CELLULAR-INDECOMPOSABLE OPERATORS
AND BEURLING’S THEOREM

Paul. S. Bourdon

1. Introduction. Let H be a Hilbert space with norm | | consisting of func-
tions analytic on the open unit disk A. We will assume that A has the following
properties.

(1) The polynomials are dense in H.

(2) Multiplication by z, 77, is a bounded linear operator on H.

(3) If zg € H for some function g analytic on A, then ge H.

(4) For each point b € A, the linear functional of evaluation at b, \,, is con-

tinuous with respect to the norm of H.
Requiring that A have property (3) is actually equivalent to requiring that T, be
bounded below (see Proposition 2). In this paper we will be concerned primarily
with the operator 7; on H.

For —oo < a < o0, let D, represent the Hilbert space of analytic functions f on
A satisfying | f]o < o, whereif f=37_ a,z", |fl2=Zr-o(n+1)%|a,|?. It is not
difficult to verify that the spaces D, with norm | |, satisfy properties (1)-(4)
above. Note that D_,, Dy, and D, are the Bergman, Hardy, and Dirichlet spaces
respectively. Also note that the operator 7, on D, corresponds to the unilateral
weighted shift with weight sequence

n+2\%?
n+1 n=0

relative to the orthonormal basis

1 af2 )
(Gz) =, or 2
(cf. [9D).

We say that a closed subspace M C H is invariant if it is invariant under the
operator 7; that is, a subspace M is invariant if it is closed and zM C M. For a
function fe H, define [ f] = H-closure of {pf: p is a polynomial}. We say that
an invariant subspace M of H is cyclic provided there is some function f € M such
that M =[f]. We denote by N;© N, the orthogonal complement of N, in &, for
closed subspaces N, C N, C H; and by M,V M>, the closed linear span of the sub-
spaces M; and M, of H. For M, and M, invariant subspaces of H, observe that
M N M, and M,V M, are invariant.

Adopting terminology established in [8], we say that the operator 7, on H is
cellular-indecomposable if M| N M, # {0} for any two nonzero invariant subspaces
M, and M, of H. The following proposition applies to 7; on Dy since each func-
tion in the Hardy space is the quotient of H * functions, and since for ¢ a multi-
plier of D, and fe D,, ¢[f1C [f] (cf. [3, Proposition 7]).
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PROPOSITION 1. Let M(H ) denote the set of multipliers of H. If for each non-
zero fe H we have [f1NM(H ) # {0} and M(H)[f1C[f], then the operator T,
on H is cellular-indecomposable.

Proof. If for nonzero fand g in H we have fie[f] and g, €[g], where f; and
g, are nonzero multipliers of H, then fig,e[f1N[g]. O

For o> 1, each function of D, is a multiplier of D, so that Proposition 1 ap-
plies to 7, on these spaces. Similarly, the operator 7; on H is cellular-indecom-
posable whenever it is similar to a strictly cyclic shift (cf. [9, pp. 92-101]).

Some necessary conditions for a subnormal operator to be cellular-indecom-
posable are given by Olin and Thomson in [8]. Our main result is the following
theorem; its proof is presented in Section 3.

THEOREM 1. If the operator T, on H is cellular-indecomposable, then each
nongzero invariant subspace M of H satisfies dim(MO©(z—c)M) =1 foranyce A
with |c| < ri(T}).

Here r{(7;) represents a positive constant associated with the operator 7 on
H. Let ce A satisfy |c| <ri(7;). In Section 2, we define r(7;) and show that
(z—c)M is closed for any closed subspace M of H. We remark that the dimen-
sion of MO (z—c)M must be at least 1 for any nonzero invariant subspace M
of H. This follows since M = (z—c)M implies M =N, =0(z—¢)"M =0.

The referee has pointed out to the author that Theorem 1 is actually a conse-
quence of Lemma 4 of [8], a general result concerning cellular-decomposable
semi-Fredholm operators. Our setting allows for a different, more elementary
approach to the proof of Theorem 1; moreover, some of the propositions in the
sequel which are useful in our approach have independent interest.

Whether or not the converse of Theorem 1 is true is an open question. We do,
however, have the following result. Define

dist(M,, M) =infflg—f|: |g|=|Sf|=1, ge M, fe M)}
for any nonzero subspaces M and M, of H.

THEOREM 2. If each nonzero invariant subspace M of H satisfies
dim(MOzM) =1,
then dist(M,, M>) =0 for any two nonzero invariant subspaces M, and M, of H.

In Section 4, we show how Beurling’s Theorem follows from our results. Beur-
ling’s Theorem states that every invariant subspace of Dy is cyclic and that each
invariant subspace has an inner function as a cyclic vector; in other words, if M C
Dy is invariant, there is an inner function w such that M = [w]. We conclude this
introduction with a few remarks concerning a cellular-decomposable operator.

The operator 7; of D_,, the Bergman shift, is cellular-decomposable. Horo-
witz [6] has exhibited nonzero invariant subspaces M, and M, of D_; such that
M;NM,={0}. More recently, Apostol, Bercovici, Foias, and Pearcy [1] have
shown that the lattice of invariant subspaces for the Bergman shift contains a lat-
tice that is isomorphic to the lattice of all subspaces of D_;. The point is that the
Bergman shift belongs to the class Ay of universal dilations introduced by Berco-
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vici, Foias, and Pearcy in [2]. Their results concerning A x, have many interesting
applications to 7, on D_,. For example, Corollary 4.3 of [2] asserts the existence
of an invariant subspace M of D_; such that dim(M©zM) = .

2. Preliminaries. Let H be a Hilbert space of functions analytic on A satis-
fying properties (1)-(4) above. Recall that an operator A on H is bounded below
if |Af| =8| f] for some 6§ >0 and all fe H. It is not difficult to verify that 4 is
bounded below if and-only if Ker A = {0} and the range of A is closed.

PROPOSITION 2. Let ce A. The operator of multiplication by (z—c) on H,
T, _., is bounded below if and only if (z—c)ge H (for some function g analytic
on A) implies ge H.

Proof. Let (z—c)g e H and suppose T,_. is bounded below. By property (1)
of H there is a sequence {p,} of polynomials such that |p,—(z—c)g| — 0. By
property (4) of H, p,(c)— 0. Therefore,

(z—c) (E_rv:ﬁr_ﬁﬂ)_(z_c)g"_,&

{—cC

Since Ran 7;_. is closed, ge H.
Conversely, if (z—c)g e H implies g € H, then the range of 7,_. is closed by
property (4) of H. Since Ker 7, _.= {0}, T,_. is bounded below. ]

We see that property (3) of H implies that the operator 7, on H is bounded be-
low. Let m(T;) =inf{|7; f|: | f| =1} be the lower bound of 7, on H, and define

ri(Ty) = sup[m(T)]" = lim [m(Ty)]""

nx=tl n-»co
(cf. [9, pp. 68, 69]).

It’s not difficult to show that 7, _. is bounded below whenever |c| < r{(73;) (cf.
[9, Proposition 13]). Let M be any closed subspace of H. We now observe that
(z—c)M is closed for |c| <r(T;). For the spaces D, r|(T;) =1 (cf. [9, Proposi-
tion 15]).

Throughout the remainder of this paper the letter ¢ will denote a complex num-
ber in A whose modulus is less than r{(7;). Also, the letter k¥ will denote a non-
negative integer.

As in [7], we will say that a subspace M of H has property (L) for (z —c) pro-
vided

(L) M is invariant, and (z —c)g € M (for some function g analytic on A) im-

plies g e M.
Note that H has property (L) for (z—c). This follows from Proposition 2 since
|c| < ri(T;) implies that 7, _. is bounded below. Thus in considering whether or
not an invariant subspace M of H has property (L), we may assume that ge H.
Also note that if M # {0} has property (L) for (z —c), then M contains some func-
tion f such that f(c)#0.

We now establish several easy propositions for future reference. Proposition 3
is essentially Proposition 1 of [7]; we include a (somewhat easier) proof here for
completeness.
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PROPOSITION 3. If a nonzero subspace M C H has property (L) for (z—c),
then dim(MO((z—c)M)=1.

Proof. Let g, and g, be nonzero elements of M©(z—c)M. Since M has prop-
erty (L) for (z—c), g:(c) # 0 and g,(c) # 0. Choose the constant 8 such that
g1(c)—Bg2(c)=0.Then g, — g, e (MO (z—c)M)N(z—c)M (since M has prop-
erty (L) for (z—c)). Hence, g;=g>. ]

PROPOSITION 4. Let M C H be invariant. If dim(MO(z—c)M)=1and if M
contains a vector f such that f(c)#0, then M has property (L) for (z—c).

Proof. Let w span M©(z—c)M. w(c) # 0 since not all functions in M vanish at c.
Now, if (z—c)g e M for some analytic function g, then (z—c)g=8w+(2—c)g;
for some constant 8 and some g;e M. But 8=0 since Bw(c)=0. Hence, g=
g eM. 1

PROPOSITION 5. Let M C H be invariant. If dim(MOS(z—c)M) =1, then
dim((z—c)*"MO(z—c) M) =1.

Proof. Let w span MO (z—c)M. (z—c)*w may be written uniquely as
z—cYw=(@z=c)w +(z—c) T 'w,,
where wy, w, e M and where (z—c)*w, is in (z—c)*MO(z—c)*T'M. Let fe

(z—c)Y*MO(z—c)* M be arbitrary. f=(z—c)*f; for some f; € M. Now, f,=
Bw+ (z—c) f> for some constant 8 and some function f, € M. Hence

f=@E—=c)fi=BE—cYfw+(z—c) 1,
=B(z—c)wi+(z—c) T (Bwa+ £2).

Since f, (z—c)Y'wie(@—c) MO (z—c)**'M, we have (z—c) T (Bw.+/2)=0
so that f=B(z—c)*w,. O

We remark that Proposition 5 may be proved using elementary properties of
the Fredholm index.

Let b € A. By the Riesz representation theorem, there is a function K; € H such
that f(b) =Ny (f) =S, Kp) for each fe H. For a closed subspace M C H, let Py,
denote the orthogonal projection of H onto M. The following proposition is self-
evident.

PROPOSITION 6. Let M be an invariant subspace of H containing a function f
such that f(c)#0. If dim(MO(z—c)M) =1, then Py (K.) spans MO (z—c)M.

PROPOSITION 7. If a nonzero invariant subspace M of H is cyclic, then
dim(MO(z—c)M)=1.

Proof. Let fe M satisfy [f1=M. f=w+(z—c)v forsome we MO (z—c)M
and some ve M. Let ge MO (z—c)M be arbitrary. Since f is cyclic for M, there
is a sequence {p,} of polynomials such that | p, f— g| — 0. Splitting p, f—g into
the part in M©(z—c)M and the part in (z—c)M, we have

| pn(CIW—g+((Pn—pPu(cHW+(z—C)op)| =P, f—g]| =0
so that |p,(c)w—g| — 0. Hence, g =Bw for some constant . 0
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For the Hardy space Dy, the converse of Proposition 7 is valid.
PROPOSITION 8. If M C Dy is invariant and dim(MQzM) =1, then M is cyclic.

Proof. Let w span MO zM. Claim [w]= M. To prove this we show that ge
MOS([w] implies g=0. Let ge MO [w].

We have (g, z"w)=0 for all n=0. Since (g, w)=0, we have g =zg, for some
g1€ M. However, (g, w) =428, zw)={g,zw) =0, so that g, =zg, for some g, €
M. Continuing this way we see that g has a zero of infinite order at z =0; hence,
g =0 and we must have [w] =M. 0]

REMARK. Let M be a nonzero invariant subspace of Dy. That dim(MOzM) =1
and that M is cyclic are well known (cf. [4, problem 123]).

PROPOSITION 9. If f € H satisfies f(c) # 0, then [ f] has property (L) for (z—c).

Proof. This follows from Propositions 4 and 7 (or may be proved directly).
]

The following proposition is an easy consequence of Proposition 9.

PROPOSITION 10. For f,ge H with f(c)#0and g(c)#0, [f1N[g] has prop-
erty (L) for (z—c).

3. Proofs of Theorems 1 and 2. We are now in a position to prove Theorems 1
and 2 stated in Section 1. Recall that ¢ represents a complex number in A of mod-
ulus less than r(77).

Proof of Theorem 1. Let M # {0} be an arbitrary invariant subspace for 7,
on H. We assume that any two nonzero invariant subspaces of H have nonzero
intersection and prove that dim(M&(z —c)M) =1. Without loss of generality,
we may assume that M contains a function f such that f(c)#0. (If not, M =
(z—c)*M, for some invariant subspace M, containing a function not vanishing
at c. By Proposition 5, dim(My© (z —c)My) =1 implies dim(MO(z—c)M) =1.)
We prove Theorem 1 by showing that M has property (L) for (z—c).

Suppose (z —c)g e M for g analytic on A and suppose that g(c) # 0. We show
that ge[(z—c)g]lVI[f]C M. By assumption, [g]N[f]# {0}. Since any nonzero
subspace having property (L) for (z —c¢) must contain a function not vanishing
at ¢, there is a function we [g]N[f] such that w(c) # 0 (Proposition 10). Now,
let {g,} and {p,} be sequences of polynomials such that
g(c)

n&+ ——w

w(c)
Note that g,,(c)g(c) - —g(c) by property (4) of H so that g, (c) —» —1. We have

”(q" dnlc ))(z c)g+pnf—g

—0 and

glc) 1,
pnf— W(C) W‘I 0.

<|gng+p. [+ [(—=1—qgn(c))g|

< lan g+—g(( )) “

+|g.(c)+1]|g].

pnf_

g(c) “
w
w(c)
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The last expression goes to zero and it follows that ge[(z—c)g]lVI[f]C M.
If we drop the assumption that g(c) 0, then g = (z—c)*g, for some g, such
that g;(c) # 0. By the argument of the preceding paragraph, we have

gielz—c)alVLSI].
It follows by the continuity of 7;,_. on H that
g=z—c)gel(z—c)* g lvi(z—c)*f]
=[(z—c)glViz—c) ' f1cM,
and we have completed the proof that M has property (L) for (z—c). ]

EXAMPLE. Consider the cellular-indecomposable operator 7, on Dy. By Theo-
rem 1, each invariant subspace M of D satisfies dim(MO(z—c)M) =1 for |c|<
ri(T;) =1. We must have |c| strictly less than r(7T}) since, for example,

dim(De@({(z—1)Dy) " )=0
(If fe Dy©((z—1)Dy)~ then f(0) = f(n) for all n=0, so that f=0.)

REMARK. It is easy to see that the following generalization of Theorem 1 is
valid. Let {c;}¥_, C A satisfy |c;| <ri(T}) for i=1,2,..., k. If the operator 7} on
H is cellular-indecomposable then each nonzero invariant subspace M of H satis-
fies dim(MO(z—c)(z—¢2)---(z—c ) M) =k

Proof of Theorem 2. We assume that each nonzero invariant subspace M of H
satisfies dim(M©zM) =1 and show that dist(AM;, M,) =0 for any two nonzero
invariant subspaces M, and M, of H.

Let M; and M, be nonzero invariant subspaces of H. Without loss of general-
ity, we may assume that there are functions f € M; and g € M, such that f(0) =0
and g(0) 0. By assumption, N={[ f]V[zg] satisfies dim(N©zN)=1. By Prop-
osition 4, N has property (L) for z, so there exist sequences {g,} and {p,} of
polynomials such that | p, f+ 29, g —g| — 0. We have sequences {p, f} C M and
{(1—zq,)g} C M; such that |p, f—(1—zqg,)g|—0.

Now, inf{]|(1—zg,)g|} > 0; otherwise, |(1—zgn;)g|— 0 for some subsequence
{q,, } of {g,} and this contradicts the fact that g(O) # 0. It follows that there is a
constant R such that 1nf,,>R{|lp,, I} > 0. We have

[ —24,)8
lonfl I|(I—zqn)gl|

as n = R goes to o. Hence, dist(M,, M,)=0. O

-0

4. Beurling’s Theorem. By Theorem 1 and Proposition 8, each invariant sub-
space M of the Hardy space Dy is cyclic. Also, by the proof of Proposition 8,
if w spans M©zM then [w] =M. Now w has constant modulus on the unit cir-
cle, since w is orthogonal to z"”w for n = 1. Hence, there is a constant 8 such that
Bw=Fis inner. M =[F] and we have proved Beurling’s Theorem.

We note that since dim(FDo®zFDgy) =1 and since Fe FDy©zFD,, we must
have [F]) = FD, by the proof of Proposition 8.
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Finally, we remark that if M contains a function not vanishing at zero, then

Py (1) spans MOzM. It follows that P/ (1) is a constant multiple of the inner
function F such that M = FD,. It was Beurling’s observation that Prp,(1) = F(0)F
that led to the well-known proof of his theorem by Helson and Lowdenslager
(cf. e.g. [5, p. 99]).
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