LAMINATIONS, FINITELY GENERATED PERFECT GROUPS, AND ACYCLIC MAPS

R. J. Daverman and F. C. Tinsley

1. Introduction. Let (M, N_1, N_2) denote a (n+1)-dimensional cobordism; that is, M is a compact, connected (n+1)-manifold with two boundary components N_1 and N_2 . We investigate the conditions under which (M, N_1, N_2) admits a *lamination*, by which we mean an upper semicontinuous decomposition G of M into closed n-manifolds with $N_k \in G$ (k=1,2). We also consider a closely related question: Given two closed n-manifolds N_1 and N_2 , when does there exist a laminated cobordism (M, N_1, N_2) ?

Homological equivalence of N_1 and N_2 is a necessary condition for the existence of a laminated cobordism (M, N_1, N_2) ; in his initial work [7] Daverman proved that then $H_*(M, N_k) = 0$ (k = 1, 2). We show it not sufficient by presenting an example (Example 3.1) of a cobordism (M, N_1, N_2) satisfying this homology condition and such that there is no laminated cobordism (M', N_1, N_2) .

On the other hand, a well-known sufficient condition for the existence of a lamination $(n \neq 3)$ is that (M, N_1, N_2) be an h-cobordism (each inclusion $i_k : N_k \to M$ is a homotopy equivalence), since then $M - N_2$ is homeomorphic to $N_1 \times [0, 1)$. Other types of laminations exist, however; in the presence of wildness the decomposition elements can have varying homotopy types [7, Example 5.3]. Our chief interest centers on cobordisms (M, N_1, N_2) for which $i_2 : N_2 \to M$ is a homotopy equivalence but $i_1 : N_1 \to M$ is not. Under this assumption on i_2 , it is easy to verify that $H_*(M, N_1) = 0$ and that the kernel of $i_{1\#} : \pi_1(N_1) \to \pi_1(M)$ is perfect. If, in addition, kernel $(i_{1\#})$ is the normal closure of a finitely generated perfect group, then as our main result we demonstrate how to impose a lamination on (M, N_1, N_2) ; in particular, we obtain M, up to attachment of a h-cobordism, as the mapping cylinder of an acyclic map from N_1 to an n-manifold homotopy equivalent to N_2 (Theorem 5.2).

2. Technical lemmas. This section provides a listing of some utilitarian facts about the manifolds admitting laminations.

DEFINITION 2.1. A laminated cobordism is a cobordism (M, N_1, N_2) , where M is a compact (n+1)-manifold having boundary components N_1 and N_2 , together with an usc decomposition G of M into closed n-manifolds such that $N_1, N_2 \in G$.

First we state two results from previous work.

LEMMA 2.2 [7, Corollary 6.3]. In a laminated cobordism (M, N_1, N_2) the inclusion-induced $H_*(g) \to H_*(M)$ is an isomorphism for each $g \in G$.

Received April 2, 1985. Final revision received February 17, 1986. Michigan Math. J. 33 (1986).

LEMMA 2.3 [8, Lemma 3.1]. Let (M, N_1, N_2) be a laminated cobordism, $g \in G$, and C_k the closure of the component of M-g that contains N_k (k=1,2). Then the inclusion-induced $\pi_1(g) \to \pi_1(C_k)$ is a surjection.

The next lemma contains additional information about laminated manifolds. As a notational matter, [K, K] denotes the commutator subgroup of a given group K. If K = [K, K], K is said to be *perfect*.

LEMMA 2.4. Let (M, N_1, N_2) be a laminated cobordism. For k = 1, 2, denote by $i_{k\#} : \pi_1(N_k) \to \pi_1(M)$ the inclusion-induced homomorphism. Then:

- (a) kernel($i_{k\#}$) is a perfect, normal subgroup of $\pi_1(N_k)$, and
- (b) (M, N_1, N_2) is an h-cobordism if both $i_{1\#}$ and $i_{2\#}$ are isomorphisms.

Proof. Let \tilde{M} be the universal cover of M. Then Bd $\tilde{M} = \tilde{N}_1 \cup \tilde{N}_2$, where \tilde{N}_k represents the cover of N_k corresponding to kernel($i_{k\#}$), a normal subgroup of $\pi_1(N_k)$. The given lamination on M lifts to a lamination of sorts \tilde{G} on \tilde{M} . Lemma 2.3 ensures that the elements of \tilde{G} are connected, but the decomposition G may fail to be use, since in general its elements are non-compact. Nevertheless, we still have $H_*(\tilde{M}, \tilde{N}_k) = 0$ [7, proof of Proposition 8.1]. Due to the simple-connectivity of \tilde{M} , $H_1(\tilde{N}_k) = H_1(\tilde{M}) = 0$. But $H_1(\tilde{N}_k) \cong \pi_1(\tilde{N}_k)/[\pi_1(\tilde{N}_k), \pi_1(\tilde{N}_k)]$ and, thus, kernel($i_{k\#}$) $\cong \pi_1(\tilde{N}_k)$ is perfect, which proves (a). For (b), it follows that $\pi_1(\tilde{N}_k) = 1$. By Whitehead's theorem [21, Theorem 1], $\pi_i(\tilde{M}, \tilde{N}_k) = 0$ and $\pi_i(M, N_k) = 0$ for i > 1, so the inclusions $N_k \to M$ are homotopy equivalences.

The following lemma is a special case of a well-known fact (see [14, Lemma 2.0]). We include a proof for completeness.

LEMMA 2.5. If (M, N_1, N_2) is a cobordism such that $i_2: N_2 \to M$ is a homotopy equivalence, then (1) $H_*(M, N_1) = 0$ and (2) kernel $(i_{1\#})$ is perfect.

Proof. Let $(\tilde{M}, \tilde{N}_1, \tilde{N}_2)$ be as in the proof of Lemma 2.4. Then $\tilde{i}_2 : \tilde{N}_2 \to \tilde{M}$ is a proper homotopy equivalence. By duality, $H_*(\tilde{M}, \tilde{N}_1) \cong H_c^*(\tilde{M}, \tilde{N}_2)$, where H_c^* denotes cohomology with compact supports [10, Proposition 7.2], and $H_c^*(\tilde{M}, \tilde{N}_2) = 0$ because \tilde{i}_2 is a proper homotopy equivalence. In particular, $H_1(\tilde{N}_1) = 0$. As in the proof of Lemma 2.4, kernel($i_{1\#}$) is perfect. This proves (2); (1) follows from standard duality arguments.

3. Homology cobordant manifolds that are not laminated cobordant. In this section we produce an example showing that the existence of a homology cobordism (M, N_1, N_2) is not sufficient to guarantee the existence of a laminated cobordism (M', N_1, N_2) having the same boundary components.

EXAMPLE 3.1: a cobordism (M, N_1, N_2) satisfying $H_*(M, N_k) = 0$ for k = 1, 2 such that there is no laminated cobordism (M', N_1, N_2) .

Assume $n \ge 5$. We construct (M, N_1, N_2) in the (n+1)-sphere, S^{n+1} . Let $S^n \subset S^{n+1}$ be an equator and $S^n \times [-3, 3] \subset S^{n+1}$ a bicollar on $S^n = S^n \times \{0\}$. Let $f_1: S^{n-2} \times B^2 \to S^n$ be an unknotted PL embedding, $f_2: S^{n-2} \times B^2 \to f_1(S^{n-2} \times \operatorname{Int} B^2)$ a PL (possibly knotted) embedding inducing isomorphisms on integral homology,

and C_k the closure of the complement of $f_k(S^{n-2} \times B^2)$ in S^n (k=1,2). Note that C_1 is PL homeomorphic to $S^1 \times B^{n-1}$ and, by duality, the inclusion $C_1 \to C_2$ induces homology isomorphisms.

In $S^n \times [-3, 3] \subset S^{n+1}$ define

$$N_1 = (f_1(S^{n-2} \times \operatorname{Bd} B^2) \times [-1, 1]) \cup (C_1 \times \{-1, 1\})$$

and

$$N_2 = (f_2(S^{n-2} \times \operatorname{Bd} B^2) \times [-2, 2]) \cup (C_2 \times \{-2, 2\}).$$

Now let M denote the closure of the component of $S^{n+1} - (N_1 \cup N_2)$ bounded by both N_1 and N_2 . For k = 1, 2 observe that N_k is the double of C_k along its boundary and, consequently, N_1 is homeomorphic to $S^1 \times S^{n-1}$. Also, M is the closure of $(C_2 \times [-2, 2]) - (C_1 \times [-1, 1])$. Of course the inclusion $C_1 \times [-1, 1] \rightarrow C_2 \times [-2, 2]$ induces homology isomorphisms, so excision shows $H_*(M, N_1) = 0$; by duality again, $H_*(M, N_2) = 0$.

The example arises by letting f_2 be the knotted embedding of Stallings [15, Theorem V] for which $\pi_1(C_2) \cong Z$ and $\pi_2(C_2) \neq 0$. Then $\pi_1(N_2) \cong Z$ as well and $\pi_2(N_2) \neq 0$, since C_2 is a retract of N_2 .

CLAIM. There exists no laminated cobordism (M', N_1, N_2) .

Suppose otherwise. By Lemma 2.3, $i_{k\#}: \pi_1(N_k) \to \pi_1(M')$ is a surjection (k = 1, 2). Since $\pi_1(N_k) \cong Z$ contains no non-trivial perfect subgroups, Lemma 2.4(a) attests that $i_{k\#}$ is also an injection. Thus, Lemma 2.4(b) indicates that (M', N_1, N_2) is an h-cobordism. In particular N_1 and N_2 are homotopy equivalent, which is patently absurd, because $\pi_2(N_1) \cong \pi_2(S^1 \times S^{n-1}) \cong 0$ and $\pi_2(N_2) \neq 0$.

4. Extended mapping cylinders of acyclic maps. Here the goal is to construct laminated cobordisms as mapping cylinders of certain acyclic maps.

A compact subset K of an ANR X is *strongly Z-acyclic* if each neighborhood U of X contains another neighborhood V of X such that the inclusion-induced $H_*(V;Z) \to H_*(U;Z)$ is trivial. A map $f:X \to Y$ between ANR's is *acyclic* if $f^{-1}(y)$ is strongly Z-acyclic for each $y \in Y$. A compactum K is *nearly* 1-movable if the following holds for some (and hence for every) embedding of K in an ANR X:

Each neighborhood U of K contains another neighborhood V of K such that for every loop $L: \operatorname{Bd} B^2 \to V$ and for every neighborhood W of K there exists a finite collection of pairwise disjoint disks $\{B_i\}$ in $\operatorname{Int} B^2$ and there exists an extension L' of L to $L': (B^2 - \bigcup \operatorname{Int} B_i, \bigcup \operatorname{Bd} B_i) \to (U, W)$.

Less formally, this amounts to the assertion that every loop in V is homotopic in U to a product of conjugates of loops in W. Finally, given a map $f: X \to Y$, we define the extended mapping cylinder of f, $M_e(f)$, to be $X \times [-1, 0] \cup_{\tilde{f}} Y \times [0, 1]$, where $X \times \{0\}$ and $Y \times \{0\}$ are identified via the map $\tilde{f}(x, 0) = (f(x), 0)$. Note that this is simply the standard mapping cylinder with a collar attached to Y.

The following should be transparent.

PROPOSITION 4.1. If $f: N_1 \to N_2$ is a map such that $M_e(f)$ is a compact (n+1)-manifold with boundary, then $(M_e(f), N_1 \times \{-1\}, N_2 \times \{1\})$ is a laminated cobordism.

The next result records conditions under which extended mapping cylinders are manifolds.

THEOREM 4.2. Let $f: N_1 \to N_2$ be a surjective map between closed n-manifolds (n > 3) such that each preimage $f^{-1}(y)$ is nearly 1-movable and of dimension at most n-2. Then the extended mapping cylinder $M_e(f)$ is a manifold if and only if f is acyclic.

Proof. Assume $M_e(f)$ is a manifold. Let V be an open ball neighborhood of a point $y \in N_2$. Then $M_e(f | f^{-1}(V))$ is also a manifold and the inclusion

$$f^{-1}(V) \times [-1, 0) \to (f^{-1}(V) \times [-1, 0)) \cup (V \times \{0\})$$

induces homology isomorphisms [7, Corollary 6.3]. Thus, $f^{-1}(V)$ has the homology of an open *n*-ball and so f is acyclic.

Now suppose f is acyclic. According to a result of Borsuk [2, Theorem 9.1, p. 116], $M_e(f)$ is an ANR. That it is a generalized n-manifold follows from the Vietoris-Begle mapping theorem [1] and the observation that $M_e(f)$ is the acyclic image of $N_1 \times [-1, 1]$. Applying Edwards' cell-like approximation theorem [11] and a resolution theorem (either [4, Theorem 7.2] or the more general result of Quinn [17; 18], which does apply because $M_e(f)$ obviously contains Euclidean patches) in order to prove $M_e(f)$ is a manifold, we need only show that it satisfies the disjoint disks property. Indeed, verifying the following local version of the disjoint disks property is sufficient ([3, p. 107]).

For each neighborhood U of $y \in N_2$ there exists a smaller neighborhood V of y such that any two disjoint loops $L_1, L_2 : \operatorname{Bd} B^2 \to f^{-1}(V) \times [-1, 0)$ can be extended to $L'_2, L'_2 : B^2 \to f^{-1}(U) \times [-1, 0) \cup U \times \{0\}$ having disjoint images.

Fix $y \in U \subset N_2$ and choose V with $y \in V \subset U$ such that V contracts in U and $f^{-1}(V)$ satisfies the hypothesis of nearly 1-movability for $f^{-1}(y)$ in $f^{-1}(U)$. As an easy consequence, L_1 is null-homotopic in $(f^{-1}(U) \times [-1, 0)) \cup \{(y, 0)\}$. Since dimension $(f^{-1}(y)) \le n-2$, we can assume that, after slight adjustment,

$$L_2(\operatorname{Bd} B^2) \cap f^{-1}(y) \times [-1,0) = \emptyset$$

and we can then extend L_2 to a map

$$L_2^*$$
: (Bd $B^2 \times [0,1]$, Bd $B^2 \times \{1\}$) \to ($f^{-1}(V) \times [-1,0) \cup V \times \{0\}$, $V \times \{0\}$)

whose image misses $L_1(B^2)$. Finally, we obtain L'_2 by contracting $L^*_2 \mid \operatorname{Bd} B^2 \times \{1\}$ in $U \times \{0\}$ missing (y, 0).

REMARK. The requirement dim $f^{-1}(y) \le n-2$ in Theorem 4.2 is necessary, since a map $f: N_1 \to N_2$ collapsing out the spine of a noncontractible homology cell leads to a non-manifold mapping cylinder $M_e(f)$. Whether the point inverses

of an acyclic map $f: N_1 \to N_2$ must be nearly 1-movable is a previously identified open question [9, p. 300].

We shall exploit Theorem 4.2 in constructing laminated cobordisms (M, N_1, N_2) for which the inclusion $i_2: N_2 \to M$ is a homotopy equivalence. For any such cobordism, Lemma 2.5 ensures that the kernel of $i_{1\#}: \pi_1(N_1) \to \pi_1(M)$ is a perfect normal subgroup of $\pi_1(N_1)$. Since $i_{1\#}$ is a surjection of finitely presented groups, its kernel is the normal closure of a finite set [20, Lemma 3.11]. The main theorem of this section deals with the special case when this kernel is the normal closure of a finitely generated perfect group.

THEOREM 4.3. Let N_1 be a closed n-manifold ($n \ge 5$) such that $\pi_1(N_1)$ contains a finitely generated perfect subgroup P. Then there exists a laminated cobordism (M, N_1, N_2) where M is the extended mapping cylinder of an acyclic map $f: N_1 \to N_2$ between n-manifolds and where $\pi_1(N_2)$ is isomorphic to $\pi_1(N_1)/[P]$.

Here [P] denotes the normal closure of P in $\pi_1(N_1)$.

Before proving Theorem 4.3, we reproduce some additional group-theoretic nomenclature. A presentation of a group involving k generators and s relations is said to have deficiency s-k; the deficiency of the group is defined to be the minimum deficiency among all its presentations.

PROPOSITION 4.4. Every finitely generated perfect group P is the homomorphic image of a finitely presented perfect group having deficiency 0.

Proof. We give Hausmann's proof [13, §2.1]. Take a presentation

$$\langle x_1, \ldots, x_k : r_1, \ldots, r_s \rangle$$

(s possibly infinite) of P. Since P is perfect, each x_i can be written as a commutator c_i , where c_i is regarded as a word in the free group on the generators $x_1, ..., x_k$. Let

$$P' = \langle x_1, ..., x_k : x_1^{-1}c_1, ..., x_k^{-1}c_k \rangle.$$

It is easy to check that P' is perfect and that P is isomorphic to

$$\langle x_1,...,x_k | x_1^{-1}c_1,...,x_k^{-1}c_k,r_1,...,r_s \rangle$$
.

This completes the proof of Proposition 4.4.

Proof of Theorem 4.3. Choose P' as in Proposition 4.4, let R^* be a 2-dimensional finite CW-complex associated with the given presentation of P', and let R be a finite simplicial 2-complex homotopy equivalent to R^* .

A straightforward Mayer-Vietoris argument shows R^* (and R) to be homologically trivial: If T denotes the 1-skeleton of R^* and $E_1, ..., E_k$ the attached 2-cells, one can see (a) that adjunction of E_i to $T \cup E_1 \cup \cdots \cup E_{i-1}$ must reduce the minimal number of generators required for H_1 by one in order to bring about the obvious $H_1(R^*) \cong 0$, and (b) from an examination of the Mayer-Vietoris sequence, that $H_1(T \cup E_1 \cup \cdots \cup E_i)$ is free of rank k-i while $H_2(T \cup E_1 \cup \cdots \cup E_i)$ is trivial.

Name a PL embedding $h: R \to N_1$ such that $h_{\#}: \pi_1(R) \to \pi_1(N_1)$ has image equal to P. Let Q be a regular neighborhood of h(R) in N_1 . Then $\sum_{i=1}^{n-1}$, the

boundary of Q, is an homology (n-1)-sphere (i.e., $H_*(\Sigma^{n-1}; Z) = H_*(S^{n-1}; Z)$). Because Q has the 2-complex h(R) for a spine and $n \ge 5$, general position ensures that the inclusion-induced homomorphism $\pi_1(\Sigma^{n-1}) \to \pi_1(N_1)$ has P as its image.

Now we decompose N_1 into acyclic compacta. Choose a bicollar $\Sigma^{n-1} \times [0,1]$ on Σ^{n-1} and a Cantor set C in (0,1). Let F^{n-1} be the closure of the complement of a PL (n-1)-cell in Σ^{n-1} and K be an acyclic 2-complex in F^{n-1} as above with $\pi_1(K) \to \pi_1(F^{n-1})$ surjective (n=5) demands more care). Define a decomposition G(K) of N_1 having as its nondegenerate elements the sets $K \times \{c\}$, $c \in C \subset (0,1)$. Topologically these nondegenerate elements of G(K) are all acyclic 2-complexes in $\Sigma^{n-1} \times [0,1]$. Exactly as in [6], the decomposition space $N_2 = N_1/G(K)$ is an n-manifold. Furthermore, $\pi_1(N_2) = \pi_1(N_1)/[P]$, essentially because N_2 contains a natural copy of the cone on K. Consequently, for the decomposition map $f: N_1 \to N_2$, Theorem 4.2 and Proposition 4.1 demonstrate that $M = M_e(f)$ is a manifold and (M, N_1, N_2) is a laminated cobordism.

COROLLARY 4.5. For any homology n-sphere Σ^n $(n \ge 5)$, there exists a laminated cobordism (M, Σ^n, S^n) .

Proof. Since $\pi_1(\Sigma^n)$ is a finitely presented perfect group, we can apply Theorem 4.3 with $P = \pi_1(\Sigma^n)$. The resulting manifold N_2 then is a simply connected homology *n*-sphere, which is equivalent to S^n by the topological Poincaré conjecture [16].

COROLLARY 4.6. For any two homology n-spheres Σ_1^n and Σ_2^n $(n \ge 5)$, there exists a laminated cobordism $(M^*, \Sigma_1^n, \Sigma_2^n)$.

In light of the comments preceding Theorem 4.3, a possible improvement to the theorem would come about if the hypothesis that the perfect group P be finitely generated could be replaced by the weaker assumption that P be the normal closure of a finite set. In fact, for any acyclic map $f: N_1 \to N_2$ between closed, orientable n-manifolds, the kernel of $f_{\#}: \pi_1(N_1) \to \pi_1(N_2)$ is precisely a perfect normal subgroup of $\pi_1(N_1)$ which is the normal closure there of a finite set. To see why, consider the extended mapping cylinder $M_e(f)$. The proof of Theorem 4.2 demonstrates that $M_e(f)$ is a generalized manifold and, of course, the inclusion $N_2 \times \{1\} \to M_e(f)$ is a homotopy equivalence. Thus, the duality argument of Lemma 2.5, which applies equally well in generalized manifolds, yields that kernel $(f_{\#})$ is perfect.

We summarize these observations in a question regarding acyclic maps.

QUESTION 4.7. Suppose N_1 is a closed *n*-manifold $(n \ge 5)$ and P is a perfect normal subgroup of $\pi_1(N_1)$ that is the normal closure of a finite set but not the normal closure of a finitely generated perfect subgroup. Does there exist an acyclic map $f: N_1 \to N_2$ to a closed *n*-manifold N_2 for which kernel $(f_\#) = P$?

The next result indicates that if the question has an affirmative answer, then the point inverses must be somewhat pathological.

PROPOSITION 4.8. Suppose $f: N_1 \to N_2$ is an acyclic map between closed n-manifolds such that $f^{-1}(y)$ is an ANR for each $y \in N_2$. Then kernel $(f_{\#})$ is the normal closure of a finitely generated perfect group.

Proof. There is a finite collection of pairs (y_i, U_i) such that $y_i \in N_2$, U_i is a neighborhood of $f^{-1}(y_i)$ which deformation retracts to $f^{-1}(y_i)$ in N_1 , and $\{U_i\}$ is a cover of N_1 . Join each $f^{-1}(y_i)$ to a basepoint x_0 by an arc α_j such that $\alpha_i \cap (\alpha_j \cup f^{-1}(y_j)) = \{x_0\}$ for $i \neq j$. Let $Y = \bigcup_j (f^{-1}(y_j) \cup \alpha_j)$ and let $i: Y \to N_i$ be the inclusion. It is straightforward to check that $\pi_1(Y)$ is a finitely presented perfect group and kernel $(f_{\#})$ is the normal closure in $\pi_1(N_1)$ of the image of $i_{\#}: \pi_1(Y) \to \pi_1(N)$.

The hypothesis in Proposition 4.8 that each $f^{-1}(y)$ be an ANR can be weakened to the requirement that each $f^{-1}(y)$ be pointed 1-movable.

5. A resolution theorem. Applying the results of Section 4 and some simple-homotopy theory, we restructure certain given laminations as extended mapping cylinders, up to h-cobordisms of acyclic maps. Let (W, M_1, M_2) be a relative cobordism $(M_k$ possibly with boundary) such that W is a compact (n+1)-manifold with boundary, $n \ge 5$, the inclusions $M_k \to W$ are homotopy equivalences, and the closure of Bd $W - (M_1 \cup M_2)$ is homeomorphic to Bd $M_k \times I$ (k = 1, 2). The well-known relative s-cobordism theorem states that associated with (W, M_1, M_2) is a torsion element τ of the Whitehead group of $\pi_1(W)$ and that W is a product $M_k \times I$ if and only if $\tau = 0$ (e.g., [19, Chapter 6]). Also well known is that relative h-cobordisms of arbitrary torsion can be constructed by attaching a finite number of 2- and 3-handles to a given product.

These results also provide information about cobordisms (M, N_1, N_2) in which only the one inclusion $N_2 \rightarrow M$ is assumed to be a homotopy equivalence.

THEOREM 5.1. Suppose (M, N_1, N_2) and (M', N_1, N'_2) are (n+1)-dimensional cobordisms $(n \ge 5, \text{ Bd } N_1 = \emptyset)$ such that the inclusions $N_2 \to M$ and $N'_2 \to M'$ are homotopy equivalences and the inclusion-induced homomorphisms

$$\pi_1(N_1) \rightarrow \pi_1(M)$$
 and $\pi_1(N_1) \rightarrow \pi_1(M')$

have equal kernels. Then M is homeomorphic to $M' \cup_{N'_2} M''$, where (M'', N'_2, N''_2) is an h-cobordism.

Proof. By Lemma 2.5 the inclusions $j: N_1 \to M$ and $j': N_1 \to M'$ induce isomorphisms on *n*-dimensional homology; hence, a result of Epstein [12], applied to obvious maps $N_1 \to N_2$ and $N_1 \to N'_2$, shows that j, j' induce surjections of fundamental groups. (In case N_2 or N'_2 is non-orientable, pass to orientable double covers to achieve the conclusion.) As a result, the natural homomorphisms

$$\pi_1(M) \to \pi_1(M \cup_{N_1} M')$$
 and $\pi_1(M') \to \pi_1(M \cup_{N_1} M')$

are isomorphisms, which implies that the universal covers of M and of M' include naturally in the universal cover of $M \cup_{N_1} M'$. That $(M \cup_{N_1} M', N_2, N'_2)$ is an h-cobordism then follows from a duality argument involving its universal cover, like the one set forth in [8, Lemma 3.3].

Let $W = (M \cup_{N_1} M') \times I$. Taking appropriate collars on N_1 and N_2 we can view W as a relative h-cobordism (W, M_1, M_2) , where $M_1 = M \times \{0\}$,

$$M_2 = [M' \times \{0\}] \cup [(M \cup_{N_1} M') \times \{1\}] \cup [N'_2 \times I],$$

Bd M_k is the disjoint union of N_1 and N_2 , and the closure of Bd $W-(M_1 \cup M_2)$ is the product of Bd M_k with an interval. Let τ be the torsion element associated with (W, M_1, M_2) . By attaching handles to $N_2 \times I \times I$ we can build a relative h-cobordism (W', M_1', M_2') with torsion $-\tau$, where M_1' is homeomorphic to $N_2 \times I$, Bd M_2' is homeomorphic to two copies of N_2 , and the closure of Bd $W'-(M_1' \cup M_2')$ is topologically Bd $M_1' \times I$. Attach (W, M_1, M_2) to (W', M_1', M_2') in the obvious way along copies of $N_2 \times I$. The sum theorem [5, Theorem 23.1] attests that the resulting relative cobordism has trivial torsion and, therefore, is a product. Observe that one end is homeomorphic to M and that the other end is homeomorphic to M' plus an h-cobordism (M'', N_2, N_2'') attached along N_2 .

The primary result of this section follows directly from Theorem 5.1 and Theorem 4.3.

THEOREM 5.2. Suppose (M, N_1, N_2) is an (n+1)-dimensional cobordism $(n \ge 5)$ such that $i_2 \colon N_2 \to M$ is a homotopy equivalence and the kernel of $i_{1\#} \colon \pi_1(N_1) \to \pi_1(M)$ equals the normal closure in $\pi_1(M)$ of a finitely generated perfect group. Then there exists an acyclic map $f \colon N_1 \to N'_2$ to a closed n-manifold N'_2 such that M is homeomorphic to $M_e(f) \cup_{N'_2 \times \{1\}} M'$, where $(M', N'_2 \times \{1\}, N_2)$ is an h-cobordism.

Proof. Theorem 4.3 gives f and N_2 , and Theorem 5.1, applied to (M, N_1, N_2) and $(M_e(f), N_1, N_2 \times \{1\})$, does the rest.

COROLLARY 5.3. Under the hypotheses of Theorem 5.2, M admits a lamination G with $N_1, N_2 \in G$.

We close with a question intimately related to Question 4.7.

QUESTION 5.4. If (M, N_1, N_2) is a cobordism such that $i_2: N_2 \to M$ is a homotopy equivalence, does M admit a lamination?

REFERENCES

- 1. E. G. Begle, *The Vietoris mapping theorem for bi-compact spaces*, Ann. of Math. (2) 51 (1950), 534–543.
- 2. K. Borsuk, Theory of retracts, PWN, Warsaw, 1967.
- 3. J. W. Cannon, Shrinking cell-like decompositions of manifolds. Codimension three, Ann. of Math. (2) 110 (1979), 83–112.
- 4. J. W. Cannon, J. L. Bryant, and R. C. Lacher, *The structure of generalized manifolds having nonmanifold set of trivial dimension*. Geometric Topology (Athens, Ga., 1977), 261–300, Academic Press, New York, 1979.
- 5. M. M. Cohen, A course in simple homotopy theory, Springer, Berlin, 1973.
- 6. R. J. Daverman, Embedding phenomena based on decomposition theory: Wild Cantor sets satisfying strong homogeneity properties, Proc. Amer. Math. Soc. 75 (1979), 177–182
- 7. ——, *Decompositions of manifolds into codimension one submanifolds*, Comp. Math. 55 (1985), 185–207.

- 8. R. J. Daverman and F. C. Tinsley, *Laminated decompositions involving a given sub-manifold*, Topology Appl. 20 (1985), 107–119.
- 9. R. J. Daverman and J. J. Walsh, Acyclic decompositions of manifolds, Pacific J. Math. 109 (1983), 291-303.
- 10. A. Dold, Lectures on algebraic topology, Springer, Berlin, 1972.
- 11. R. D. Edwards, *The topology of manifolds and cell-like maps*. Proceedings of the International Congress of Mathematicians (Helsinki, 1978), 111–127, Acad. Sci. Fennica, Helsinki, 1980.
- 12. D. B. A. Epstein, *The degree of a map*, Proc. London Math. Soc. (3) 16 (1966), 369-383.
- 13. J. C. Hausmann, *Homological surgery*, Ann. of Math. (2) 104 (1976), 573-584.
- 14. ——, *Manifolds with a given homology and fundamental group*, Comment. Math. Helv. 53 (1978), 113–134.
- 15. M. A. Kervaire, *On higher dimensional knots*. Differential and combinatorial topology (A Symposium in honor of Marston Morse), 105-119, Princeton Univ. Press, Princeton, N.J., 1965.
- 16. M. H. A. Newman, *The engulfing theorem for topological manifolds*, Ann. of Math. (2) 84 (1966), 555–571.
- 17. F. Quinn, Resolutions of homology manifolds and the topological characterization of manifolds, Invent. Math. 72 (1983), 267–284.
- 18. ——, An obstruction to the resolution of homology manifolds, Invent. Math., to appear.
- 19. C. P. Rourke and B. J. Sanderson, *Introduction to piecewise linear topology*, Springer, Berlin, 1972.
- 20. L. C. Siebenmann, Ph.D. Thesis, Princeton Univ., 1965.
- 21. J. H. C. Whitehead, *Combinatorial homotopy: I, Bull. Amer. Math. Soc.* 55 (1949), 213–245.

Department of Mathematics University of Tennessee Knoxville, Tennessee 37966–1300

and

Department of Mathematics Colorado College Colorado Springs, Colorado 80903