PERTURBATIONS OF MATRIX ALGEBRAS

Man-Duen Choi and Kenneth R. Davidson

Two operator algebras acting on the same Hilbert space are said to be close if
their unit balls are close in the Hausdorff metric. We are interested in algebraic
and spatial characteristics of an algebra which persist under small perturbations.
Even in low dimensions there is much pathology, and several examples are given
to demonstrate this. On the other hand, certain classes of algebras behave very
well. Two such classes are considered here: semi-simple algebras and reflexive
algebras with distributive lattices. In these two cases, any algebra sufficiently close
to one of these algebras is similar to it via an operator close to the identity.

The study of perturbations of operator algebras was initiated by Kadison and
Kastler [12] for von Neumann algebras. This has stimulated a lot of further work
in W* and C* algebras [3, 4, 5,6,7,11,17,18, 19]. There has also been some work
on nonself-adjoint algebras, notably Lance’s work [14] on nest algebras. There is
a strong connection between perturbation results and classification of algebras
up to similarity. This comes out strongly in [15, 16] and [9] where the similarity
theory for nest algebras is obtained. Some examples related to ours are obtained
in [13]. More generally still, various authors have considered perturbations of
arbitrary Banach algebras [10, 20].

In the self-adjoint case, it often turns out that close algebras are unitarily equiv-
alent via a unitary close to the identity. In [12], it was shown that close von Neu-
mann algebras can be decomposed into summands of various types, preserving
closeness. Then in [4, 17] it was shown that close type I von Neumann algebras
are unitarily equivalent. No counterexample to “close implies unitarily equiva-
lent” is known among von Neumann algebras or separable C* algebras. How-
ever, there is a counterexample [3] among larger C*-algebras. Furthermore, there
is some strange behaviour known about C* algebras almost contained in others
[7, 11].

For nests, it is not possible to use unitaries to get all close algebras. However,
Lance [14] has shown that close nests yield close algebras via a similarity close to
the identity. One of the motivations of this paper was an attempt to generalize
the result to a larger class of nonself-adjoint algebras — the reflexive algebras with
commutative subspace lattices. The results in this paper deal only with the finite-
dimensional case, although the remarks of Sections 4 and 5 indicate some of the
possibilities in the infinite-dimensional case. These ideas will be pursued elsewhere
[22].

1. Preliminaries. In this paper, JC will always be a finite-dimensional Hilbert
space. The algebra of n x n matrices is denoted by 9,,, and £(3C) denotes this
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algebra acting on the n-dimensional space JC. Also, £(3C,, JC,) denotes the linear
maps from JC; to 3C,.

Given an algebra @, Lat @ denotes the lattice of subspaces invariant for each
operator in @. Dually, if £ is a lattice, then Alg £ denotes the algebra of all oper-
ators leaving each element of £ invariant. An algebra Q is reflexive if it equals
Alg Lat @. Dually, £ is reflexive if £ equals Lat Alg £. This notion is extended
to subspaces of £(3C;, JC,) by saying that 8 is reflexive if it contains every linear
map 7 such that 7x e Sx for every vector x in 3C,.

If M is a subspace, P(M) denotes the orthogonal projection onto M. The word
“projection” will always mean self-adjoint idempotent.

If M and N are two subspaces of a normed linear space, the distance between

them is given by
d{(M,N) =max{ sup M, sup M},
meM "m" neN "n”

which is equivalent to (but slightly different from) the Hausdorff distance be-
tween the two unit balls. For subspaces of a Hilbert space, it is easy to check that
d(M,N)=|P(M)—P(N)|. More often, this distance will be applied to subalge-
bras of 91,,.

Two algebras @ and & < £(3C) are said to be similar if there is an invertible
operator 7€ £(JC) such that T '@T= ®, and 7 implements the similarity.

2. Examples. Let 8 be a subspace of £(3C;, 3C;), and form two algebras on
JC @ IC, as follows:

a(s)= [[)\I S ]:)\eC,SeS}, and

0 \I
NS
(B(S)={[O ”I]:)\,ueC,SeS}.

PROPOSITION 2.1.
(@) ®(8) is reflexive if and only if 8 is reflexive.
(b) Q(8) is reflexive if and only if 8 is reflexive and is a proper subspace of
L£(3C,, ICy).
Proof. Part (a) is easy [13]. For part (b), note that
Lat R(L£(3C,, ) ={MD0: M= ICJUfIC,EN: N IC5}
= Lat B(L(3C2, 3C1)),

so @(L(3C,, 3C;)) cannot be reflexive. Suppose @(8) is reflexive. Then the fol-
lowing implication holds.

Tx e 8x for all xe 3C,

0o TI[r]_ [Tx y
=10 ol[x]=1"0 Jee®([X])
0O 7T
ﬁ[o 0]eAlgLat@(S)=@(8)

= Te8s.
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This shows that 8 is reflexive.

Conversely, suppose 8 is a proper reflexive subspace of £(J3C,, JC;). By part
(a), B(8) is reflexive and thus Alg Lat @(8) € ®B(8). Since 8§ is proper, there must
exist a non-zero vector x, so that Sx; is not all of 3C,. Choose a vector y, in 3C,
which is not in 8xg. Set M = {(z+AVo)DPAXxg: A€ C, z € 8xp}. It is readily appar-
ent that M is invariant for @(8). Now if

e NS

0 ul
belongs to B(8) and leaves M invariant, then 7(yo®x¢o) = (Sxo + Ayo) D pux, be-
longs to M. So u=\, T belongs to @(8), and Q(8) is reflexive. ]

EXAMPLE 2.2. For ¢ in C, let

A a
= : C .
@ {[0 )\+at] N ae }

By Proposition 2.1, @ is not reflexive. For 70, let

1 ¢!
T, = .
“lo 1 ]

Then

AN O
T,—‘a,T,={ ]=>\,ue0}.
10 u

Thus {®,, ¢ # 0} is a continuous family of similar, reflexive, abelian, semi-simple
algebras. However, Qg is neither reflexive nor semi-simple. Clearly, d(Q,, @,) <
|s—t¢|. So as ¢ tends to zero, Qo is the limit of a “homotopy” of reflexive, semi-
simple algebras. 3

EXAMPLE 2.3. A slight modification of Example 2.2 provides a limit algebra
@, which is reflexive and is the limit of reflexive algebras @,, ¢ 0, which are
algebraically quite different from ®@,. For 7 in C, let

0 0 A 0O O 1
Then as before, d(Q;, ®,) <|s—¢|, and for 0,

A 0 O
(T,)“G:,T,={ 0O p O =>\,M€C}-

N 0 0 1 =10
Q,= 0 ANtat O |:NaeC and 7,=|0 1 0

0 0 A

This time, Proposition 2.1 shows that @y is reflexive. For 7 # 0, @, is a continu-
uous family of similar, reflexive, semi-simple algebras. As ¢ tends to 0, one ob-
tains ®¢ as a limit which is reflexive, but not semi-simple. ]

EXAMPLE 2.4. A variation on this theme produces a net @, of non-reflexive
algebras converging to a reflexive algebra ®@¢. Furthermore, there is a continuous
family of isomorphisms {¢,: @g— @,: f € C}. Define
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a b NS
St—{l:c ta:l-a,b,CEC}, &t—{[o }\I]-SES,}E—E)TQ.

For ¢ #0, S;U=C2 for every non-zero vector v. As 8, is a proper subspace of
£(C?, C?), it is not reflexive. Clearly, S, is reflexive and proper. Hence, by Prop-
osition 2.1, @ is reflexive, but @, is not reflexive if 7 # 0. The map ¢,: Q¢ — @,,
defined by

AN O|la b AN O|la b

0 )\‘CO RY )\‘cta
1o o[ x of||= |0 0] x 0]

0O 0|10 X\ 0 0|10 A\

is readily seen to form a continuous family of algebraic isomorphisms for ¢ in C.
In particular, lim, _, o | ¢, —id| = 0. Since reflexivity is a similarity invariant, it fol-
lows that @ is not similar to @, for ¢ 0.

Also, let T, =diag{l, 1, 1, r} be the 4 X 4 diagonal matrix. Then it is readily veri-
fied that 7, ~'®,7, = @,,. Thus @, (¢ # 0) are all similar, and for |s—¢| small, G,
and @, are close and the similarity can be taken close to the identity. ]

EXAMPLE 2.5. Next we give an example akin to the previous one of a contin-
uous family @, of isomorphic, abelian, reflexive algebras, no two of which are
similar. Furthermore, we will exhibit close, similar algebras which are not similar
via a similarity near the identity.

For ¢ in C, let

a 0O 0 0
0 b 0 0
= . C N d
St 0 0 a+b o | ®PE an
0 0 0 a+th
NS
= M c .
Q, {[0 )\I] )\EC,SES,}_E)TCS

It is easy to verify that 8, is reflexive, so @, is reflexive for every ¢ by Proposition
2.1. The canonical map ¢,: 89— 8, by

a 0 0 O a 0 O 0

o b 0 Of|| |0 b o0 0
Ve 0 0 a+b 0| |0 O a+b O

0 O 0 a 0O O 0 a+tb

induces an algebraic isomorphism ¢,: @y — @, by

é NS M ¥ (S)
‘NfLo N[/ |0 £ |
Furthermore, ¢, is isometric if 0=<¢=<1. It is readily checked that |¢, — ¢s| < |7 —s|,
so @, is a continuous family of algebras.
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It will be shown that the algebras @ are similar to @, only for s belonging to
(t,t L, 1—¢t,(1—1)", 1—¢~1, t(+—1)"'}. Once this is established, one can see that
C={t:|t—3%|=<1, Im¢>0}U][0, ;] gives a family of mutually nonsimilar alge-
bras. Note that 8, is spanned by

1 00 0 0 0 0 0
0 00O 01 0 0
P=1o0 10| 3 5=15 01 o
0 0 0 1 0 0 0 ¢

8, contains a rank-two element if and only if 7 equals O or 1. Also for the case
t#0and r#1, 8, contains P, S,, P—S,, and tP— S, as the only rank-three ele-
ments (up to scalar multiples). These four rank-three elements satisfy

(t) TE;=T'1—T2 and T4=tﬂ—T2.

Now any isomorphism implemented by a similarity preserves rank, and pre-
serves equation (t). So the only possibilities for relating @; and @, via a similarity
are obtained by permuting the four lines C7;, 1 =i <4. A routine but somewhat
tedious calculation shows that the permutation determines the constant s, and
that s=¢,¢",1—¢,(1—¢)"},1—¢71, and #(+—1)"! are the only possible values.
(Indeed, the permutations give an action of S; on this family. The four even per-
mutations of order 2 fix ®,, and the quotient group is isomorphic to S3. See
Added in Proof, remark 3.)

Next, we verify that @,-1 and @,_, are actually similar to @,. Let

010 0 0 0 1 0
1 0 0 O . £1 0 0
i=lo o1 0] ™ U"=11 o 0 o0
0 0 0 ¢ 0 0 0 1

Then V8$,=8,-1V,and U*S8,=8,_,U . So let

n O u*tr o
7‘,—[0 V:] and W—[O U"]'
Then @, -1=T,Q,T,”' (if t #0) and @,_, = W, @, W;~\. The transformations # - ¢!
and 7 —1—¢ generate the group S3, so @, is similar to @, if and only if s belongs
to {t,t L 1—¢t,(—0)" 1=t —1)7").

Now notice that as ¢ approaches 1, dist(®,, @, -1) tends to zero, and these alge-
bras are similar. Suppose the four lines of rank-three matrices on 8, are permuted
by a similarity W so that equation (z ') is satisfied. There are four possible per-
mutations, but in each case a routine computation shows that |[W—17|=1. (In
fact, only two of the four are implemented by similarities at all.) So @, and @, -1
can be very close and similar, yet the similarity is far from the identity. ]

3. Semi-simple algebras. In the remainder of this paper, we show that good
perturbation results hold for special classes of algebras. The main theorem of
this section deals with semi-simple algebras, and follows by analogy to the self-
adjoint case [4]. We begin with a lemma which is likely known to some readers.
A proof is included for completeness.
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LEMMA 3.1. Let B be a Banach algebra with unit 1. Then for each B in the
unit ball of ®, there is an idempotent F satisfying |B—F| <8|B— B?|. When
|B—B?| <1/8, the constant 8 can be reduced to 6.

Proof. If |B—B?*|=1/8, then let F=0 and we are done. Now suppose that
|B— B?| = e <1/8. Define

T=[I—-4B—-B»] =1+ f; Zn” )(B—BZ)”.
n=1

This series converges absolutely, and
© /2n © (4e)” 2e
T—1I|=< "< = <A4e.
=11 n§l( n )E 22 Tiac =%

Furthermore, 7 commutes with B and (I —2B)?>7T?=1. Define F by [ —2F=
(I —2B)T. Squaring yields the identity ¥ = F2. Furthermore,

|F—B|=3|(I—2B)—(I-2F)|
=3|(I—=2B)(I—T)| =3(3)(4¢) = 6e. N

THEOREM 3.2. If Q is a semi-simple subalgebra of 9N, then there is an € >0
and a constant C < oo so that, if & is any algebra such that d(Q®, 8) <e, then &
is similar to @ via an invertible operator S such that |S—1| < Cd(®, ®B).

Proof. By the Wedderburn theory, @ is similar to a self-adjoint algebra
S S
@ My, @1y, where 3 kid;<n.
i=1 i=1
So we may assume that @ has this form already and assume that the Hausdorff
distance between the unit balls of @ and @ is less than € < 1/40. Next one see that
@ is semi-simple. For if & has non-trivial radical, then it contains an element B of

norm one such that BB =0. Choose 4 in @ with |A—B| <e and |A4| <1. Then
choose C in ® such that |[A*—C||<e and |C|=<1. So

|A4*A| = |AA*A —BCB|
=<|(4—B)A*A|+|B(A*—C)A|+|BC(A—B)|
< 3e.
On the other hand,
|AA*A|? = [(A4*4)*(44*A)]|
=[(A4*4)’| =]A4]°> (1-e)".

This forces e >1/6, which is a contradiction.
Next, let E be a central idempotent in @ Choose B in & with |[B—E| <e and
|B|=<1. Then

|B—B?|=|(B—E)(I—E)—B(B—E)|<2e=<1/8.
By Lemma 3.1, there is an idempotent F in (3 with

|F—E| <|F—B|+|B—E| <6(2¢)+e=13e.
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This idempotent must be central in @. For if C = (I — F)CF belongs to & and has
norm one, then choose 4 in @ such that |C—A| <e and |4| = 1. Thus the condi-
tions FC =0, CF=C, and EA = AF yield

C=C—(U—FEYAE=(E-F)C+(U—-E)C(F—-E)+(U—-E)(C—A)E
and
1=|C|<27e<1.

This contradiction shows that BF = FBF for all B in . Similarly, one obtains
that B = FBF for all B in (3, so F is central.

Next, if E; (1 <i=<s) are the minimal central idempotents of @, let F; be cen-
tral idempotents in @ with | E; — F;| <13e. Since F; F; is an idempotent, it is either
zero or has norm at least one. An easy estimate shows that for i # j,

|\FiFj| =|F:F;—E;E;| = |(Fi—E)F;+ Ei(F;— E;)| <39 <1

and hence F; F; =0.
Let & be the Boolean algebra

{Foz >, F;: for all subsets ¢ of {1, ...,s}},
ieo

and let & be the corresponding Boolean algebra formed from the E;’s. For each

E,, the previous argument produces a central idempotent F in & with |F—E,| <

13¢. For j in o,

|Ej— FFj| = |(I = E;)(F; — Ej) +(E; — F)Fj|
<13e+13e(1413€e) < 3% < 1.
However, F; — FF; is an idempotent, and hence FF; = F;. Similarly, for j in the

complement of o, FF;=0. Hence F=F,, and |F,—E,| <13¢ for all subsets o.
If @ and &3 do not contain the identity operator, let

S )
Eb==[—'§:lﬂ and Fb==1—'§:}%.
i=1 i=1
Extend & and & to §yand F, the Boolean algebras generated by {E, ..., E;} and
{Fo, ..., F;}, and extend the definition of £, and F,. Note that |E, —F,| <13e¢ is
still valid.
Now, one readily computes that

ME,=2°I and ) F,=2°I,

§ S
S FE,=2°% F,E;+2°"' 3 FE,

i=0 i#j
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Let T=Xj_o F;E;; then
ZS(T_I)=22F0EO—2EG— EFU
= 2 (Fo'—Ea)(ZEO—I)-

Hence
|7 —1I| =2max|F,—E,||2E,—T| <26e¢.

Furthermore, F;T=TE; for0<i<s,so T 'F,T=E;. Thus ® =7 ~'®T is simi-
lar to @ via an invertible operator 7 satisfying |7— 7| < 26e. Now, @ and B’ have
a common centre.

This reduces the problem to the case @ = 9N, &®I,. Let E;; be matrix units for
@. Proceeding along standard lines, one can find matrix units F;; in &’ close to
E;;. As above, one argues that 7' = >X_| E;; F;; implements the similarity, and is
close to I. [l

REMARK. The argument of the last paragraph modified along the lines of [5]
yields universal constants C and ¢q so that if Q is a C*-subalgebra of any matrix
algebra, then given any algebra &3 with d(Q, B) =€ < ¢, there is an invertible
matrix 7 with |T—7| < Ce and SBS™'= Q.

4. Distributive lattices. In [1], Arveson considers algebras which are reflexive
and contain a maximal abelian von Neumann algebra. This is equivalent to re-
quiring the lattice £ of invariant subspace projections to be commutative. As
such, it generates a o-complete Boolean algebra of projections &. Conversely, if
£ is a commutative lattice, then Alg £ contains £’= §’, which is a von Neumann
algebra with abelian commutant &”. Unfortunately, this class is not closed under
similarity. Thus we propose that this class should be enlarged to the similarity
invariant class of reflexive algebras which contain a o-complete bounded Boolean
algebra. It turns out that each of these algebras is similar to one in Arveson’s class
[22]. In this paper, we restrict ourselves to the finite-dimensional considerations,
where this is equivalent to being reflexive with a distributive lattice.

This first lemma is a special case of a theorem of Wermer [21] which orthogonal-
izes a bounded o-complete Boolean algebra. A proof is included for convenience.

LEMMA 4.1. Let G be a finite group of operators on a Hilbert space. Then there
is an invertible positive operator T such that TQT_' is a group of unitaries, and

max(|T—I|, [7~'—I|} s max{|G|—1: Ge G}.

Proof. Define

If H belongs to G, then
1

<l S (GH WG = (H ~HY*T>.

1
T°H = I S G*GH =

Hence

THT '=7T"YH YW*T=(THT ") 1)*.
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Thus THT ! is unitary for each H in G. Furthermore, let b =max{|G|: Ge G}.
Then for each Ge G, b2l = G*G and b2 = GG*; thus (G ~1)*G ~'= b —2I. Hence
b~ 2I<T?<b?I, and thus T < bl and T ' < bl. Therefore

max{|T—1I|,|T '—I|}=b—1. O

COROLLARY 4.2. Let & be a finite Boolean algebra of idempotents on a Hil-
bert space 3C bounded by 1+¢€, and I € &. Then there is an invertible positive op-
erator T such that TST ~! is a Boolean algebra of (self-adjoint) projections. If

e<l1, then
max{|T—1I|, |T"'—1I|} <23e.

Proof. Consider the group G={2F—1: E e &} and apply Lemma 4.1. To esti-
mate the bound of G, let E belong to & and decompose it as

2=(o )

on 3C=EJC@(E3C)*. Then |[E|*=1+|A|? so
A= |E|*—1=(1+¢€)’>—1=<3e.

Also,
E—[— 1 24
o —1
is of norm less than 142|A| <1+2+/3¢. Thus
max{|T—I|, |T~'=1]}<2+3e. O

THEOREM 4.3. For a reflexive subalgebra @ of IM,,, the following are equiv-
alent:
(1) Q@ contains a Boolean algebra & of idempotents such that, for each
LelatQ@®, there exists E€ & with P(E)=L.
(2) Lat Q is distributive.
(3) Q@ contains n nonzero, commuting idempotents E\, ..., E, such that
P WEi=1.
i=1 i
(4) Q@ is similar to an algebra with commutative subspace lattice.
Furthermore, if the Boolean algebra & is bounded by 1+ ¢ <2, then the similarity
T in (4) may be taken to satisfy max{|T—1I|, |T ~'—1|}<2+/3e.

Proof. First, we show that (1) implies (4). The similarity is provided by Corol-
lary 4.2. Furthermore, the similarity 7 satisfies max{|T—1I|, |7 '—1|} <2+/3¢
for e < 1. For (4) implies (3), note that (3) is invariant under similarity; so it may
be assumed that @ has a commutative subspace lattice. Hence @ contains the self-
adjoint algebra £’ which contains the abelian self-adjoint algebra £”. There is a
maximal abelian self-adjoint algebra 91T with £L”C M C L£L’. I consists of all n X n
diagonal matrices with respect to some orthonormal basis. The minimal projec-
tions E;, 1 <i=<n, in 9N will suffice.

Given (3), one knows that @ contains the algebra @3 spanned by the E;’s. Hence
Lat @ is contained in Lat @3. The set E of idempotents in & is the Boolean algebra
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of idempotents spanned by the E;’s; the ranges of these idempotents are precisely
the elements of Lat @3. This proves (1). Also, (2) follows since a sublattice of a
Boolean algebra is always distributive.

Finally it remains to show (2) implies (1). Suppose £ =Lat Q is distributive.
Choose a maximal chain of subspaces

O0=NogCN|C:---CNy=1I

in £. Define a map 0 from £ into 2* by 6(L) ={i: LVN;_,= N;}. Also, for each
l=i=<k,let Li=A{Le L£L:ief(L)}. Since L is distributive,

Ni_\VL;= N{N;_VL:i€eb0(L)}=N,.

By induction on &, it will be shown that there are subspaces M; (1 <i < k) such
that 3C =M, + M, + --- + M, is an algebraic direct sum, and such that

L=V{L;:ied(L)}=V{M;:ieb(L)].

This is obvious for k£ =1. Suppose that it holds for k—1. In particular, £'=
{Le £: L <N;_;} (as a lattice acting on N, _) satisfies the hypotheses, so M;,
1=i<k—1, exist as described. Let M;=L;O(Ny_1AL;). By construction,
MAN_=0and My VN,_,=1, so

3C=Nk._1-i-Mk=M1-i- -i-Mk_]—i-Mk.

Now if L belongs to £ and L < Nj_,, the formula holds. Otherwise L % Nk i,
whence LVN,_;=1 and k belongs to 6(L). First, notice that 6(LAN;_|)=
0(L)\{k}, for if ie 6(L)\{k} then

(LANg_)VNi_1=(LVN;_)AN(N_1VN;_y)
= NiANg_1=Nj,

and so i € (L ANg_;). The other inclusion is trivial. So by the distributive law
and the induction hypothesis,

VILi:ie0(L)})=VI{L;:iecO@(LANy_|)}VL,
=(LANg_1)VLg
=(LVLg)N(Ng-1VLyg)
=LANI=L.

Also, V{M;:ie (L)} = (LANg_;)VM;. Since the lattice of subspaces of a finite-
dimensional space is modular, and M, < L, one obtains

(LAN_)VM=LANNx_1VM;)
=LAI=L.

Now let E; be the idempotent with range M; and kernel ¥ ;..; M;. Then E; are
a commuting family of idempotents which leave each M invariant. Thus, E; leave
£ invariant and belong to @. They generate a Boolean algebra &, and X;cg(1) E;
is clearly an idempotent with range L. This shows that (2) implies (1). O
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THEOREM 4.4. Let @ = Alg £ be a subalgebra of M, with a commutative sub-
space lattice £. Let & be another subalgebra such that d(Q, ) <e < .01. Then
there is a lattice isomorphism ¢ of £ onto MM =Lat ® such that |¢—id| < 4e.

Proof. Fix M in 9, and let P = P(M) be the orthogonal projection onto M.
For each operator A in the self-adjoint algebra £’ (which is a subalgebra of @),
pick B and C in @ such that |B—A| <e]A| and |C—A*|<e|A|. Then

|PA—AP|=|PA(I—P)—(I—P)AP|
<max{|P(A—C*)(I-P)|, |(I- P)(A—B)P|} <c|A].

This means that the derivation ép | ¢- has norm at most ¢. Since £” is abelian, it
follows from [6] that

d(P, £”) < 2”6[) I £'" < 2e.
Choose R=R* in £” such that |P— R| <2e. Thus ¢(R) is contained in
(—2¢6,2e)U(1—2¢,142€).

By the functional calculus, there is a projection Q in £” with |[Q—R| <2¢, and
thus | P — Q| < 4e. This projection Q belongs to £. For if this is not the case, then
@ contains an operator A = Q*AQ of norm one. Choose B in & with |4 —B| <e.
Then

|Al=({—Q)AQ—(I—P)BP|
=|(P-Q)AQ|+|(I—-P)A(Q—P)|+|(I—-P)(A—B)P|
<4e+4de+e=9<1.

This contradiction establishes the claim. This projection is unique because if Q; is
any other projection in £”, then |Q— Q| = 1. Denote this projection Q by ¢(M).
Conversely, if Q belongs to £, let B belong to & with |Q— B| <e. Then

|IB=B?|<|(I-Q)(B—Q)|+[(Q—B)B| <e(2+¢€)<1/8.

By Lemma 3.1, there is an idempotent Fin ® with |B—F| < 6e(2+¢) <13e. Thus
|@—F| < 14e. As in the previous paragraph, it follows that M = F3C is invariant
for B. An easy estimate provides |Q—P(M)| <28e, and hence |Q—¢d(M)| <
32e<1. So ¢(M) = Q. Thus ¢ is surjective.

Next, we show that ¢ is injective. Let M belong to Lat . Let Q= ¢(M), and
let F be the idempotent obtained above so that ¢(F3C)= Q. It suffices to show
that F3C = M. So decompose JC=M@M *, and write F as a matrix with respect

to this decomposition: P P
r=" w|
Since F is idempotent, so are both F;; and F,,. Also,
|F—P(M)| < |F—o(M)|+|6(M)—P(M)| <18e<1.
Hence F, =0 and F;, =1, and so F3C =M. Thus ¢ is a bijection.
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To see that ¢ is a lattice isomorphism, suppose M and N belong to Lat &. Let
F),; and Fy be idempotents in @ with range M and N (respectively) satisfying

|¢(M)—Fp| <18¢ and |¢p(N)—Fn|<18e.
The operator F,;F) is an idempotent in 8 with range M A N since
(Fum Fn)* = Fa(Fn Fr Fn) = Fy(Fp Fn) = Fu P
Similarly, Fj;+ Fx— Fp; Fy is an idempotent in @ with range MV N. A computa-
tion gives

|o(M)D(N) —Fp Fn| < [¢(M)(S(N)—Fn)| + | (@(M) — Fpr) Fu
<18e(2+18¢) < 40e€.

Thus
|6(M)S(N)—P(MAN)| <80e and |¢(M)$(N)~d(MAN)|<84e<1.

So

S(MAN)=0(M)D(N)=dp(M)NP(N).
Similarly,

P(MVN)=op(M)+d(N)—d(M)H(N).

So ¢ is a lattice isomorphism, and |¢ —id| <4e. O

COROLLARY 4.5. Let @ =Alg £ be a subalgebra of M, with commutative
subspace lattice £. Let k be the length of a maximal chain in £. Let & be another
subalgebra of M, with d(Q, B)=¢e<.01. Then ® is similar to Q. Furthermore,
if e<(8vk)™!, then the similarity can be implemented by an operator T such
that |T—1I| < 8~ke.

Proof. Let ¢ be the lattice isomorphism of Lat @ onto £ given by Theorem
4.4. Since |¢ —id| =4e <1, ¢ preserves rank. It follows from the structure of dis-
tributive lattices (cf. Theorem 4.3) that ¢ is implemented by a similarity 7. So
T '®T has lattice £. Also, since d(@, B)<1, @ and ® have the same dimen-
sion. Thus 77'®T = Q.

To get a norm estimate for |7—7|, we use the ideas from the proof of Theo-
rem 4.3. The subspaces M; =L;O(N;_AL;) of that proof form the ranges and
kernels of a Boolean algebra F in 3. Let E; be the corresponding atoms of the
Boolean algebra generated by £. Since |¢ —id| <4e, it follows that d(E;, M;) <
8e. From this, it is immediate that |P(E;)— P(M;)| < 8e. So let

k
T= 3 P(M;)P(E)).

i=1
Since P(E;) are pairwise orthogonal, it follows that
IT—11?= (T~ (T—1)*|
= | 2 (P(M;)— P(E})) P(E;) (P(M;)— P(E}))]|
= k64e.
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Thus |T—1| =8+ke<1, and hence T is invertible.

Since TE; is contained in M; for each i, TE; equals M;. Hence F;=TP(E;)T !
is the idempotent with range M, and kernel ¥ .; M. From the proof of Theorem
4.3, it follows that the Boolean algebra of idempotents generated by the F;’s con-
tains Lat . So conjugation by 7T carries Lat ® onto £, and 7 '®T= Q. ]

Putting these results together with the results of Theorem 4.3, we obtain the
following.

THEOREM 4.6. Let £ be a distributive subspace lattice on a finite-dimensional
space. Then the following are equivalent.

(1) ® is an algebra close to Alg L.

(2) @ is reflexive, and Lat ® is isomorphic to £ via ¢ close to the identity.

(3) @ is similar to Alg £ via an operator close to the identity.

5. Closing remarks. The reader may have noticed that some of the results of
the previous section (in particular Theorem 4.4) go through in infinite dimensions
(see [22]). Indeed, it was an attempt to extend the similarity results of [9] and [16]
and the perturbation results of [14] to Arveson’s class of commutative subspace
lattices that led to the results of this paper. However, the constant k£ in Corollary
4.5 precludes the use of this result in the infinite-dimensional case. This leads one
to ask the following question.

QUESTION 5.1. Suppose ® is a norm (or weakly) closed subalgebra of B (JC).
Suppose that & is a finite self-adjoint Boolean algebra of projections, and

sup{d(E,®B): Ee€&}l=¢

is small. Is & similar to a Boolean subalgebra of @& via an invertible close to the
identity?

Naturally, the import of this question relies on the interpretation that “close”
should be independent of the size of &. If @B is a C* algebra, the answer is affirma-
tive. For span & is isomorphic to the algebra /), and the result is due to Christen-
sen [7]. Following his technique, it is possible to find a linear map of & into &
which is close to the identity. However, the use of complete positivity precludes
using this proof from that point.

We also mention some other questions remaining in the finite-dimensional sit-
uation.

QUESTION 5.2. For which subalgebras Q@ of 9T, are there constants ¢y > 0 and
C < o so that if (3 is an algebra satisfying d(Q, &) = € < ¢g, then & is similar to @
via an operator 7 such that |7— 7| < Ce. (These algebras might be called stable.)

QUESTION 5.3. Is there a subalgebra @ of 9,, and a sequence 33, of algebras
similar to @ with d(Q®, ®;) tending to zero, yet any similarity from @ to any &3,
is uniformly bounded away from the identity? (Compare with Example 2.5).

Although it has not been used explicitly in this paper, it is important to be able
to compute the distance to a reflexive algebra using the lattice. It is easy to show
that for any operator 7" and lattice £,
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o(T) =sup{|P(L)*TP(L)|: Le £}

is at most d(T, alg £). Alg £ is called hyper-refiexive if there is a constant K such
that for all operators 7T, d(T, Alg £) < Ka(T). In [2], Arveson shows that K =1
suffices for nest algebras. In [6], it is shown that many von Neumann algebras are
hyper-reflexive. Both these results have proven to be extremely useful tools for
perturbation problems. However, it is shown in [23] that there are CSL algebras
which are not hyper-reflexive. This in turn yields algebras with nearby lattices
which are not similar. (See [22] for further discussion of these ideas.)

ADDED IN PROOF.

1. John Phillips has informed us that he was aware of Theorem 3.2. His ap-
proach: If d(@, ®) is small, then the linear projection P of @& onto @ is close to
the identity. So m(a;, a>) = P(P ~(a;) P "!(a,)) defines an associative multipli-
cation on @ close to the original multiplication. Now apply Theorem 3 of [20] to
obtain the similarity.

2. Ken Harrison and Bill Longstaff [24] have some results on automorphic
images of commutative subspace lattices, which are related to Theorem 4.3.

3. A further comment on Example 2.5: The four lines 73, ..., 74 span a two-
dimensional (complex) plane. So they can be thought of as four points in the pro-
jective plane. The action of GL(2,C) on C? induces an action on the projective
plane by fractional linear (M6bius) maps. It is well known that this acts transi-
tively on triples of distinct points, but such a choice is unique. Thus given four
points, there are at most 24 possible maps of four points onto a given four. This
limits the number of possible algebras @ similar to @, to at most 24 by consid-
ering equation (t). Since the even permutations fix @,, there are at most 6 pos-
sibilities.
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