REPRESENTATIONS OF THE MAUTNER GROUP AND
COCYCLES OF AN IRRATIONAL ROTATION

Larry Baggett and Kathy Merrill

1. Introduction. The five-dimensional Lie group known as the Mautner group
is the smallest connected Lie group whose unitary dual remains unknown. Its
representation theory is linked to the cohomology of functions on the circle under
an irrational rotation. In this paper, we use cocycles to produce a five parameter
family of representations of the Mautner group. This family completes all the
known families in a natural way and extends them to reveal the dependence of
the representation theory of the group on the angle defining it.

The Mautner group M is ordinarily defined to be the set CXx C xR together
with the multiplication rule

(z,w, )z, W, t")y=(z+e(t/2m)z', wt+e(t)w', t+1),

where e(x) = e2™¥; that is, M is the semidirect product of two-dimensional com-
plex space with the real line, where the real number ¢ acts on C? by the matrix

e(t/2w) O
[ 0 e(r) ]

If « and B are nonzero real numbers, a similar semidirect product M, g can be
defined, where the real number ¢ acts this time by the matrix

e(at) O
[ 0 e(Bt)].

If the quotient 8 = B/« is irrational then M, g exhibits the “Winding Line” phe-
nomenon in its structure, so that all these groups seem to be analogous from the
point of view of ergodic theory. In addition, the primitive ideal spaces of the
M, g’s, for B/« irrational, are all identical: Prim (M, g) is the union of the real
line (characters) with the set of nondegenerate tori S, X S, in C? (normal factors).

It would be reasonable to expect the representation theory of all these groups
to be alike as well. For any irrational 8/, it is known that M, g is not of type I,
so that its unitary dual (equivalence classes of irreducible unitary representa-
tions) cannot be parameterized in a smooth way. Further, the known parame-
terized families of representations of the ordinary Mautner group (see [2], [6],
[3]) can be easily transferred to an arbitrary M, g. However, we have found
by extending these families that the representation theory of M, g depends sub-
stantially on the number theoretic properties of the quotient 8/«a. We present
here a five- (real) parameter family of formulae defining irreducible unitary rep-
resentations of the group M, s for all @ and 8 with 8/« irrational. The unitary
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equivalence among these representations is described by means of an explicit
(non-smooth) relation on the parameters; this relation differs depending on the
continued fraction expansion of the number §/c.

For clarity, we begin with the following observation.

1.1. PROPOSITION. M, g is isomorphic to M. g if and only if B/a="/c’.

Proof. The “if” part is easy. Conversely, if M, g is isomorphic to M, g-, then
so are their Lie algebras. The generator of the subgroup Rin M, g, and its image
under the isomorphism into the Lie algebra of M, g-, must have the same eigen-
value in their adjoint representations. A simple linear algebra computation now
gives the proposition. O]

In view of the preceding, we may restrict our attention to the groups M, 4,
which we simply denote by M. The ordinary Mautner group M is then M.

We produce our family of representations, as in [2], by studying a particular
Little group Dy known as the discrete Mautner group (see §2). We use Mackey-
Ramsay theory to reduce the problem of finding irreducible representations of Dy
(and thus Mj) to that of analyzing the irreducible cocycles of rotation by —6. In
Section 3, we use the results of [8] to establish the cohomology relations among
the elements in a certain parameterized family of cocycles, and hence to establish
the unitary equivalence among the corresponding representations. All the co-
cycles in Section 3 are one-dimensional. In Section 4, we use these one-dimen-
sional results to obtain the cohomology relations among a parameterized family
of irreducible n-dimensional cocycles.

In [2] there was given a four-parameter family of irreducible representations
of M, .. Later, Kawakami [6] showed that the integer parameter d of [2] could
be extended to all rational numbers a/b with the same equivalence holding among
the parameters, thus including also the case d =1/2 which followed from ear-
lier work of Brown [4]. In [3], higher-dimensional cocycles were given which
generalized the one-dimensional results of [2] in a natural way, but which did
not include Kawakami’s rationally parameterized family. The one-dimensional
cocycles in this paper extend Kawakami’s parameter a/b to all real numbers
and introduce yet another independent real parameter. The higher-dimensional
cocycles in this paper do the same with the integer parameter of [3], thus bringing
together and completing all the known families of representations of the Mautner
group.

We are aware that constructing larger and larger parameterized families of
irreducible representations does not inevitably lead to a description of all irre-
ducible representations of M,. We are aware, in fact, that many experts feel that
such a complete description will be impossible to give. However, these formulae
are interesting and suggestive in their own right, especially because of the con-
nection they reveal between the equivalence of representations and the number
theory of the rotation angle.

2. The correspondence between representations of M, and cocycles of the irra-
tional rotation —@. In this section we describe the Mackey-Ramsay theory as it
applies to the group Mj. Because our goal is to indicate explicit formulae for
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representations of this group, which we shall do by using explicit formulae for
cocycles of the irrational rotation —@, we want to make the correspondence
between these two entities equally explicit.

Fix an irrational number 8, and let N denote the closed normal subgroup of
M, consisting of the triples (z,0,0) for z in C. Then N is regularly imbedded in
M, (see [7]) and the M,-orbits in N are just the circles in the complex plane C.
For each nonzero element ¢ of N, the stability subgroup H of M, for ¢ consists
of the triples (z,w, n), z and w in C and » an integer. Hence, the Little group
associated to ¢ is the discrete Mautner group Dy, that is, the set of pairs (w, n)
with w in C and # in Z with multiplication given by

(w,n)y(w,n’y=(w+end)w’,n+n’).

2.1. THEOREM (Mackey). Let V be a unitary representation of D, let p be a
positive number, and define the representation S=S'*") of H by Sz, w,n) =
e({p,2))Viw,n), where { , ) denotes the real inner product in C. Define U(»-¥) to
be the induced representation IND}’,‘”B)(S(‘” V)). Then:

(i) UY) s irreducible if and only if V is irreducible.

(i) U»Y) isequivalent to U* V") if and only if p = p’ and V is equivalent to V.

(iii) Every irreducible representation of My which is not trivial on N is equiva-
lent to some UPY),

Proof. This is just the Mackey procedure. See [7]. O

2.2. DEFINITION. Let K be a Hilbert space and let U(K) denote the group of
unitary operators on K. A “U(K)-valued cocycle of the irrational rotation —9” is
amap R of [0, 1) X Z into U(K) which satisfies the cocycle identity R(x, m+n) =
R(x, m)R((x—m@), n), where addition is mod 1 in the first variable. The dimen-
sion of the cocycle is the dimension of the Hilbert space K, and the coefficient
group for the cocycle is the group U(K). An intertwining between two cocycles
R and R’ having the same coefficient group U(K) is a map A of [0, 1) into the
bounded operators on K satisfying the intertwining equation A(x)R(x,m) =
R'(x,m)A(x—m@) for all x in [0,1) and m in Z. Two cocycles are called coho-
mologous if they have the same coefficient group and there exists a unitary oper-
ator-valued intertwining between them. (When necessary, we will emphasize the
dependence on # by using the term 6-cohomologous.) A single cocycle is called a
coboundary if it is cohomologous to a cocycle which is constantly the identity; it
is called irreducible if the only intertwinings between it and itself are the constant
scalar-operator-valued functions.

If p is a measure on [0, 1), we may formulate the measurable versions of these
definitions. Cocycles and intertwinings will be required to be measurable maps,
and the cocycle identity and intertwining equation must only hold p almost
everywhere.

Given a measure px on [0, 1) whose null sets are preserved under rotation by @,
let d,(x, m) be the associated Radon-Nikodym function:

1
j; S(x)dp(x) = SO S(x—m8)d,(x, m)du(x).
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2.3. THEOREM (Ramsay). Let u be an ergodic measure on [0,1) whose null
sets are preserved under rotation by 0; let R be a p-measurable, U(K)-valued
cocycle of the irrational rotation —6; and let r be a positive real number. Define
the representation V=V "®" of D, acting in L*(S", K, p), by

VR £1(x) = (du(x, m))?e((re(x), wd) R(x, m) f(x—m0).

w, 1)
Then:
(i) VR s irreducible if and only if R is irreducible.
(i) VR js equivalent to V" R#) if and only if r=r’, R and R’ are coho-
mologous, and p and u’ are equivalent.
(iii) Every irreducible representation of Dy, which is not trivial on the normal
subgroup of pairs (w,0) for w in C, is equivalent to some V" &#

Proof. See [9]. O

3. A parameterized family of cocycles and their equivalence relations. We
present here a three-parameter family of one-dimensional, Lebesgue measurable
cocycles of the irrational rotation —@. If # has bounded partial quotients in its
continued fraction expansion, we are able to describe analytically the cohomology
among these cocycles in terms of the parameters. Thus Theorems 2.1 and 2.3
(with p = Lebesgue measure) can be used to construct a five- (real) parameter
family of irreducible representations of Ay in which the unitary equivalence is
given in terms of the parameters. For § with unbounded partial quotients, we can
describe the cohomology completely only for two of the parameters. For the
third parameter, we show that there are uncountably many more equivalence
relations than in the bounded partial quotients case, and that these equivalences
depend on the continued fraction expansion of §.

To define a cocycle R, it is sufficient to specify the function R(x,1) on [0,1);
the cocycle identity then gives

R(x,1)R(x—0,1)---R(x—(n—1)6,1) if n>0
R(x,n)=141 if n=0
R Yx+0,)R Y (x+26,1)---R™ Y (x—nb,1) if n<O.

The cocycle identity can also be applied to the intertwining equation to reduce
questions of cohomology and irreducibility to questions concerning only the
function R(x,1). Using the ergodicity of an irrational rotation, we see that all
one-dimensional cocycles are irreducible. Two one-dimensional cocycles R and
R’ are cohomologous if and only if their quotient is a coboundary, that is, if
there exists a nonzero Lebesgue measurable function g mapping [0,1) to the
unit circle such that

g(x)=g(x—0)R'(x,1)/R(x,1).

We call two functions cohomologous if the cocycles they define are cohomologous.

For x € R, define the function e by e;(x) =e(sx). For f a function on [0, 1)
and 7 e R, let ¥ denote the translate of f by ¢ (mod 1) so that f(x) = f(x+1).
With this notation, our parameterized family of cocycles is given by the following.
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3.1. DEFINITION. For real numbers A, s, and ¢, define the cocycle R ™% by
the formula

RMs:0(x 1) =e(N\) ‘es(x).
If we let f; ¢ be the function on [0, 1) defined by

{1 for xe[0,1—{¢t})
Ji,s(x) = {e(s) for xe[1—{z},1),

then we have (recalling that arithmetic in the argument of these functions is mod 1)

‘es = (e(s (1)) (f1, ) (e5),

where { } = fractional part. This form is the key to using the results of [8] 1o
determine the cohomology among the R™* %, Qur first step is the following.

3.2. THEOREM. Let s, s’, A and N be arbitrary real numbers. Then R™%9 s
cohomologous to R™"*"® if and only if s =s’ and \—N = p +q8 for some inte-
gers p and q.

Proof. The “if” direction is established easily by the equation e,;(x)=
e(gf)ez(x—0). Conversely, we see that e(\)es is cohomologous to e(\')e,- im-
plies that e;_;- is cohomologous to a scalar, and thus (since cohomology is pre-
served by translation) to any translate of itself. Thus for an arbitrary real 7, we
have that e;_g is cohomologous to ‘e;_; = (e((s —s’){£})) (es—s') (f1,s'—s)- But
then f; s—s is cohomologous to a scalar for all #. If s’—s is not an integer, this
is impossible by [8] (or [10] and [11]); if s’—s is a nonzero integer it is impossible
since the scalar e((s —s’){7}) depends on ¢#. Thus s =s’, and so A — X must satisfy
g(x)=e(A—NXN)g(x—0) for some nonzero measurable g. An elementary Fourier
series argument gives A\— N\ = p +¢q#. O

This result, which holds for all 8, yields a two-parameter family of cocycles
whose cohomology is entirely known. Theorems 2.1 and 2.3 can be used to con-
struct a four-parameter family of irreducible representations of M, for which all
the equivalence relations are known. The parameter s extends the parameter d of
[2] and the rational parameter a/b of [6] to all real numbers. Thus for arbitrary
#, we have completed the known parameterized family of representations in a
natural way.

Now we add the third parameter ¢. The value of studying this parameter is not
so much in extending the family of representations as in what it reveals about the
relationship between the number theory of 8 and the representation theory of
M. (The third parameter will also be needed to establish irreducibility of the
higher-dimensional cocycles in the next section.)

This relationship will be expressed in terms of the continued fraction expan-
sion of §. We let # have continued fraction expansion [a,, a,, ...] with conver-
gents [ay, a3, ..., ar] = my /n;. The a; values are called the partial quotients of 6;
if there exists a constant ¢ depending only on 8 such that a, < c¢ for all k, we say ¢
has bounded partial quotients.
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3.3. THEOREM. If 0 has bounded partial quotients, then R™>" is coho-
mologous to R™"*"") if and only if s =s’ and either

(i) t—t'=j+k0 and \—N =p+qb; or

(ii) s is an integer, t and t’ are arbitrary, and \— N =p+q0—s(t—1t’),
Sfor some integers j, k, p and q.

Proof. Again the “if” direction is easy: e(A—\)‘e;‘e_; is a coboundary if and
only if its translate e(A—N\)’ " ‘ese_; is. Using the comment after Definition 3.1,
the latter can be written in the form e(A— N +s{f—¢’}) f;—, s. This is a cobound-
ary by Corollary 2.3 of [8] if (i) holds and by an elementary Fourier series argu-
ment if (ii) holds.

Conversely, if e(\) ‘e, is cohomologous to e(N)’e,, then e(A—N)' "‘ese_, is
a coboundary. In the case where both s and s’ are integers,

e(A—=N) "le;e_g=e(N=N+s(t—1t"))e;_q.
Thus Theorem 3.2 implies that s=s"and A\— N +s(f—¢')= p+q6f. Now we turn
to the case where not both s and s’ are integers. Since /e, e_,. is cohomologous
to a scalar, we have for every integer » that ¢~/ "es+,,e_(s'+,,) is cohomologousto a
scalar, and thus that >~ "¢, ,“~e_ ., .y is cohomologous to e, ,e_ (54 n)-
From this we get that f,_, _s_s_2, f2(:-1),s+n Mmust be cohomologous to a sca-
lar. Choose n so that s+#n# —(s’+#n). Then by Theorem 3.1 of [8], t —¢'=j+ k0
for some integers j and k. Thus, since ¥ *49f is cohomologous to f for any func-
tion f, we have that e, e_ s +,) is cohomologous to a scalar. Now Theorem 3.2
shows that s =s’. Finally, that e(A—N\)Y %% e__ is a coboundary implies that
e(AN—N\’) is a coboundary and thus that \— N\ = p+ ¢g#. J

Now we show that in the unbounded partial quotient case, the cohomology
among the cocycles R™ 9 is quite different. In this case we show that there are
uncountably many more equivalence relations than in the bounded partial quo-
tient case. These are given in the following theorem. The full picture of the coho-
mology is still unknown.

3.4. THEOREM. For arbitrary 8, R™5" is cohomologous to R*"5'") if

(i) t—t’ can be written in the form X _o byni0 (mod 1), where ny are the de-
nominators for the convergents of 0, by an integer with |by| < ay .y, satis-
Sying X¥_o |bi| nk|nx 0] < oo and X F-o |bxs] < oo; and

(i) N\=N=X7-0 brsng0 +p+qb. (Here |x| = the distance from x to the clos-
est integer, and x = x — the closest integer.)

Proof. We must show that under conditions (i) and (ii), e(A—N) fi -, s 1S
cohomologous to 1. This follows from Theorem 2.5 of [8]. O

If @ has bounded partial quotients, condition (i) implies that ¢ —¢'=j + k8.
However, if € has unbounded partial quotients, there are an uncountable number
of new cohomology relations given by this theorem, even with s fixed at s=1/2
(see [11]).

4. Higher-dimensional cocycles. Next, we use the results of Section 3 for one-
diimensional cocycles to construct a family of n-dimensional cocycles whose
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cohomology relative to Lebesgue measure we can describe in terms of para-
meters. Our formulae generalize those in [3] in the same way that the ones in
Section 3 generalize those in [2].

Let n be an integer > 1. As in the previous section, we will define our U(C")-
valued cocycle R by specifying the function U(x) = R(x, 1) (recall that R can be
retrieved from U by the formula R(x, k)=U(x)U(x—8)---U(x—(k—1)8) for
k>0 and an analogous formula for k£ <0). Again, the intertwining equation
reduces to its statement about R(x, 1), so that the irreducibility and cohomology
of the cocycles R can be determined by studying the solvability of the equation
AX)U(x)=U’(x)A(x—0). Because the terms in this equation do not commute
for n>1, determining solvability is in general much more difficult than in the
one-dimensional case. We construct here a family of U’s for which this kind of
analysis can be carried out.

Let I denote the (n—1) X (n—1) identity matrix, and let P be the n X n permu-
tation matrix which is represented in block form by

p= 0 1
|1 o)
4.1. DEFINITION. For an integer n > 1 and real numbers A, s, and ¢, define the

function UMY of [0,1) into U(C") by UM (x)=PD" 5 (x), where
DM (x) is the n x n diagonal matrix represented in block form by

I 0
[0 e(N\)‘es(x) ]

Let RS9 pe the n-dimensional cocycle of the irrational rotation —@ which is
determined by U ™59,

Remark. The cocycles just defined are obviously of a very special sort. They
do, however, generalize the formulae in [3]: our parameter s extends the integer
parameter d, and our parameter ¢ adds yet another real parameter. It is shown
in [3] that the formulae given there (and thus the formulae in this section) include
the cocycles discovered in quite different contexts by Bagchi, Mathew, and Nad-
karni [1] and by Ismagilov [5].

4.2. THEOREM. Assume 0 has bounded partial quotients. Then:
(i) R™™%Y js irreducible if and only if s is not an integer for which

ged(s,n)>1.

(ii) Two irreducible cocycles R™ ™5 and R"™*>5"*) gre cohomologous if and
only if s =s’, and either Q) t —t'=j+ k@ and \— N =p+qnb, or (b)seZ,
t and t’ are arbitrary, and \—N +s(t—t’)=p+qbl; where p,q, j, ke Z.

Proof. Let V{"»59 pe the unitary representation of Dy which corresponds to
the cocycle R ™»5 % as in Theorem 2.3. We shall prove our theorem by analyzing
the restriction of ¥ »»%9 to the subgroup D’ of D, which consists of the pairs
(w, kn) for w in C and k in Z. We let R'MSD pe the cocycle of the irrational
rotation —n@ defined by RS (x k)y=R"™MS)(x, kn), and let y’=»50



228 LARRY BAGGETT AND KATHY MERRILL

denote the unitary representation of D,y corresponding to R’"»%? a5 in Theorem
2.3. Now D’ is identical with D,y, and we see that V{"»59 |, is precisely
V/(n,}\,s,t).

We write
RN (x, kn) = PD(x)P""'P?D(x—0)P"~%...D(x— (kn—1)8),

and see by elementary linear algebra that RN st )(x,’kn) is a diagonal matrix
whose j, j entry is R’""MS5)(x k), where R’ »5%4J) is the one-dimensional
cocycle of the rotation —#n6 defined by the function

R,(n,)\,s,t,j)(x’ 1) =e()\) (1—(f—l)o)es(X)-

It follows that ¥/(»% 9 is the direct sum of » representations V'»% /) where
prnhs:6J) jg the representation of D,y corresponding to the cocycle R’"»5:5J)
in Theorem 2.3. Hence V"»59| .. is the direct sum of the n representations
V/(n, A, S, t,j).

We compute the action of the group Dy on the element V’/">»% /) and find that
Vs L0 (w, m) is equivalent to /(M5 6/—m which shows that V{mMs:0] 5,
is concentrated on a Dg-orbit in D’. Now, V’tNs.0.1) is equivalent to I’/ :Ns.6.))
if and only if e(A\)U—(—DOeg. and e(\) Y~ U—-Dbeg. are nh-cohomologous. By
Theorem 3.3 (which applies since the remark following Theorem 2.5 in [8] shows
that #6 has bounded partial quotients if @ does), this is so if and only if
s(j—i)0=p+gnBands isin Z, or (j—i)0 = p+ gn6. The latter is impossible for
J#1i since both i and j are between 1 and n. The former holds if and only if
s(j—i)=gn and thus gcd(s, n) > 1. Therefore, the Dy-orbit of V/"MN61D oop.
sists of exactly n points unless s is an integer for which ged(s,n)=p>1. If
gcd(s,n)=p >1, then the orbit consists of exactly #/p points, and the multi-
plicity of Y =»s0) . = p,

If the Dy-orbit consists of # points, then there is no nontrivial stability sub-
group for p’As6D. pAs 45 induced from VM55 and is consequently
irreducible by Mackey’s theory. Hence V*%9 jis irreducible if s is not an
integer for which gcd(s, n) > 1.

Conversely, if ¥*59 isirreducible, then ¥"** 9 is equivalent to IND{P? s,
where H is the stability subgroup of Dy for V’'"»%%4D and where S is a rep-
resentation of A of the form S=M& (T-w) with M a Mackey extension of
primhs 6D p the natural map of H onto H/D’, and T an irreducible multiplier
representation of H/D’. Further, dim 7 is the multiplicity of V5| .. Since
H/D'’ is a finite cyclic group, we have that dim 7= 1. If s is an integer for which
ged(s, n) = p>1, then we have seen that the multiplicity of V*»%9| . =p so
that V"»5:9 js irreducible only if s is not an integer for which ged(s, n) > 1. This
proves part (i).

Two irreducible cocycles R ™5 and R™*:5"!) are cohomologous if and
only if the corresponding unitary representations ¥V {»59 and y"=*-s") gre
equivalent, and this is so if and only if they restrict to the same n#-point orbit in D’.
Therefore, R"»% 9 js cohomologous to R 5> if and only if there exists an
integer i between 1 and #n such that the two one-dimensional cocycles R’ 549
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and R’Y>5%11 gare cohomologous relative to the rotation —#n6. Because n6 has
bounded partial quotients, Theorem 3.3 holds and we have s =s’ and either
@ t—t'=j+kn0+(i—1)6 and N\—N = p+gnb, which is so if and only if
t—t'=j+k’'0and N\— N =p+qgnb; or
(b) seZ, ¢t and ¢’ are arbitrary, and A\—N +s(t—t’) = p+qgnf+s(i—1)8,
which is so if and only if se€ Z, ¢ and ¢’ are arbitrary, and A\— N +s(f—¢’) =
p+q’l.
This completes the proof of the theorem. 1

REMARK 1. If s is an integer which is relatively prime to n, then the irreduci-
bility and cohomology relations for R">»*% hold even when 6 has unbounded
partial quotients. When ¢ = 0, this is precisely the cocycles studied in [3] where no
continued fraction distinctions were made.

REMARK 2. We know of no irreducible n-dimensional cocycle which we can
show is not cohomologous to one in our list. This is not, however, a strong state-
ment, since there are many simple cocycles whose relationship to the R »*5: /g
is undetermined. We make no conjecture about the completeness of our list.
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