LAMINATIONS, FINITELY GENERATED
PERFECT GROUPS, AND ACYCLIC MAPS

R. J. Daverman and F. C. Tinsley

1. Introduction. Let (M, N;,N,) dénote a (n+1)-dimensional cobordism;
that is, M is a compact, connected (n+1)-manifold with two boundary compo-
nents /NV; and N,. We investigate the conditions under which (M, Ny, N,) admits
a lamination, by which we mean an upper semicontinuous decomposition G of
M into closed n-manifolds with Ny e G (k=1,2). We also consider a closely re-
lated question: Given two closed n-manifolds NV; and N,, when does there exist a
laminated cobordism (M, N, N,)?

Homological equivalence of N; and N, is a necessary condition for the exis-
tence of a laminated cobordism (M, N;, N,); in his initial work [7] Daverman
proved that then H,(M,N;)=0 (k=1,2). We show it not sufficient by present-
ing an example (Example 3.1) of a cobordism (M, N;, N,) satisfying this homol-
ogy condition and such that there is no laminated cobordism (M’, N, N»).

On the other hand, a well-known sufficient condition for the existence of alam-
ination (n 3 3) is that (M, N;, N,) be an A-cobordism (each inclusion i;: Ny —-» M
is a homotopy equivalence), since then M — N, is homeomorphic to N; X [0, 1).
Other types of laminations exist, however; in the presence of wildness the de-
composition elements can have varying homotopy types [7, Example 5.3]. Our
chief interest centers on cobordisms (M, N;, N,) for which i;: N, - M is a homo-
topy equivalence but i;: Ny — M is not. Under this assumption on #,, it is easy to
verify that H,(M, N;) =0 and that the kernel of i;4: 7, (N;) = 71 (M) is perfect.
If, in addition, kernel(i;z) is the normal closure of a finitely generated perfect
group, then as our main result we demonstrate how to impose a lamination on
(M, N1, N,); in particular, we obtain M, up to attachment of a A-cobordism, as
the mapping cylinder of an acyclic map from N; to an n-manifold homotopy
equivalent to N, (Theorem 5.2).

2. Technical lemmas. This section provides a listing of some utilitarian facts
about the manifolds admitting laminations.

DEFINITION 2.1. A laminated cobordism is a cobordism (M, N,, N,), where
M is a compact (n+1)-manifold having boundary components N; and N,, to-
gether with an usc decomposition G of M into closed n-manifolds such that
N1 ’ Nz e G.

First we state two results from previous work.

LEMMA 2.2 [7, Corollary 6.3]. In a laminated cobordism (M, N, N,) the in-
clusion-induced H,(g) — H,(M) is an isomorphism for each g € G.
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LEMMA 2.3 [8, Lemma 3.1]. Let (M, N;, N>) be a laminated cobordism, g € G,
and Cy the closure of the component of M — g that contains N, (k=1,2). Then
the inclusion-induced m,(g) - ™ (Cy) is a surjection.

The next lemma contains additional information about laminated manifolds.
As a notational matter, [K, K] denotes the commutator subgroup of a given group
K. If K=[K,K], K is said to be perfect.

LEMMA 2.4. Let (M, N,,N;) be a laminated cobordism. For k=1, 2, denote
by iry: mi(Ng) » (M) the inclusion-induced homomorphism. Then:

(a) kernel(iyy) is a perfect, normal subgroup of =(Ny), and

(b) (M, N, N,) is an h-cobordism if both i3 and i,y are isomorphisms.

Proof. Let M be the universal cover of M. Then Bd M = N,UN,, where N;
represents the cover of N, corresponding to kernel(i;s), a normal subgroup of
m1(Ny). The given lamination on M lifts to a lamination of sorts G on M. Lem-
ma 2.3 ensures that the elements of G are connected, but the decomposition G
may fail to be usc, since in general its elements are non-compact. Nevertheless,
we still have H.(M, Ni) =0 [7, proof of Proposition 8.1]. Due to the simple-
connectivity of M, H;(Ny) = H (M) =0. But H;(Ny) = m(Ni)/[71(Ng), 71 (Ng)]
and, thus, kernel(ixs) = 7 (Ng) is perfect, which proves (a). For (b), it follows
that 7;(N,)=1. By Whitehead’s theorem [21, Theorem 1], =;(M, Ny) =0 and
7i(M,Ny;) =0 for i > 1, so the inclusions N, — M are homotopy equivalences.

]

The following lemma is a special case of a well-known fact (see [14, Lemma
2.0]). We include a proof for completeness.

LEMMA 2.5. If (M, N,, N,) is a cobordism such that i;: N, — M is a homotopy
equivalence, then (1) H.,(M,N;) =0 and (2) kernel(i,3) is perfect.

Proof. Let (M, N;, N,) be as in the proof of Lemma 2.4. Then i>: N, > M is a
proper homotopy equivalence. By duality, H.(M, N,) = H*(M, N,), where H* de-
notes cohomology with compact supports [10, Proposition 7.2], and H*(M, N,) =0
because i, is a proper homotopy equivalence. In particular, H,;(N;)=0. As in
the proof of Lemma 2.4, kernel(/,#) is perfect. This proves (2); (1) follows from
standard duality arguments. ]

3. Homology cobordant manifolds that are not laminated cobordant. In this
section we produce an example showing that the existence of a homology cobor-
dism (M, N;, N,) is not sufficient to guarantee the existence of a laminated co-
bordism (M’, N1, N;) having the same boundary components.

EXAMPLE 3.1: a cobordism (M, N, N,) satisfying H,(M,N;)=0 for k=
1, 2 such that there is no laminated cobordism (M’, N, N>).

Assume n = 5. We construct (M, Ny, N,) in the (n+1)-sphere, S"*!. Let S"C
S"*! be an equator and S”"x[—3,3]1C S""! a bicollar on §"=S8"x{0}. Let f;:
S"~2x B% — S" be an unknotted PL embedding, f>: S" " 2x B? - f,(S" "2 x Int B2)
a PL (possibly knotted) embedding inducing isomorphisms on integral homology,
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and Cy the closure of the complement of fx(S”" 2% B?) in S" (k=1,2). Note
that C; is PL homeomorphic to S' x B”~! and, by duality, the inclusion C; - C,
induces homology isomorphisms.

In S"x[—3,3]CS""! define

Ni=(fi(S""?xBd B*)x[~1, 1) U(C; x{—1, 1})
and
Ny=(f2(S" *xBd B*)x[—2,2])U(C, x {—2,2}).

Now let M denote the closure of the component of S”*!— (N, UN,) bounded by
both N; and N,. For k =1, 2 observe that Ny is the double of C, along its bound-
ary and, consequently, N; is homeomorphicto S' x S”~!. Also, M is the closure of
(Crx[—2,2])—(C1%x[—1,1]). Of course the inclusion C; X[—1,1] > C, X [—2, 2]
induces homology isomorphisms, so excision shows H.(M, N;) =0; by duality
again, H,.(M,N,)=0.

The example arises by letting f, be the knotted embedding of Stallings [15,
Theorem V] for which 7,(C;)=Z and w,(C,) # 0. Then 7«(N;) = Z as well and
w2(IN3) # 0, since C, is a retract of N,.

CLAIM. There exists no laminated cobordism (M’, N;, N;).

Suppose otherwise. By Lemma 2.3, i;4: w(/Ng) = m(M’) is a surjection (k=
1, 2). Since 7, (N;) = Z contains no non-trivial perfect subgroups, Lemma 2.4(a)
attests that iz is also an injection. Thus, Lemma 2.4(b) indicates that (M’, N;,N>)
is an h-cobordism. In particular N; and N, are homotopy equivalent, which is
patently absurd, because m,(NV;) = m,(S'xS" 1) =0 and 7, (N,) 0.

4. Extended mapping cylinders of acyclic maps. Here the goal is to construct
laminated cobordisms as mapping cylinders of certain acyclic maps.

A compact subset K of an ANR X is strongly Z-acyclic if each neighborhood
U of X contains another neighborhood V of X such that the inclusion-induced
H,.(V;Z)—> H,(U; Z) is trivial. A map f: X — Y between ANR’s is acyclic if
S~ 1(») is strongly Z-acyclic for each y e Y. A compactum X is nearly 1-movable
if the following holds for some (and hence for every) embedding of K in an
ANR X:

Each neighborhood U of K contains another neighborhood V of K such
that for every loop L: Bd B?— ¥ and for every neighborhood W of K
there exists a finite collection of pairwise disjoint disks {B;} in Int B? and
there exists an extension L’ of L to L’: (B2— U Int B;, U Bd B;) — (U, W).

Less formally, this amounts to the assertion that every loop in V is homotopic in

U to a product of conjugates of loops in W. Finally, given a map f: X —> Y, we

define the extended mapping cylinder of f, M.(f), tobe X x[—1,0]1U; Y % [0,1],

where X x {0} and Y x {0} are identified via the map f(x,0)=(f(x),0). Note

that this is simply the standard mapping cylinder with a collar attached to Y.
The following should be transparent.
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PROPOSITION 4.1. If f: Ny — N, is a map such that M.(f) is a compact (n+1)-
manifold with boundary, then (M.(f), N1 X{—1}, N, X {1}) is a laminated co-
bordism.

The next result records conditions under which extended mapping cylinders
are manifolds.

THEOREM4.2. Let f: N, — N, be a surjective map between closed n-manifolds
(n>3) such that each preimage f ~(y) is nearly 1-movable and of dimension at
most n—2. Then the extended mapping cylinder M,.(f) is a manifold if and only
if fis acyclic.

Proof. Assume M, (f) is a manifold. Let V' be an open ball neighborhood of a
point ye N,. Then M,(f | f ~'(V)) is also a manifold and the inclusion

SO X[-1,0) > (' (V) x[—1,0) UV x [0})

induces homology isomorphisms [7, Corollary 6.3]. Thus, f ~!(¥) has the homal-
ogy of an open n-ball and so f is acyclic.

Now suppose f is acyclic. According to a result of Borsuk [2, Theorem 9.1,
p. 116], M. (f) is an ANR. That it is a generalized n-manifold follows from the
Vietoris—Begle mapping theorem [1] and the observation that M,( f) is the acyclic
image of N;x[—1,1]. Applying Edwards’ cell-like approximation theorem [11]
and a resolution theorem (either [4, Theorem 7.2] or the more general result of
Quinn [17; 18], which does apply because M,(f) obviously contains Euclidean
patches) in order to prove M,(f) is a manifold, we need only show that it satis-
fies the disjoint disks property. Indeed, verifying the following local version of
the disjoint disks property is sufficient ([3, p. 107]).

For each neighborhood U of y € N, there exists a smaller neighborhood
V of y such that any two disjoint loops L;, L,: Bd B> > f ' (V)x[—1, 0)
can be extended to L5, L5: B> — f Y (U)x[—1,0)UU X {0} having dis-
joint images.

Fix ye U C N, and choose V with yeV C U such that V contracts in U and
f~1(V) satisfies the hypothesis of nearly 1-movability for £ ~!(») in f ~I(U). As
an easy consequence, L, is null-homotopic in (f 1 (U) x[—1, 0)) U{(», 0)}. Since
dimension(f ~!(y)) = n—2, we can assume that, after slight adjustment,

Ly(Bd BN f'(y)x[-1,0)=2
and we can then extend L, to a map
*:(Bd B>x[0,1],Bd B*x{1}) - (f ~'(V) x[—1,0)UV x {0}, V' x {0})

whose image misses L;(B?). Finally, we obtain L5 by contracting L3 | Bd B%x {1}
in UXx {0} missing (y,0).

REMARK. The requirement dim f ~'(¥) =n—2 in Theorem 4.2 is necessary,
since a map f: N; — N, collapsing out the spine of a noncontractible homology
cell leads to a non-manifold mapping cylinder M, (f). Whether the point inverses
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of an acyclic map f: N; — N, must be nearly 1-movable is a previously identified
open question [9, p. 300].

We shall exploit Theorem 4.2 in constructing laminated cobordisms (M, N;, N3)
for which the inclusion i,: N, —» M is a homotopy equivalence. For any such co-
bordism, Lemma 2.5 ensures that the kernel of ij4: 7 (V) - 7 (M) is a perfect
normal subgroup of 7;(NV;). Since i,4 is a surjection of finitely presented groups,
its kernel is the normal closure of a finite set [20, Lemma 3.11]. The main theorem
of this section deals with the special case when this kernel is the normal closure of
a finitely generated perfect group.

THEOREM 4.3. Let N, be a closed n-manifold (n=5) such that w(N,) con-
tains a finitely generated perfect subgroup P. Then there exists a laminated co-
bordism (M, N1, N,) where M is the extended mapping cylinder of an acyclic map
f: Ny = N, between n-manifolds and where w(N,) is isomorphic to w;(Ny)/[P].

Here [P] denotes the normal closure of P in 7;(NV)).

Before proving Theorem 4.3, we reproduce some additional group-theoretic
nomenclature. A presentation of a group involving k generators and s relations
is said to have deficiency s— k; the deficiency of the group is defined to be the
minimum deficiency among all its presentations.

PROPOSITION 4.4. Every finitely generated perfect group P is the homomor-
phic image of a finitely presented perfect group having deficiency 0.

Proof. We give Hausmann’s proof [13, §2.1]. Take a presentation

(xls --°,xk:r1"°'9rs>

(s possibly infinite) of P. Since P is perfect, each x; can be written as a commuta-
tor ¢;, where ¢; is regarded as a word in the free group on the generators xy, ..., Xx.
Let

P =Xy ey Xp1XT 201y eens X7 k).

It is easy to check that P’ is perfect and that P is isomorphic to
(X15.00s Xk le_lcl, "-sxk—lcks Fiseeess)e
This completes the proof of Proposition 4.4. O

Proof of Theorem 4.3. Choose P’ as in Proposition 4.4, let R* be a 2-dimen-
sional finite CW-complex associated with the given presentation of P’, and let R
be a finite simplicial 2-complex homotopy equivalent to R*.

A straightforward Mayer-Vietoris argument shows R* (and R) to be homolog-
ically trivial: If T"denotes the 1-skeleton of R* and E|, ..., E; the attached 2-cells,
one can see (a) that adjunction of E; to TUEU --- UE;_; must reduce the mini-
mal number of generators required for A by one in order to bring about the ob-
vious H;(R*) =0, and (b) from an examination of the Mayer-Vietoris sequence,
that H{(TUE,U---UE);) is free of rank £k —i while H,(TUE U --- UE};) is trivial.

Name a PL embedding #: R — N; such that Ay: 7;(R) — 7(/N;) has image
equal to P. Let Q be a regular neighborhood of A(R) in N;. Then =1 the
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boundary of Q, is an homology (»—1)-sphere (i.e., H. (X" % 2Z)=H.(S"" ;7).
Because Q has the 2-complex A(R) for a spine and n = 5, general position ensures
that the inclusion-induced homomorphism 7, (X7~ !) - #;(V;) has P as its image.

Now we decompose N into acyclic compacta. Choose a bicollar 7' x[0,1]
on X"~ 'and a Cantor set C in (0,1). Let F"~! be the closure of the complement
of a PL (n—1)-cell in X"~ !and K be an acyclic 2-complex in F"~! as above with
71(K) - w1 (F"~ 1) surjective (n = 5 demands more care). Define a decomposition
G(K) of N; having as its nondegenerate elements the sets K X {c}, ce CC (0, 1).
Topologically these nondegenerate elements of G(K') are all acyclic 2-complexes
in £”~1x [0, 1]. Exactly as in [6], the decomposition space N, = N /G(K) is an
n-manifold. Furthermore, n;(NV;) = 7;(/V;)/[P], essentially because /N, contains
a natural copy of the cone on K. Consequently, for the decomposition map f:
N, — N,, Theorem 4.2 and Proposition 4.1 demonstrate that M/ =M,(f) is a man-
ifold and (M, N;, N,) is a laminated cobordism. ]

COROLLARY 4.5. For any homology n-sphere £" (n=15), there exists a lami-
nated cobordism (M,X", S").

Proof. Since n;(X") is a finitely presented perfect. group, we can apply Theo-
rem 4.3 with P=m;(X”). The resulting manifold N, then is a simply connected
homology #n-sphere, which is equivalent to S” by the topological Poincaré con-
jecture [16].

COROLLARY 4.6. For any two homology n-spheres %{ and 5 (n=15), there
exists a laminated cobordism (M*, T{, Z%).

In light of the comments preceding Theorem 4.3, a possible improvement to
the theorem would come about if the hypothesis that the perfect group P be fi-
nitely generated could be replaced by the weaker assumption that P be the nor-
mal closure of a finite set. In fact, for any acyclic map f: N; — N, between closed,
orientable n-manifolds, the kernel of fu: w(V,) = 71(N,) is precisely a perfect
normal subgroup of 7;(/NV;) which is the normal closure there of a finite set. To
see why, consider the extended mapping cylinder M,(f). The proof of Theorem
4.2 demonstrates that A, (f) is a generalized manifold and, of course, the inclu-
sion N, X {1} - M, (f) is a homotopy equivalence. Thus, the duality argument of
Lemma 2.5, which applies equally well in generalized manifolds, yields that ker-
nel( fy) is perfect.

We summarize these observations in a question regarding acyclic maps.

QUESTION 4.7. Suppose N, is a closed n-manifold (n=5) and P is a perfect
normal subgroup of =;(/V;) that is the normal closure of a finite set but not the
normal closure of a finitely generated perfect subgroup. Does there exist an acy-
clic map f: N; — N, to a closed n-manifold N, for which kernel( f;) = P?

The next result indicates that if the question has an affirmative answer, then
the point inverses must be somewhat pathological.

PROPOSITION 4.8. Suppose f: N1 — N, is an acyclic map between closed n-
manifolds such that f ~'(y) is an ANR for each y € N». Then kernel(fy) is the
normal closure of a finitely generated perfect group.
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Proof. There is a finite collection of pairs (y;, U;) such that y;e N,, U; is a
neighborhood of f ~!(y;) which deformation retracts to f ~!(y;) in Ny, and {U;}
is a cover of N;. Join each f~!(y;) to a basepoint xo by an arc o; such that
a;iN(a;Uf " (y))) =[x} fori=j. Let Y=U,;(f (¥;)Ucx;) and let i: Y - N. be
the inclusion. It is straightforward to check that w;(Y) is a finitely presented
perfect group and kernel(f%) is the normal closure in 7;(/N;) of the image of
iy: ™ (Y) > m(N). 0

The hypothesis in Proposition 4.8 that each f ~'(») be an ANR can be weak-
ened to the requirement that each f ~!(y) be pointed 1-movable.

5. A resclution theorem. Applying the results of Section 4 and some simple-
homotopy theory, we restructure certain given laminations as extended mapping
cylinders, up to A-cobordisms of acyclic maps. Let (W, M, M) be a relative co-
bordism (M} possibly with boundary) such that W is a compact (#+ 1)-manifold
with boundary, n =5, the inclusions M; — W are homotopy equivalences, and
the closure of Bd W— (M;UM,) is homeomorphic to Bd My X I (k=1,2). The
well-known relative s-cobordism theorem states that associated with (W, M, M)
is a torsion element 7 of the Whitehead group of #; (W) and that W is a product
M, x I if and only if =0 (e.g., [19, Chapter 6]). Also well known is that relative
h-cobordisms of arbitrary torsion can be constructed by attaching a finite number
of 2- and 3-handles to a given product.

These results also provide information about cobordisms (M, N, N,) in which
only the one inclusion NV, — M is assumed to be a homotopy equivalence.

THEOREM 5.1. Suppose (M, Ny, N,) and (M’, N,, N3) are (n+1)-dimensional
cobordisms (n=5, Bd Ny = ) such that the inclusions N, - M and N5 — M’ are
homotopy equivalences and the inclusion-induced homomorphisms

T (N) > m(M) and m(Ny) - (M)

have equal kernels. Then M is homeomorphic to M’ Un; M”, where (M”, N3, N3')
is an h-cobordism.

Proof. By Lemma 2.5 the inclusions j: N;— M and j’: N; = M’ induce iso-
morphisms on z#-dimensional homology; hence, a result of Epstein {12], applied
to obvious maps N; — N, and N; — N3, shows that j, j’ induce surjections of fun-
damental groups. (In case NV, or /N3 is non-orientable, pass to orientable double
covers to achieve the conclusion.) As a result, the natural homomorphisms

7f1(M)->7l'1(MUN1M’) and W[(M’)*’ﬂ'l(MUNlM’)

are isomorphisms, which implies that the universal covers of M and of M’ in-
clude naturally in the universal cover of M Un, M’. That (M Un, M, N3, N3) isan
h-cobordism then follows from a duality argument involving its universal cover,
like the one set forth in [8, Lemma 3.3].

Let W= (M Uy, M’) X I. Taking appropriate collars on N; and N, we can view
W as a relative h-cobordism (W, M, M>), where M, =M X {0},

M= [M'X{0}JJU[(M Uy M) X {TI}JU[N3 X T],
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Bd M, is the disjoint union of N; and N,, and the closure of Bd W— (M, UM,)
is the product of Bd M} with an interval. Let 7 be the torsion element associated
with (W, M, M,). By attaching handles to N, x 1 X I we can build a relative h-
cobordism (W', M{, M5) with torsion — 7, where M1 is homeomorphic to N, X1,
Bd M3 is homeomorphic to two copies of V,, and the closure of Bd W’ — (M{U M3)
is topologically Bd M{x 1. Attach (W, M, M,) to (W’, M{, M3) in the obvious
way along copies of N, X I. The sum theorem [5, Theorem 23.1] attests that the
resulting relative cobordism has trivial torsion and, therefore, is a product. Ob-
serve that one end is homeomorphic to M and that the other end is homeomor-
phic to M’ plus an A-cobordism (M”, N,, N3) attached along N,. O

The primary result of this section follows directly from Theorem 5.1 and Theo-
rem 4.3.

THEOREM 5.2. Suppose (M,N;,N;) is an (n+1)-dimensional cobordism
(n=5) such that i>: N, — M is a homotopy equivalence and the kernel of iy:
71(IN}) — 71 (M) equals the normal closure in w(M) of a finitely generated per-
Ject group. Then there exists an acyclic map f: Ny — Nj to a closed n-manifold
Nj such that M is homeomorphic to M (f)Unyx iy M’, where (M’, N3 x {1}, N;)
is an h-cobordism.

Proof. Theorem 4.3 gives f and N3, and Theorem 5.1, applied to (M, N, N;)
and (M.(f), N;, N5 x{1}), does the rest. ]

COROLLARY 5.3. Under the hypotheses of Theorem 5.2, M admits a lamina-
tion G with N}, N, e G.

We close with a question intimately related to Question 4.7.

QUESTION 5.4. If (M, N, N,) is a cobordism such that i,: N, —» M is a homo-
topy equivalence, does M admit a lamination?
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