 gives a criteria for recognizing
tame surfaces but we consider others. We do not give the proof of Theorem II.1
here but mention that one is found in [3, Theorem 2.2].

THEOREM 11.1. 4 2-sphere S in R3 is tame if for each component U of R3—S
there is a sequence S1, S, ... of 2-spheres in U and homeomorphisms h;: S— S,
hy: S— S,, ... such that each p(x, hi(x)) <1/i.

We say that the S above can be homeomorphically approximated from both
sides.

QUESTION. The following question [9, p. 280] has received considerable atten-
tion. Is a 2-sphere S in R3 tame if for each component U of R3 — S and each posi-
tive integer / there is a map g; of S into U such that p(s, g;(s)) <1/i?

Note that in the above we hypothesized maps rather than homeomorphisms as
hypothesized in Theorem II.1. However, it is known that S is tame if it can be
homotoped to either side as described in Theorem I1.2. See [9, Theorem 1].

THEOREM 11.2. A 2-sphere S in R3 is tame if for each component U of R3—S
there is a map H of Sx[0,1] into R3 such that for each s€ S
H(sx0)=s, and
H(sxt)cU fort>0.

A set X is 1-ULC if for each e > 0 there is a > 0 such that each map of Bd D?
into a subset of X of diameter less than 8 can be extended to send D2 into a sub-
set of X of diameter less than e. It is 1-LC at a point p € X if for each neighbor-
hood N, of p there is a neighborhood N, of p such that each map of Bd D? into
X NN, can be extended to map D2 into XN N,;. A useful result that is proved in
[4, Theorem 7] but not here is the following.

THEOREM I1.3. A surface S in M3 is tame if M3 — S is 1-LC at each point of S.

THEOREM 11.4. A 2-sphere S? in R3 is tame if each component of R3—S is
1-ULC [4, Theorem 2].

III. Approximating surfaces. The following is a much-used theorem about
approximating surfaces. See [1, Theorem 1].

THEOREM 111.1. Suppose e(x) is a non-negative continuous function defined
on a surface S in M3. Then there is a homeomorphism h of S into M3 such that
h(S) is locally polyhedral at h(s) if e(s) >0, and
p(s, h(s)) =e(s).
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In working with the local structure of a surface S it sometimes suffices to deal
with 2-spheres as shown by the following application of Theorem III.1. See [4,
Theorem 35].

THEOREM 111.2. If p is a point of a surface S in M3 and € > 0, then there is a
disk D? in S such that
Pelnt S, and
D? lies in a 2-sphere K2 in M3 where diameter K2 < ¢ and K? is locally
polyhedral on K*— D2,

An extension of Theorem III.1 that has had far-reaching applications is the
following.

THEOREM 111.3 (Side Approximation Theorem). Suppose S is a 2-sphere in R3
and € > 0. Then there is a homeomorphism h of Sx[—1,1] into R3 such that
each component of S—h(SX[—1,1]) has diameter less than e,
each h(S X t) is polyhedral, and
each p(s,h(sXt))<e.

We say that A(S X (—1)) and A(S X 1) are approximating S almost from the side
—in fact from different sides.

The known proofs of Theorem IV.3 are difficult and will not be given here.
One such proof is given in Chapter XIII of [7].

IV. Tame Sierpinski curves. A sequence of sets X;, X>, ... is called a null se-
quence if for each € > 0 there are at most finitely many X;’s with diameters more
than e. Let D,, D,, ... be a null sequence of mutually disjoint disks on a 2-sphere
S? such that their union is dense in S2. A Sierpinski curve is any set homeomor-
phic to S2—U Int D;. Some people regard it as looking like a thin slice of cheese.
A disk D can be changed to a Sierpinski curve by removing from it the interiors
of a null sequence of mutually disjoint disks whose union is dense in D.

It may be shown that the topology of a Sierpinski curve does not depend on
the null sequence of disks whose interiors are removed from S2. A point of a
Sierpinski curve Y is called an inaccessible point if it is the image of a point of
S?—U D; under the homeomorphism of $%2—UJ Int D; onto Y. It follows from
Moore’s decomposition theorem [11] for a 2-sphere that the set of inaccessible
points of Y is homeomorphic to S2— Z where Z is a countable dense set of points
in S2. We use 7(Y) and A(Y) to denote (respectively) the set of inaccessible points
and the set of accessible points of Y.

A Sierpinski curve Y in M3 is called tame if it lies on a tame 2-sphere in M 3.
This is not to say that the 2-sphere S? used to define Y is tame or even that it
lies in M3. However, if Y is tame in M3, it lies on a tame 2-sphere S in M3 and
there is a null sequence of mutually disjoint disks E;, E,, ... on S such that
Se—UIntE;=Y.

An isotopy H,; (0=t =<1) is a e-isotopy if Hj is the identity and each

p(HO’H!) =e€.

The following result is known.
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THEOREM 1V.1. Suppose Y, Y, are Sierpinski curves in the same disk D such
that each Y; contains Bd D. Then there is an isotopy H, (0=t =<1) of D onto it-
self such that

Hy is the identity,

each H, is fixed on Bd D, and

H\(Y1)=Y,.
If e is a positive number such that each component of D—Y, or of D—Y> has di-
ameter less than €/2, then we can pick such an H that is an e-isotopy.

If C is a closed set on the interior of a disk D which does not contain an open
subset of D, there is a Sierpinski curve Y in D such that Bd D C Y and C belongs
to the inaccessible part of Y. Hence Theorem IV.1 provides us with an engulfing
theorem that permits a Sierpinski curve to gobble up certain closed sets. See the
Lemma in [6, p. 156].

THEOREM 1V.2. Suppose
D is a disk,
e>0,
Y is a Sierpinski curve in D containing Bd D such that each component
of D—Y has diameter less than ¢, and
C is a nowhere dense closed set in D.
Then there is an e-isotopy H, (0 <t <1) of D onto itself such that
each H, is fixed(on Bd D, and
CNInt D lies in the inaccessible part of H(Y).

We shall apply Theorem IV.2 in the case where D is a tame disk in M 3. If N is
an open subset of M3 containing Int D we can use the Cartesian product struc-
ture on Int D to feather H, (0 <7 =<1) out into M3 so that each of the extended
H,’s is fixed off N.

We make use of the following result, whose proof is given in [5, Theorem 8.2].

THEOREM 1V.3. A 2-sphere in M3 is tame if it is locally tame mod a tame Sier-
pinski curve.

Suppose Y is a tame Sierpinski curve in M3 in a possibly wild 2-sphere 52 in
M3 and e(x) is a continuous function on S2 that is O on Y and positive on $2-Y.
A combination of Theorems IV.3 and III.1 enables us to know that there is a
homeomorphism /# of S2 into M3 such that 4 is fixed on Y, A(S?) is locally poly-
hedral mod Y, and p(x, A(x)) <e(x). The holes in S—Y correspond to those in
h(S)—Y, and corresponding holes have the same boundaries and are close.

The Side Approximation Theorem (Theorem III.3) can be used to show that
even wild 2-spheres in M 3 contain tame Sierpinski curves. The result is stated as
follows and the proof is given in [S, Theorem 9.1}.

THEOREM 1V.4. If S? is a 2-sphere (possibly wild) in M3, then there is a se-
quence Y1, Y., ... of tame Sierpinski curves in S? such that
each component of S?—Y; has diameter less than 1/i, and
each Y; lies in the inaccessible part of Y; ;.
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Theorems 1V.4, IV.3, and II1.1 imply that any wild 2-sphere in M3 can be ob-
tained by starting with a tame 2-sphere, getting a Sierpinski curve in it with small
holes, and filling in the small holes with small disks (possibly wild).

V. Moving wild spheres. A theorem is now given to introduce methods we shall
use to ambiently isotope wild surfaces in M3 so as to simplify the intersection of
the moved surfaces with other objects.

THEOREM V.1. Suppose

S?2 is a 2-sphere (possibly wild) in R3,

P is a plane in R3, and

€e>0.

Then there is an e-isotopy H, (0<t<1) of R3 onto itself such that

PN H,(S?) has only a finite number of components with diameters
more than e, and

each component of PN H,(S?) with diameter more than € is a polygonal
simply closed curve.

Proof. It follows from Theorem 1V.4 that there is a tame Sierpinski curve Y in
S?2 such that each component of S2—Y has diameter less than ¢/n, where 7 is to
be selected later. Change S2 to a tame 2-sphere S§ by using Theorems II1.1 and
I'V.3 to replace the components of S2—Y so that the components of S§—Y have
diameters less than e¢/n.

Since S¢ is tame, it follows from Theorem 1.4 that there is an (e/n)-isotopy F,
(0 <t =<1) such that F,(S3) is polyhedral and in general position with respect to
P. The components of F;(S§ —Y) have diameters less than 3e /n. The components
of PN F,(S2) are polygonal simple closed curves.

It follows from Theorem IV.2 that there is a (3¢/n)-isotopy G, (0=t =<1) of
F(S2) onto itself such that PN G, F,(S3) lies in the inaccessible part of G; Fi(Y).
Without changing its name, we suppose G, (0<r=<1) is extended to a (3¢/n)-
isotopy on R?3 that is invariant on F;(S?). The isotopy H obtained by following F
with G satisfies the conditions of the theorem for a suitably chosen n.

Now to pick n. Since F'is an (e/n)-isotopy and G is a (3¢/n)-isotopy, H is a
(4e/n)-isotopy. Since components of S2—Y have diameters less than €/n, the
diameters of the images of these components under H; are less than 9¢/xn. Hence
we pick n=09.

The 2-sphere S is the union of the accessible part of Y, the inaccessible part
of Y, and S—Y. The image under H; of the accessible part of Y misses P since
PN H;{(S?) lies in the inaccessible part of H;(Y). The images under H; of the
components of S—Y have diameters less than e. O

We now extend Theorem V.1 by making repeated applications of the techniques
of its proof. Theorem V.2 is a variation of Theorem 1 of [6].

THEOREM V.2, Under the hypotheses of Theorem V.1 there is an e-isotopy H,
(0=<t=1) of R3 onto itself such that
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each H, is fixed outside the e-neighborhood of PN S?;

each nondegenerate component of PNH,(S?) is a polygonal simple
closed curve;

for each 8 >0, at most a finite number of components of PN H,(S?)
have diameters of more than 6;

each arc in P that pierces PN H(S?) also pierces H{(S?); and

each point of PN\ H,(S?) is a limit point of the union of the
nondegenerate components of PN H(S?).

Proof. We shall pick a sequence ¢, Y1, g1 /1, €2, Y2, 82 h2, €3, ..., but an element
of the sequence is not selected until the previous ones have been used. First we
stipulate that €, = ¢/2 and although we do not pick the other ¢;’s now, we remark
that they will be selected so that X ¢; <e.

Let Y; be a tame Sierpinski curve S2 such that each component of S2—Y, has
diameter less than ¢; /9.

Pick n; and g; as we picked F; and G, in the proof of Theorem V.1, subject
to the restrictions that the isotopies leading to A; and g, are fixed outside the ¢;-
neighborhood of PN S2. Rather than g, #,(S&) being polyhedral everywhere we
only need that it be polyhedral near P.

In selecting e;, we want to start taking precautions to make the limit of the
gi1hi, g2hag1hy, g3hsgrhygihy, ... be a homeomorphism rather than merely a
map. We want to prevent two points from being moved to the same point. We
pick €, to be less than ¢; /2 and also subject to the further restriction that if p, g
are points of R3 with p(p, q) > €, then p(g1 1 (p), g111(q)) > €.

Pick Y, so that the components of g, #;(S?—Y>) have diameters less than ¢, /9
and so that Y; lies in the inaccessible part of Y5. In defining g, A, we use g #;(S?)
and g; 4, (Y>) instead of S2 and Y;. The accessible part of Y, was sent by g; A, into
the complement of P so we pick g, A, to be the identity on g, 4,(Y}).

We follow this pattern to define ¢, Y;, g1 /1, €2, Y2, 22 h3, €3, ... and note that
H,=limit(g; h;, g»h, g hy, ...) satisfies most of the requirements of the theorem.

We now examine the condition on piercing. If an arc 4 in P pierces (in P) one
of the polygonal arcs in PN g; A (Y;) at a point p, it pierces g, #,(S3) at p, where
S¢ is a replacement for S2 that is locally tame near P. Since p is an inaccessible
point of g; A;(Y;), there are small simple closed curves in g; #;(Y;) that circle
p in g1 h1(S%). Hence they circle A. These simple closed curves are not moved
further since H, = g, h; on Y;. Hence, if A intersects H;(S?) only at p, A pierces
H,{(S?). Similarly, if an arc in P pierces (in P) one of the polygonal arcs in
PNgih;i---g>hy g hi(Y;) at a point p, then the arc pierces H(S?) at p if it does
not intersect H,(S?2) at any other point.

If there are points of PN H(S?) that are not limit points of the union of the
nondegenerate components of PN H,(S?), H;(S) may be pushed to the side of P
near these points. This push does not alter the piercing. ]

We now consider how to move a 2-sphere S2 in R3 to improve its intersection
with the 2-skeleton 72 of a triangulation 7 of R3. To begin with, S2 might inter-
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Figure 1

sect 72 in a terribly looking set. In fact, if AZis a 2-simplex of 7, TN A2 might
look even worse than shown in Figure 1.

For each ¢ >0, S? can be e-approximated by a polyhedral 2-sphere. Hence,
there is an e-homeomorphism g:.S?— R3 such that g(S?) is polyhedral. Then
A%2N g(S?) might look like Figure 2.

@

Figure 2 Figure 3

However, g is not an ambient homeomorphism and its domain is S? rather than
R3. The following theorem shows that there is an echomeomorphism H;: R3 — R3
such that A2N H,(S?) might look like Figure 3.

THEOREM V.3. Suppose
T is a triangulation of R3,
S? is a 2-sphere (possibly wild) in R3, and
e>0.
Then there is an e-isotopy H, (0 <t =<1) of R3 onto itself such that:
each H, is fixed outside the e-neighborhood of S>NT?2;
H,(S?) misses each vertex of T;
if Al is a 1-simplex of T, then
A'NH(S?) is finite and
Al pierces H{(S2) at each point of A'"NH,(S?); and
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if A% is a 2-simplex of T, then

each nondegenerate component of A2NH,(S?) is either a polygonal
spanning arc of A% or a polygonal simple closed curve in Int A?,

any arc in A? that pierces A>2N H(S?) in A% also pierces H(S?),

for each & >0, at most finitely many components of A2\ H,(S?)
have diameters more than 6; and

each degenerate component of A2NH,(S?) lies in Int A? and is a
limit point of the union of the nondegenerate components.

Proof. It is easy to ambiently move S2 so that the adjusted S? misses 79, but
getting an adjustment that is nice near 7! is harder. If one blindly follows the
techniques of the proof of Theorem V.2 and uses 7°? instead of P, one gets an H
such that 72N H,;(S?) is somewhat nice except near T'!'—but there is a problem
in making it nice there. Even if one follows [6, Theorem 2] and first gets an H,
(0=<t=1/2) so that T°NH,,,(S?)=0 and T'NH,,(S?) is finite and then con-
tinues the isotopy following techniques of the proof of Theorem V.2 (but without
moving 7; further), one gets an A such that 7'N H(S?) is finite; but there is no
assurance that, for some 2-simplex A of 7, ANH;(S?) does not contain several
arcs whose intersection is a point of Bd A.

To avoid such difficulties we proceed as follows. First, suppose without loss of
generality that 7°NS2=0and TN S? is of dimension 0. We then model a proof
after that of Theorem V.2 by picking ¢, Y1, g1 /11, €2, ... but with restrictions. We
pick €; even smaller than ¢/2 but leave that detail until later. Then we select Y;,
S2, and g; h; so that A,(S?) is locally polyhedral near 72 and in general position
with respect to 72. An additional restriction that we impose is that 7'NA;(S?) C
hi(I(Y1)). Before showing why this restriction is possible, we show how to pro-
ceed if it is possible.

Pick g; to be invariant on /;(S) and so that 7>Ng; /#,(S3) lies in the image
under g; A; of the inaccessible part of Y; while g; #;(S2—Y;) misses 7'\

The homeomorphism g; #; defines H, =1limit(g; 7, g2h>g1h;,...) on Y}, and it
only remains to define H, near the components of g; #;(S2—Y;). The closures of
each of these components is a disk D such that 7T'ND =@ and T?’NBd D=97.
We pick an open set N(D) about Int D so that T'NN(D) = & and pick the g; #;’s
so that H,(D) C N(D).

Finally, we show how to get h; so that A;(S%—Y;) does not intersect 7'!. Let
Ry, R,, ..., R, be a finite number of mutually disjoint rectangular planar disks each
of diameter less than e/2, and such that no vertex of 7T lies on any R;, T'NS2C
U Int R;, and T'NR; = p; q; is a bisector of R; perpendicular to two edges E;,E;,
of R; (where S?N(Ei,UE;,)= ). See Figure 4. Let §; be the minimum of the
length of E; and p(S?, E; UE;,). Let ¢ be less than any §;.

Now pick a preliminary A; (which we call k) so that k(S3) is locally polyhedral
and in general position not only near 7°2 but also near each R;. We pick it in much
the same way that we picked gy A, in the proof of Theorem V.2, but the compo-
nents of k(S2—Y;) have diameters less than ¢, rather than less than ¢/4. We do
not yet suppose that k(S2—Y;) misses 7. When we modify & to get this, we will
designate the modified k£ by A;.
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Figure 4 shows R;Nk(S?) as polygonal and R;Nk(S2—Y;) as the union of
squiggles. Since these squiggles lie in k(S2—Y)) and R; N k(S?) misses k(A(Y})),
then if py, p», ... is a sequence of points of R,Nk(S?—Y;) converging to a point
of RiNk(S?) and Z; is a squiggle containing p;, the diameters of the Z;’s con-
verge to 0. Consider the decomposition of R; whose nondegenerate elements are
squiggles with holes filled. It follows from [10] that there is a spanning arc 4; of
R; from p; to g; that misses each squiggle and each vertex of R;Nk(S3) and is
such that 4;N k(S?) is finite and pierces 4(S3) at each point of A,—ﬁk(S(;'). Since
there is an isotopy of R; onto itself that is fixed on R; N k(S3) and makes A; polyg-
onal, and this isotopy can be feathered into R3 without moving k(S3), we sup-
pose without loss of generality that A4; is polygonal and normal to R;Nk(S3) at
each point where they intersect.

Let f; be a PL homeomorphism of R; onto itself that is fixed on Bd R;, takes
A; to the straight segment from p; to g;, and is an isometry near each point of
A;iNk(SE). Let C; be a small rectangular solid having R; as a spanning disk. Ex-
tend f; to a PL homeomorphism of C; onto itself that is fixed on Bd C;, f; on R;
and an isometry near each point of A;ﬂk(S(y"). We suppose 7°2 and the extended
fi(82) are in general position. The required #, is k¥ modified by the various ex-
tended f;’s. Note that 4,(S3) is locally polyhedral near 72 and 4,(S2— Y;) misses
T'!. Craggs gave an alternative description of such an 4, in [8, Theorem 6.1]. [
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In a similar fashion we could treat a noncompact S and a variable ¢ to get the
following variation of Theorem V.3.

THEOREM V.4. Suppose
T is a triangulation of M3,
S is a surface (possibly wild) in M3, and
e(x) is a non-negative continuous function defined on R3 and positive on S.
Then there is an isotopy H, (0<t=<1) of M3 onto itself such that
Hy is the identity,
each p(x, H,(x)) <e(x), and
H,(S) satisfies the same restrictions about its intersections with the skeletons
of T as did H,(S?) in Theorem V.3.

The following result was stated as Theorem 4 in [6] with the statement that
the proof would be given in a later paper. This is that later paper.

THEOREM V.5. Suppose Sy, S, are compact surfaces in M3. Then for each
e >0 there is an e-isotopy H, (0<t <1) of M3 onto itself such that
each H, is fixed outside the e-neighborhood of SN S,, and
the collection of nondegenerate elements of S\ H,(S,) is a null sequence
of tame simple closed curves whose union is dense in SN H(S>).

Proof. So that we can speak of Sierpinski curves rather than sets which are
locally like Sierpinski curves, we suppose S; and S, are 2-spheres. Our proof will
be a modification of the preceding three proofs but we avoid epsilonics. We use
Y; (i=1,2) to denote a tame Sierpinski curve in S; with small holes and 7(Y;),
A(Y;) to denote (respectively) the inaccessible and accessible parts of Y;. Also, S;o
denotes a tame 2-sphere obtained by replacing closures of components of S; -Y;
by nearby closed disks. Let A;, i, h; be homeomorphisms of M3 onto itself that
are the ends of short isotopies starting at the identity and carrying Sig, Sy (re-
spectively) to polyhedral sets, so that %;(Sio) N Ay /11(S,0) is the union of a finite
number of polyhedral simple closed curves. Then

(a) hy(S10) Nhzh1(S2) =U J;.

Let g, be the end of a short isotopy invariant on /,(S;9) that makes A;(Z(Y}))
engulf /,(S10) N Ay h(S2). Then

(b) gih(I(Y1))DU J;
and
©) gAY )N hy hy(Sx)=D.

Also, g, is the end of a short isotopy invariant on /1, /;(S,0) that makes A, A (1(Y3))
engulf ]’lz /’ll (Sz()) N 21 hl (Sl). Then

(d) g2hm(I(Y2)) DU J;
and

(e g2 i (A(Y2))Ng (S)=9.



414 R. H. BING

Then
U (Ji) = hi1(S10) Nhy by (Sz)  [from (a)]
=g l’l](Sl()) Ng, h, hl(Szo) [from definitions of 21, g2]
Cgi1hI(Y))Ngahyh(I(Y)) [from (b) and (d)]
C g1 (Sw)Ngrhz hi(Sx)=UJ;.
Hence,
(f) gimI(Y1))Ngrh (I(Y2))=U J;.
The required isotopy H, (0 <7 <1) is defined on 0 <7 =<1/2, so that
(2) Hyp=hi"gi 'g2hah =k.

The image of S;Nk(S,) under g, A, is

g1r(S)Ng 1 h(I(Y2)UA(Y,)U(S2—Y23)).
However,
gii(S)Ng i (A(YL))=0D [by (e)l,

so g1 1 (SN kS;) is the union of the two closed sets g; /#;(S1) N gy A, h(I(Y,)) and
g1 (S1))Ngyhy hi (S, —Y3). The components of the second of these sets are small,
so we examine the first set:

gtmI(YDUA(YDU(S —Y))Ngahy i (1(Y3)).
Note that
gim(A(Y)Ngha i(I(Y2))=2 [by ()],
and components of g, 4 (S—Y1)N g, hy h(I(Y>,)) are small. We look at
g1 (I(Y))Ngahy h(I(Y?)).
However, this is U (J;) by condition (f). Then the components of S;Nk(S,) that
are not small are simple closed curves in A; g (U J;).

We continue the description of H, (0 <¢=<1) as in the proof of Theorem V22,
but with one exception. Recall in the proof of Theorem V.2 that as a final niove
we pushed isolated points of PN H,(S?) to one side of P. We might encounter
difficulty in pushing isolated points off S;N H,(S;) at the end so if the possibility
of an isolated point developing as 7 approaches 1 occurs, we change the S;o and
Spo at later stages to introduce small simple closed curves in the intersection of
their respective images so that each point of SN H,(S,) is a limit point of the
union of the images of the J;’s. ]

Just as we varied Theorem V.3 to consider noncompact surfaces and variable
€’s, a variation of Theorem V.5 could be given.

REFERENCES

1. R. H. Bing, Approximating surfaces with polyhedral ones, Ann. of Math. (2) 65 (1957),
456-483.



10.

11.

WILD SURFACES HAVE SOME NICE PROPERTIES 415

, An alternative proof that 3-manifolds can be triangulated, Ann. of Math. (2)
69 (1959), 37-65.
, Conditions under which a surface in E3 is tame, Fund. Math. 47 (1959), 105-

139.

, A surface is tame if its complement is 1-ULC, Trans. Amer. Math. Soc. 101
(1961), 294-305.

, Pushing a 2-sphere into its complement, Michigan Math. J. 11 (1964), 33-45.
, Improving the intersections of lines and surfaces, Michigan Math. J. 14
(1967), 155-159.

, The geometric topology of 3-manifolds, Amer. Math. Soc., Providence, R.I.,

1983.

. R. Craggs, Improving the intersection of polyhedra in 3-manifolds, 1llinois J. Math.

12 (1968), 567-586.

J. Hempel, A surface in S* is tame if it can be deformed into each complementary
domain, Trans. Amer. Math. Soc. 111 (1964), 273-287.

E. E. Moise, Affine structures in 3-manifolds, V. The triangulation theorem and
Hauptvermutung, Ann. of Math. (2) 56 (1952), 96-114.

R. L. Moore, Concerning upper semicontinuous collections of continua, Trans.
Amer. Math. Soc. 27 (1925), 416-429.

Department of Mathematics
University of Texas
Austin, Texas






