SOME SEIFERT FIBER SPACES
WHICH ARE BOUNDARIES

Kyung Bai Lee and Frank Raymond

Hamrick and Royster [6] proved that all compact flat manifolds are bound-
aries. Their argument uses a refined version of a theorem of R. Stong together
with M. Gordon’s result [5]. Recently this was generalized to some almost flat
manifolds by Farrell and Zdravkovska [4].

In this article we shall prove certain Seifert fiber spaces are boundaries. This
class of Seifert fiber spaces contains all flat manifolds, those almost flat mani-
folds covered by the first part of [4], and more importantly, all the manifolds of
non-positive sectional curvature satisfying Assumption B below.

We formulate the generalization of Stong’s theorem [6] in a more general set-
ting so that we can apply it to Seifert fiber spaces. Then we use the same argu-
ment as in [6] and [4]. An important point is that the Seifert fiber structure gives
rise to a free (Z,)" action on a finite covering of the manifold.

In this paper, a Seifert fibering M — B will mean a smooth closed manifold M
with an injective Seifert fiber structure where the typical fiber is a flat torus T”.
More precisely, M is a smooth closed manifold such that

(i) ;M contains a normal subgroup Z"” (n>0),

(ii) there exists R” C Diffeo(Af) containing Z" as a uniform lattice, and

(iii) R” is normalized by m; M.

Of course, we are considering 7; M as a subgroup of Diffeo(M) where M is
the universal covering of M. Generally, the R"-action on M does not yield a torus
action on M, but the universal covering M splits as a direct product R” X W, where
W is a simply connected smooth manifold on which Q = = M/Z" acts properly
discontinuously with compact quotient. Thus, B=Q\ W and

M=mM\(R"XW)=Q\(T"x W).

Note that even though Q acts on 77" X W as a group of covering transformations,
it does not act freely on the W-factor. In general, the base space B is an orbifold
where the fibers over regular (= unbranched) points of B are called typical. Other-
wise, they are called singular. Singular fibers are finitely covered by the typical
fiber 7" and are flat Riemannian manifolds.

We shall denote 7 M simply by w. C,(Z") denotes the centralizer of Z" in «.
We make two assumptions as follows.

ASSUMPTION A. C,.(Z") has finite index in .

ASSUMPTION B. C,(Z")/Z" has no 2-torsion.
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The first assumption means that Z"” is almost central in «. The finite covering
M of M with =, M = C,(Z") has a Seifert fiber structure nicer than that of M. Let
O=C,(Z")/Z". Then M = Q\(T"x W) has tori for all of its singular fibers. The
isotropy groups Q,, are all finite and act on 7" as translations.

The first factor of 7" x Wyields an action of 7" on M (notice that M itself does
not admit a 77" action in general). Inside the 7" action, there is a (Z,)" action on
M. The second assumption is really the requirement that the (Z,)” action on M
be free. We now state our results.

MAIN THEOREM. Let M be a Seifert fibered manifold satisfying Assumptions
A and B above. If my M has no 2-torsion, then M is a boundary.

One can apply the Main Theorem to some nice Seifert fibered manifolds which
satisfy Assumptions A and B. We state a few cases.

COROLLARY 1 [6]. Every compact flat Riemannian manifold is a boundary.

COROLLARY 2 [4]. Let M be a compact infranilmanifold. If a 2-Sylow sub-
group of the holonomy group acts effectively on the center of the nilradical of
m M, then M is a boundary.

COROLLARY 3. Let M be a closed manifold with non-positive sectional curva-

ture. Suppose the maximal normal abelian subgroup of = M is non-trivial, say
7", and C; p(Z")/Z" has no 2-torsion. Then M is a boundary.

COROLLARY 4. Let M be a compact complete affine manifold. Suppose =y M
has a non-trivial radical, and hence wy M contains a normal Z" (n>0). If As-
sumptions A and B are satisfied, then M is a boundary.

In order to prove the Main Theorem, the following facts are needed.

LEMMA 1. Let G be a finite 2-group with a faithful representation in GL(n, Z).
Consider the short exact sequence of G-modules 0 » 2" — (3Z)" — (Z,)" — 0. Let
Lo=H%G;(Z,)"), and let 0 > Z" - ¥ 5— 5 — 0 be the exact sequence above
restricted to X C (Z;)". Let ¢: X5 — G be any injective homomorphism. If

(14+¢(3))(s)=0 forevery seLs—2Z"
(where5e€ g is the image of s € £5), then o(Xg) is not in Z(G), the center of G.

LEMMA 2. Let M — M be a regular covering of a smooth closed manifold M
with deck transformation group G a finite 2-group. Suppose M has a free (Z.;)"
action which is normalized by the G action in Diffeo(M). For any subgroup H of
G, let

Yy=I[5e(Z,)":Sg=g5 forall ge H}.
For any injective homomorphism ¢: Xy — H, define
E,={xeM:5% =o)X forall5e ;).

Suppose, for any subgroup H < G and any injective homomorphism ¢: L — H,
that E, is empty whenever (X ) C Z(H). Then M is a boundary.
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Lemma 1, which is purely algebraic, is essentially due to M. Gordon [5]. Lemma
2 is a generalization of Theorem 10 in [6]. The proof of Lemma 9 and Theorem 10
of [6] work in this more general situation under the hypothesis: For any sub-
group H < G and any injective homomorphism ¢: Xy — H, E, is empty when-
ever (T ) C Z(H). One replaces 7" by our M in their argument.

Proof of the Main Theorem. Consider the commutative diagram with exact
rows and columns:

1 - Z" -

!

Il

1 - Z" >

i

— - Q) — 3 — o« =
i

—_ Q0 0 « =
d

where # = C,(Z"). Let M be the regular covering of M with 7 M = 4. Then the
deck transformation group G is finite by Assumption A.

From the Seifert fiber structure of M, we know that = sits in the fiber-preserving
homeomorphism group C (W, R")-{GL(n, R) x Diffeo(W)} (see [9] for a proof
of this fact), where C®(W, R") is the space of all smooth maps of W into RX.
The group law of the semi-direct product is

(N, g, h) (N, g’ h’y=(N+gNh~', gg’, hh')
and acts on R”" X W by
(N, g, h)(x, w) =(g(x)+Ah(w), hw)).

Elements of # = C,(Z") are of the form (A, 1, /).

Any teR” can be viewed as a constant map W — R” via ¢t =(¢#,1,1) so that
& 1L,DN, g, ) (—t,1,1)=(t—g(),1,1) (N, g, h). Therefore, R” centralizes #
(since elements of # have the second slot 1). Hence M admits a 7"-action. The
(Z,)" action contained in 7" is free on M because O has no 2-torsion by Assump-
tion B.

Observe that the composite

x— CT(W,R")«{GL(n, R) x Diffeo(W)} - GL(n, R)

comes from the automorphisms of Z” induced by the conjugation by elements of
. Since # = C,(Z") is the kernel of this map, = - GL (#n, Z) factors through the
injective homomorphism G — GL(n,Z).

As M has a free (Z,)"-action, it is a boundary [2]. Therefore, as far as the
bounding problem is concerned, we may assume that G is a 2-group by the stan-
dard Stiefel-Whitney number argument. From now on, we assume that G is a
2-group.



248 KYUNG BAI LEE AND FRANK RAYMOND

Consider the G-module Z”, and form the short exact sequence of G-modules,
0-Z">YX5;—-Xs—0, asin Lemma 1. Then

Eo={se(1Z)":s—g(s)eZ" for all ge GC GL(n, Z)},

where Z" =¥, C 7 and £ CR” which acts on R"x W by translation along the
first factor. Therefore, X is the maximal subgroup of (Z,)"” centralizing the deck
transformation group G, so it acts on M. X is effective since £ C normalizer
of =.

We would like to show that the covering M — M and the action of (Z,)" on M
satisfy the conditions in Lemma 2. We prove the condition is true for G itself.
For a subgroup H of G, the proof is exactly the same.

Suppose ¢: X — G is an injective homomorphism with £, non-empty. We
claim that ¢(X5) € Z(G). According to Lemma 1, it will be sufficient to show
that (1+¢(5))(s) =0 for all se £E5—Z".

Let ©Z% be the group of all liftings of g to M sothat l -7 > L5 > X5 —lis
exact. Since £ C R” and R” is normalized by = (see condition (iii) in the defini-
tion of the Seifert fibering), X&==#-Lg,

We choose a point £ € E, and a preimage X € M. This choice induces a splitting
of the short exact sequence 1 » 7w - X5 — X —1 as follows: For §e X5, choose
a preimage s € £ . Then there is a unique ¢ € 7 such that s = oX. We now define
the desired splitting ¥: £ — & by ¢(5) =0 "!s. It is not hard to see that ¢ is
independent of the choices of s and X, and that it is an injective homomorphism.

There is a commutative diagram with exact rows and columns:

1 1
ool
N
1) ) 7
1> 7 - Lt 5 Lg-1
1 1) vy ¥
1 > G- GXXgDB g -1
l 1]
1 1

Clearly ¢ /# = G X L is the group of liftings of the action (X5, M) to M. Let

Y be the composite X5 LA Y& —> GXXs. Then  is related to ¢ by Y/(5) = ¢(3) ~'5.
Therefore, ¢ : X5 — G X X is the splitting induced by the fixed point x € M.
Recall that £ — £ maps s to 5 and has kernel Z” C #. Since ¥(3) = ¢ ~!s and
Y(5) = ¢(5) ~15, o maps to ¢(5) by the homomorphism 7« — G. Therefore, if 6=
(\, g, h), then g = ¢(5) (recall that G acts on Z" faithfully).
Now ¥(5) '=s"lo=(\=s, ¢(3), h). Since Y(5)> =1, we have A+ o(5)\r ' =
(14+ ¢(5))(s). Therefore

ol=(A+eG)NTL 0(3)% h%) = ((1+ o(3))(s), 1, 1).

However, 7w does not have an element of order 2. Therefore, (1+ ¢(5))(s)# 0 for
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alls e £6—Z". Now by Lemma 1, ¢(X) € Z(G). Thus the condition in Lemma 2
is satisfied. We conclude that M is a boundary. O

Proof of Corollaries 1 and 2. When M is flat, the nilradical of =, M is, in fact,
the maximal normal abelian subgroup so that the holonomy group acts faithfully.
Therefore, Corollary 1 is a special case of Corollary 2.

Suppose M is infranil. Let Z” be the center of the nilradical N of m; M. Then
n> 0 and M has a Seifert fiber structure with typical fiber 7" (see [8] for details).
It is known [1] that the holonomy G = 7 M/N is finite. We can assume without
loss of generality that all elements of G have order a power of 2. Because G acts
effectively on Z", the centralizer of Z”" in m M, C, am(Z"), is precisely N. Note
that N/Z(N) is torsion-free. Therefore, M satisfies the assumptions of the theo-
rem, and hence it is a boundary. |

Proof of Corollary 3. It is known [12] that every solvable subgroup of r = | M
is a Bieberbach group and hence is finitely generated. Using this fact, one can
show that 7 has a unique maximal normal abelian subgroup, say Z". To verify
that Assumption A is true, one can proceed as follows. Let G=n/C,(Z"). We
claim that each element of G has a finite order. Suppose o € w is such that its
image @« in G has infinite order. Then the subgroup «’ of 7 generated by Z"” and «
is solvable and hence is a Bieberbach group of rank n+ 1. Therefore «’ has a nor-
mal abelian subgroup of rank n+ 1. This implies that «” commutes with Z" for
some r > 0, which in turn implies that & has finite order. This contradiction shows
that every element of G has finite order. To conclude that G is finite, note that
the homomorphism = — GL(#n, Z), induced by conjugation, factors through G.
In fact, the induced homomorphism G — GL(n, Z) is injective. Thus, G is a fi-
nitely generated subgroup of GL (#n, Z) whose elements have finite order. By Sel-
berg’s lemma, we conclude that G is finite.

By the flat torus theorem in [10], M has a Seifert fiber structure with typical
fiber 7". Now we apply the main theorem. O

Proof of Corollary 4. By L.. Auslander [1, Theorem 3], such a manifold M has
a Seifert fiber structure.

EXAMPLES. All manifolds mentioned in the corollaries are aspherical. How-
ever, our main theorem does not require the asphericity of the space. Following
are examples which are not aspherical.

Take any manifold X from the corollaries. Let Y be a closed simply connected
manifold on which the finite group G = n/C,(Z") acts smoothly. (This action may
not be effective or free.) Let G act on X x Y diagonally. Then M = (X X Y)/G is a
Y-bundle over X, and is not aspherical. By the Main Theorem, M is a boundary.

Yau’s solution to the Calabi conjecture and work of Cheegar-Gromoll and
Fischer-Wolf yield a structure theorem for compact Kidhler manifolds with non-
vanishing first Betti number and vanishing first Chern class. (See, e.g., [7, p. xiii].)
That these Kdhler manifolds are Seifert manifolds satisfying Assumption A is a
direct consequence of the structure theorems. Therefore, if 7 M also has no 2-
torsion and satisfies Assumption B, then M is a boundary.
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REMARKS. While Assumptions A and B guarantee bounding, they are by no
means necessary. Let us examine a few examples.

1. The classical closed 3-dimensional Seifert manifolds are all boundaries. If
w1 M is infinite, then Assumption A always holds. However, B may fail to hold
in many cases including all the types mentioned in the last three corollaries.

2. The Dold manifold in dlmensmn 5, M=S! Xz, CP2 The free involution
acts diagonally on the product space S' x CP2 by translatmg in the S' factor and
by sending [z, 22, 23] to [Z1, 22, Z3] on the CP?2 factor. There is a (homologically
injective) S'-action on M induced by the first factor. It has Z, isotropy with fixed
point set homeomorphic to RP?, the fixed point set of the Z, action on CP2. The
Seifert structure is induced from the S'-action. Therefore w; S' = Z is a subgroup
of m; M =Z of index 2. Assumption A holds, but C,(Z)/Z =7Z,. It is well known
that M does not bound [3].

3. If one takes RP; #R P;, this is a Seifert fibering over RP,. Its fundamental
group is the semi-direct product of Z with Z/2Z. C,(Z)/Z =1, but «; contains
2-torsion. Of course, RP3;#RP; is a boundary.

4. Closely associated with each Seifert manifold M there is a (usually infinite)
family of other distinct Seifert manifolds {M’} called Seifert relatives of M. 1f M
satisfies Assumptions A and B of the theorem, so will all the relatives M’ of M
satisfy Assumptions A and B. Thus, if 7;(M’) has no 2-torsion we can be assured
that A’ will bound. In particular, if M is aspherical satisfying Assumptions A
and B then all Seifert relatives M’ of M are aspherical and bound.

Let us recall that M =R"x W and = = m (M) acts as covering transformations
with the normal Z” acting by translations on the first factor and the quotient
«/Z" = Q inducing a properly discontinuous (but not necessarily free) action on.
W with compact quotient the orbifold B= Q\ W. M Seifert-fibers over B with
generic (or typical) fiber 7”. The Seifert construction is a reversal of this process
(see [9]). It begins with an arbitrary group extension,

1-2">n'»>Q—-1:ae HX(Q; Z"),

and embeds ' into C (W, R")« {GL(n, R) x Diffeo (W)}, the group of fiber pre-
serving diffeomorphisms of R” X W. For the extension, a: 1> Z" > 7w M —> Q — 1,
the construction will recreate M, and for each of the other extensions @’ it con-
structs the Seifert fibering M’ =7’ \(R”" X W) — B. It is easy to check that =’ will
satisfy Assumptions A and B if (and only if) = = m; M does. But M’ may be only
an orbifold. However, if #’ (which does act properly discontinuously) acts freely
on R”x W, then M’ will be a Seifert manifold. Such a manifold M’ is called a
Seifert relative of the Seifert manifold M. An infinite number of distinct Seifert
relatives of M appear if (and only if) H,}f(Q; Z") is itself an infinite group. (This
is a non-trivial consequence of an examination of a certain spectral sequence as-
sociated with the Seifert construction.)

As an illustration, if M is a closed manifold with non-positive sectional curva-
ture, as in Corollary 3, then only a finite number of Seifert relatives of M will have
non-positive sectional curvature. On the other hand, as the group H(g‘( Q;Z") will
usually be infinite, all the other Seifert relatives will nof have non-positive sec-
tional curvature but, by our remarks, will still be boundaries.



10.

11.

12.

SOME SEIFERT FIBER SPACES WHICH ARE BOUNDARIES 251

REFERENCES

. L. Auslander, On the sheeted structure of compact locally affine spaces, Michigan

Math. J. 5 (1958), 163-168.
P. E. Conner, Differentiable periodic maps, Lecture Notes in Math., 738, Springer,
Berlin, 1979.

. A. Dold, Erzeugende der Thomschen Algebra t, Math. Z. 65 (1956), 23-35.

F. T. Farrell and S. Zdravkovska, Do almost flat manifolds bound?, Michigan Math.
J. 30 (1983), 199-208.

M. Gordon, The unoriented cobordism classes of compact flat Riemannian mani-
Jolds, J. Differential Geom. 15 (1980), 81-90.

. G. Hamrick and D. Royster, Flat Riemannian manifolds are boundaries, Invent.

Math. 66 (1982), 405-413.

. S. Kobayashi, The mathematical work of Y. Matsushima and its development, Osaka

J. Math. 21 (1984), iii-xxii.

. Y. Kamishima, K. B. Lee, and F. Raymond, The Seifert construction and its applica-

tion to infranilmanifolds, Quart. J. Math. Oxford Ser. (2) 34 (1983), 433-452.

. K. B. Lee and F. Raymond, Geometric realization of group extensions by the Seifert

construction, Contemporary Math. 33 (1984), 353-411.

H. B. Lawson and S. T. Yau, Compact manifolds of non-positive curvature, J. Differ-
ential Geom. 7 (1972), 211-228.

R. E. Stong, Equivariant bordism and (Z,)* actions, Duke Math. J. 37 (1970), 779-
785.

S. T. Yau, On the fundamental group of compact manifolds of non-positive curva-
ture, Ann. of Math. (2) 93 (1971), 579-585.

Department of Mathematics
University of Oklahoma
Norman, Oklahoma 73019

and

Department of Mathematics
University of Michigan
Ann Arbor, Michigan 48109






