L? ESTIMATES FOR EXTENSIONS OF
HOLOMORPHIC FUNCTIONS

Frank Beatrous, Jr.

Introduction. The purpose of this paper is to obtain certain norm estimates for
extensions and restrictions of holomorphic functions. More precisely, let D be a
bounded, strictly pseudoconvex domain in C” and let M be a complex submani-
fold which intersects dD transversally. Our purpose is to identify precisely the
restriction to M of the Hardy spaces H”(D), 0 < p < oo, as well as certain weighted
Bergman spaces where the weight is a power of the distance to the boundary. Our
main result is that the restriction to M is again a weighted Bergman space where
the nature of the weight function depends on the codimension of M. A precise
formulation is given in Section 1. The case p = c was obtained by Henkin [8].
The case 1 < p <o has been obtained by different methods by Cumenge [5].
Related results in the Hilbert space case can be found in Beatrous and Burbea
[3]. Our proof is based on an integral representation due to Henkin and Leiterer
[9] for holomorphic functions in a strictly pseudoconvex domain in a Stein
manifold.

The paper is organized as follows. In Section 1 we give some technical defini-
tions and a precise formulation of our main result. In Section 2 we develop some
integral representations and construct an extension operator for holomorphic
functions. In Section 3 we obtain some growth estimates for integral operators of
the type considered in Section 2. In Sections 4, 5, and 6 we obtain L” estimates
for these operators in the cases 1< p<oo, 0< p=1, and p = respectively.
Finally, in Section 7 we give a counterexample to show that strict pseudocon-
vexity is essential for L” estimates with 0 < p < oo,

1. Statement of results. Let M be a relatively compact open set with smooth
boundary in a complex manifold M. For z € M let §(z) denote the distance from
z to the boundary of M with respect to some Riemannian metric on M. For any
real number s > —1 and any positive number p, we denote by L? (M) the L” space
with respect to the measure 6° dV, where dV is the volume element on M, that is,
L? (M) consists of all measurable functions f on M satisfying

1/p
1A ps= (XM | f|P8° dV) < 0.

It follows from compactness of M that LZ(M)cC LY (M) for —1 <s =<1t and that
the inclusion map is continuous. For s = —1, we define L” ; (M) to be the space of
all measurable functions on dM satisfying

1= ([, 1717 d0) <o
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Here do denotes the volume element on the hypersurface dM. The norm on
LZ(M) clearly depends on the choice of a Riemannian metric on M, but the
vector space LY (M) does not, and norms arising from different metrics are equiv-
alent. Note also that if p is a characterizing function for M (i.e., a smooth func-
tion on M with p<0on M, p>0on M\M, and dp # 0 on M) then an equiva-
lent norm would be obtained by replacing 6 by —p and dV (or do) by any volume
element on M (or dM).

For s> —1 we denote by A?(M) the space of all holomorphic functions in
LZ(M), and we define A” (M) to be the usual Hardy class consisting of holo-
morphic functions on M with boundary values in L” (M). (See Stein [13].) We
define A(M) to be the space of holomorphic functions on M with polynomial
growth: A(M)={fe O(M):sup|f(z)|6(z)° <o for some s € R}. It follows from
plurisubharmonicity of |f|? that AZ(M)C A(M) for all s= —1 and 0< p <.
Thus we have

AM) = U1 AS(M).
0s<_p$oo

Now let D be a bounded, strictly pseudoconvex domain in C” with smocth
boundary, and let M be an m-dimensional complex submanifold of a neigh-
borhood of D which intersects 9D transversally. Let M = MND, and let
R: O(D) —» O(M) be the restriction mapping.

1.1. THEOREM. (a) For s= —1 and 0 < p <o, R maps AZ(D) continuously
into AL _ . s(M).

(b) There is a linear operator E: A(M) —> A(D) such that RE is the identity
operator on A(M). Moreover, for s= —1 and 0< p< oo, E maps AfL_,, (M)
continuously into AZ(D).

1.2. COROLLARY. For 0< p<oo and s = —1 we have
Af(D) |M=A£—m+s(M)-

In the case p = oo, Corollary (1.2) is due to Henkin [8]. For 1 < p < oo, it has been
obtained by Cumenge [5] from estimates for the d problem.

2. Integral representations in strictly pseudoconvex domains. Throughout this
section and the next, D will denote a bounded, strictly pseudoconvex domain in
C" with smooth boundary. We fix a plurisubharmonic characterizing function p
for D, and we let g(z, ) be the associated Levi polynomial

1) g(z, =23 pi(OET =2V =3 pjr()T —27) (£ 5= 25).

It follows from Taylor’s formula and the strict plurisubharmon_icity of p that
there are positive constants C; and r and a neighborhood D’ of D such that

Re g(z, ) = p()—p(z)+ Ci|z—¢]?
for z, e D’ and |z— | <r. Setting g(z, {) =g(z, {)—2p($), it follows that
) Re §(z, §) = —p($) —p(z) + Ci|z—¢]?
for z,{e D’ and |z—¢|=<r.
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The following result is a slight variation of a theorem of Henkin [7] and
Ramirez [12].

2.1. LEMMA. Let g, D’, r, and C; be as above. There is a neighborhood D of
D with DD D’, a C* function ® on Dx D, and a positive constant C, such that
(i) j:or any ¢ e D the function ®(-, ¢) i's holomorphic on D; _
(i) ®($, ) =—2p(%) for $€D, and |¥(z, $)| = C, for z,$e D with |z—¢|=
r/2;
(iii) there is a non-vanishing C* function Q(z, {) on

App={(z,8)eDxD:|z—¢|=r/2)}
such that ®(z, §) = g(z, £) 0(z, §) on A,

Note in particular that for any fixed z € D the function ®(z, -) is smooth and
non-vanishing on D. The proof of Lemma (2.1) proceeds along the same lines as
that of Lemmma 2.4 of [7] with the Levi polynomial replaced by g(z, {). We will
omit the details.

Let M be an m-dimensional complex submanifold of a neighborhood of D
which intersects dD transversally, and let M = M N.D. We do not exclude the case
m = n, in which case M = D. By shrinking D we may assume that D is strictly
pseudoconvex and that M is a submanifold of D. In particular it follows that A
is a relatively compact, strictly pseudoconvex open set in the Stein manifold M.

For e >0, let D, ={p < —e¢} and let M, =M N D,. For ¢ sufficiently small, D, is
a strictly pseudoconvex domain and A intersects dD transversally. Let ®(z, {) =
®(z, £)+2p($). By (ii) of Lemma (2.1), the function ® vanishes on the diagonal
in D x D. Note also that for any compact set K in D there is an ex > 0 such that
P(z,) #0forze K and —ex = p({) <0. Applying Lemma 3.1.2 and (the proof
of) Theorem (2.2.1) of Henkin and Leiterer [9] we obtain, after possibly shrink-
ing D:

2.2. THEOREM. There is a smooth differential form yo(z,¢) on MxXM of
bidegree (m,m—1) in ¢ and (0,0) in z such that

@) 7no(-, ¢) is holomorphic on M for any fixed ¢ € M, and

(i) for any z € M there is an e; > 0 such that for

O<e<e, and feOWMINC(M,)
we have

=\ F&noz e H "

2.3. COROLLARY. There is an ¢g> 0 and for each positive integer j a smooth
Jamily of smooth differential forms 1§(z, ), 0=<e=<eo, on M XM of bidegree
(m,m) in ¢ and (0,0) in z such that

1) n5(-, §) is holomorphic on M for any fixed { € M and 0 < € < ¢y, and

(1) for any ze M there is an e,€ (0, 9] such that for 0<e<e, and fe

O(M)YNC(M,) we have

f@) = F©n5z (@& D=2 7" (p(5)+e) .
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Proof. First, note that it follows from (ii) and (iii) of Lemma (2.1) that for any
fixed z € M the function ®(z, -) —2e is non-vanishing on M, for e > 0 sufficiently
small, so the integral in (ii) converges. Choose ¢; > 0 sufficiently small that dp #0
on U={|p|<2¢}. By multiplication by a smooth function x({) with compact
support in U and with x=1 on {|p|=<¢;}, we may assume that the form 5o of
Theorem (2.2) vanishes for p({) = —2¢,. We will construct the forms %; so that in
addition to (i) and (ii) they satisfy

(iii) nf(z, £) =0 for fe M\U.

By Theorem (2.2) and Stokes’ theorem we have, for sufficiently small € > 0,

f(z)=S6M S()no(z, O ®(z, &)™
= | g, TG O (B2, ) =26) "
= \YM 5r[f(§’)'ﬂ(z, g‘)((f)(z, g—)_ze)—m]

- ﬁM FIUP —2€);n—md; B Aq]($—2e) "L,

Thus we set nf = (P —2€)drn—md P Aqy.

By induction, we assume that j =2 and that a form 5;_; satisfying (i)-(iii) has
already been constructed. Since »n;_; vanishes for { outside of U, we may write
75102, ) = dp($) N wf_1(z, §) where wf_1(z, §) is a smooth form which vanishes
for ¢ e M\ U. Integration by parts yields

= ADI @)+ N1z (B2 =20 7" (p($) +€) 2

1
j—1
1

=7,y SO+ =DEBA S 1= (B-208r0f 113207 (p+ )

[ r3o+e " naf (@ —2e) 7

Thus, setting

1 . F € F YRY
=5 m+J =D R Awj 1 = (P =2€)9;wj—1]

yields the desired result. O

2.4. COROLLARY. For each non-negative integer j there is a smooth form
7;(z, ) on M X M of bidegree (m, m—3§{) in ¢ and (0,0) in z such that

i) n;(-, §) is holomorphic on M for any fixed { € M, and

(ii). for fe A}_(M) and z € M we have

=[O0z D@D if j=0
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and
&= smiz 8@ 0oy if J=t.

Here f* denotes the boundary value function of f.

Proof. For j =1, by Corollary (2.3) and the Lebesgue Dominated Convergence
Theorem we have

f@y=1im | f5)niz, (@ H-20 7" (p(5) e !

e—0t

=[ smie 8@ "oy .

The case j =0 is handled similarly. |

Next we will indicate how the integral representations of Corollary (2.4) can
be used to extend holomorphic functions on M to holomorphic functions on D.
Let 7 be the form from Corollary (2.4). The mapping z — 5(z, -) is a holomor-
phic mapping of M into the Frechet space C{y, m—1y(M). Since D is pseudocon-
vex, it follows from Corollary 12.1 of Bungart [4] that this mapping extendsto a
holomorphic mapping of D into C{, m-1y(M). We will continue to. denote
the extension by 75¢(z, ¢). Define a linear operator Ej: Al (M) - O(D) by

Eof()=|  f"mnotz, H®(, H™".

From Corollary (2.4) we obtain:
2.5. THEOREM. If fe AL (M) then Ey fe O(D\3M) and Ey f |y = 1.

Repetition of the proof of Corollary (2.3) yields an alternate expression for the
extension operator Ej.

2.6. COROLLARY. For each positive integer j there is a form n;(z,{) on
D x M of bidegree (m, m) in ¢ and (0,0) in z such that

(i) n;(-,¢) is holomorphic on D for any fixed § € M, and

(ii) the operator

Ejf@=| rmiz 8@ " o)

satisfies E; f |y = f for fe AY_ (M), and E; f = Ey, f for fe Aix_(M) with
k=<j.

3. Some growth estimates. In this section we will estimate the growth at the
boundary of certain integrals involving kernels of the type considered in Section
2. We will use the convention of denoting any positive constant by C, and a con-
stant depending on a parameter r by C,. The value of C or C, may change from
one line to the next. In addition we will use the notation f ~ g to indicate that the
ratio | fg ~!| is bounded above and below by positive constants.
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Recall from Section 2 that g(z, {) =g(z, ) —2p({), where g(z, §) is the Levi
polynomial defined by (1).

3.1. LEMMA. g(z, {) =8(5, z) + O(|z—¢|?).

Proof (cf. Kerzman and Stein [11]). By Taylor’s formula we have

£z, 5)==2p(N+23 pi (O =2+ pin (D) (7 —27) (£F=2%)
=—2p()+23 (p,-(z)+ 2 pik(Z)(§ =2 )+ 2 p,-k(zxs“k—zk))(ff—zf)
J
-zk pin($7 =z (s =25+ 0(z—¢?)
J

=—-20(N+23 p;R) =2+ 3 pjx (2) (¢ —27) (§ 5 —z)

+2 3 pie(s/—z7) (sk—zF)+O(|z— ¢ }?).
Also,

2(5,z2)=—2p2)—23 pj(2) (' =27V =3 pjr(z) (§/ —z7) (£ ¥ —zk).

Thus g(z, ) —£(<, z) contains all terms of order less than 3 in the Taylor expan-
sion for p(¢) about z, so g(z, £)—&(¢, z) =0(|z—¢|?).

We now fix p € M. By translation and rotation of the C"” coordinates we may
assume that the x! axis points along the outward normal to dD at p (here ¢/ =
x7+1iy”7), and that the {», ..., ¢, axes span the complex tangent space to dM at p.
Note that since M intersects dD transversally, the functions ¢/, ..., ¢ form a
local holomorphic coordinate system for M in a neighborhood of p.

For fixed z € D, set 7,({)=1Im g(z, ) =Im g(z, ). Then

d dp
_— —_ 0,
3y p”p o] (p)#
so it follows that the functions p, 7,, {2, ..., ¢ form a local C?” coordinate
system for M in a neighborhood of p. By continuity we obtain:

3.2. LEMMA. There is a neighborhood U of p in C" such that for any zeU
the functions p, 7p, &2, ..., 8™ form a C® coordinate system for UNM, and the
Jacobian of the transformation to the coordinates ¢y, ..., {, is bounded above
and below by positive constants.

The next lemma follows immediately from (2) and Lemma (3.1).

3.3. LEMMA. There is a positive constant r such that for z, ¢ € D with |z—{|<
r we have

18z, O~ 18(5, 2)| ~ —p(z)—p(O) + | 7O+ |z —£]%

For z € D sufficiently near M let z, be the point on M which is nearest z, and
set 8p7(2) =|z2—2«|. We also set 6(z) = —p(z). We will omit the proof of the
following elementary result.
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3.4. LEMMA. There is a positive constant r such that for e M and |z—¢|<r
we have

|z— 12 ~ dm(2) >+ |ze — 1%
From Lemma (3.3) and (3.4) we obtain:
3.5. COROLLARY. For { € M and z € D we have, for |z— | sufficiently small,

|§(zs g‘)l ~ 6(Z)+(5M(Z)2+Tz(§‘)+ IZ*—.(‘IZ.

In what follows, we assume that the parameter » of Lemma (2.1) is chosen
small enough that the estimates of Corollary (3.5) hold for { € M and z € D with
lz—¢|<r.

Let K(z, {) be a measurable function on D x D, and let ¢ be a real number. We
say that X is a kernel of type ¢ if |K(z, {)| < C|®(z, ¢)| ' where & is the function
from Lemma (2.1). In view of Lemma (3.1), K(z, {) is a kernel of type ¢ if and
only if its transpose K'(z, {) = K($,z) is a kernel of type ¢.

Let pe oM and let U be as in Lemma (3.2). By shrinking U if necessary, we
assume that U is contained in the ball about p of radius r. Let U’ CC U.

3.6. LEMMA. Let K be a kernel of type m+t witht >0 and let 0 <e <t. There
is a positive constant C = C, , such that for any measurable function ¢ on M with
support in U’ and with |¢($)| < o($) 1€ we have

| 1Kz 18] dVa(5) = C(6(2) +8m () ™.

Proof. Note that by Lemma (2.1) the function ®(z, ¢) is bounded away from 0
on (D\U)xU’. Thus for ze D\U we have

|, K@Dl avn@=C| 80" a1 =Cy.c

for e < ¢. Using Lemma (3.2), Corollary (3.5), and (iii) of Lemma (2.1), forze U
we obtain that

|, 1K@ D] dVar($)

*f 2 r2y—m—tst—1—¢ ,
scgcm_lgo SO (5(2) 4+ 80 (2)2+847+(6'12) "6/~ ds dr di”.
The change of coordinates 6 = (8(z)+ 6y (2)?)x, 7=(8(z)+6m(z)?)y, and ¢'=
(8(z) +641(2)?)/?w transforms the last integral to

[o o]

C(6(z)+6p(2)%) ¢ Scm_] S S: A+x4+y+|w|>) " 'x'"'"¢dxdydw.

0

Changing to polar coordinates in the w variable, one easily checks that this last
integral converges if and only if 0 <e <¢, which completes the proof. OJ

3.7. COROLLARY. Let K be a kernel of type m+t with t >0. Then for 0<
e <t we have
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§, 1K@ 918() 717 dVas (§) = Ce(6(2) +6m(2)) ¢
and

|, 1Kz )182) 717 dVar(2) < Cld(8) + b (7).

Proof. The first estimate is immediate from Lemma (3.6) by an elementary
partition of unity argument. The second estimate follows by applying the first to
the transpose of K. ]

3.8. LEMMA. Let K be a kernel of type n+t with t >m—n. For any p € 0D
there is a neighborhood U of p such that for any s>0and s—t<e<n—m-+s,
and for any measurable Junction ¥ on D with support in U and |¥(z)|<
(8(z) +8rm(z)*) ¢, we have

|, 1K@ OI1¥@)]8(2) 7 aV(2) = G, ()¢

Jor every ¢ e M.

Proof. If p € 3D\ 8M then it is only necessary to choose U so that UNM = O.
In this case |K(z, {)||¥(z)] is bounded, so

| K@ v @lsertavim=c.| s@avizy=c,.

for s >0.

For pe dM, we begin as in the proof of Lemma (3.6) by rotating and
translating the C” coordinates so that p becomes the origin, the x’ axis points
along the outer normal to dD, and the z2, ...,z" axes span the complex tangent
space to @D at p. Since M intersects D transversally at p, there are (by the
implicit function theorem) neighborhoods V; and V; of 0 in C™” and C"™", re-
spectively, and a holomorphic mapping ¢ = (™ ..., ") of V; into Vz such
that MN(VixX V) ={(z’,2")eViXVo:2"= $(z’)}. Moreover, since the 2%, ..., 7"
axes are tangent to M at p we have (64)/62:")(0) =0 for j=2,...,m. We deﬁne
functions w;, j=2,...,m, by w/=z/ for 2=< j<m and w’“z '—¢/(z’) for
m+1=<j=<n, where 7z’ = (z ,.--»2""). As before, we set 7,({) =Im g(z, {). It fol-
lows that o, 7, w2, ces W form a local C* coordinate system for a neighborhood
of p. Thus by continuity there is a neighborhood U’ of p such that for each { e U’
the functions 6, 7¢, w2, ..., w" form a local C® coordinate system, and the Jacob-
ian of the transformation to the C” coordinates is bounded above and below by
positive constants. Setting w’ = (w!, ..., w”) and w” = (w™ !, ..., w"), it follows
that |w”(z)| = Cdp(z) and |[Ww(z)—w($)|=Clz—¢| for z, {e U’ Thus we obtain
from Corollary (3.5) the estimate

3) 12(z, )= C(8(2)+8() +|7:(2) | + W' (2) —w/ () >+ |w'(2)]?)

for z, fe U'ND with {eM and |z—{| sufficiently small. By shrinking U’ if
necessary, we may assume that (3) holds for all z, { € U'ND with {e M.
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Let U be a neighborhood of p with UCC U’. Then K(z, {) is bounded on
(DNU)Yx(D\U"), so for {e M\ U’ we have

[ 1K@ DI¥@8 T av@) = C| | (6(x)+8m(2)) ~8(2) ™ aV(2).

Using the local coordinates introduced above, one can easily check that the inte-
gral on the right converges if e <n—m+s and s > 0, so the required estimate
holds for e M\U’. For {e U’, we have, using the special coordinate system
defined above and the estimate (3),

| k@ olv@lavay=cl  { - 17]" @@ +o+7+ w2+ we )

X (6+ |w”|*)"¢6° " dé dr dw” dw".
The change of variables 6 =6({)x, 7=6({)y, w/ = 6(()'/20’, w” = 6(5)'/20” trans-
forms the right-hand side to

coy ™ ] Aty o 2 o2y T

x (x+|v”|?) " x*"Vdxdydv” dv'.

Changing to polar coordinates in v’ and v”, one checks that the last integral con-
verges if and only if s—7 <e<n—m+s. This completes the proof. (|

A partition of unity argument yields:

3.9. COROLLARY. Let K be a kernel of type n+t with t >m—n. Then for
s>0and s—t<e<n—m+s we have

| 1K@ 016 +81()1) *6(2) ! dV(z) = Cs, (8(3) ™~

and
SD IK(Z; .(‘)I (6(§)+6M(§‘)2)—66(§')s_1 dVv({) = Cs,e(s(Z)S_t—e.

Note that the functions 7, w2, ..., w" used in the proof of Lemma (3.8) pro-
vide local C® coordinates for aD. Thus a slight modification of the proof of
Lemma (3.8) vields:

3.10. LEMMA. Let K be a kernel of type n+t with t >m—n. Then for —t <
e<n—m we have

|, 1K@ Do) > do(z) = C.o() ™

and

|, 1K@ D16u(5) 7 do(5) = C5(2) ™.
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4. L? estimates, 1 <p < . For any kernel K(z, ¢) on D x D, we define integral
operators Kis (¢ >m—n) and K5 (¢ =0) as follows:

Kirf@={ SOK@E O™ dVi(§), t>m—n,
Kb f@) = FOK@E D8 T av(E), >0,

K3 sy =\ fK $)do().

4.1. THEOREM. Let K(z, $) be a kernel of type n+1t and let 1 < p < .

@) If n>m, t=0, and 0<s=<t then the operator K}, is continuous from
LY _mss—1(M) into LY_ (D).

(b) If O<s=<t or if t=s5s=0, then K} is continuous from LP_,(D) into
Lﬁ—m+s—l(M)-

Proof. Let g be the conjugate exponent to p. By Holder’s inequality and
Corollary (3.7) we have, for ze D and O<eg<n—m+1t,

Kn @)= [ 1ADI8)8) Kz, 918"+ dVar (§)

1/p

= (S o, FEOIPSEOPH e K (2, 9)| dVM(s“))

Yaq
X (SM s(§) et =K (g, §)| de(i'))

1/p

=C.6@+om @D ([, 1O K (e, ] Vi) )

Assume that 0 <s =<¢. Then by Fubini’s Theorem and Corollary (3.9) we have

| 1K 1)1z  av(z)
< Ce SM lf(g.)|p5(§.)n—m+!—l+ep
x| 1K@ 9162 +8u()?) "08(2) ™! dV(2) dVi ()

= Ce |, A7)+  dViy (),

provided that 0 <e < (n—m+s)min{p ', g~ '}. This proves part (a) in the case
O<s=<t. For the case 0 =s=t, we use Lemma (3.10) to obtain



L? ESTIMATES FOR EXTENSIONS OF HOLOMORPHIC FUNCTIONS 371

| 1K f(2)]? do(2)
<c | sy mreire (K, 0)16w(2) 72 do(z) dVa()

=C | _17©1Ps) ™" avi(),

provided that O <e < (n—m) min[p", qg 3.
The proof of (b) is similar. We will omit the details. ]

We now turn to the proof of Theorem (1.1) in the case 1 < p < co. Letting E;
denote the extension operator of Corollary (2.6), it follows from part (a) of
Theorem (4.1) that E;P: Af_,, (M) —> ARD) for —1<s=<j—14+m—n and
1 < p < oo, and part (b) of Theorem (1.1) follows immediately. To prove part (a),
we apply Corollary (2.4) with M =D to represent the restriction operator, and
the desired estimate follows from part (b) of Theorem (4.1).

5. L? estimates, 0 <p <1. We begin with some technical lemmas that do not
depend on pseudoconvexity. Let D be a bounded domain with smooth boundary
in C” or in a complex manifold. In the manifold case we assume that D has been
covered by finitely many coordinate neighborhoods, and we denote the coordi-
nates in any of these neighborhoods by z =(z!, ..., z").

For pg e D sufficiently near dD, we translate and rotate the coordinate system
so that z(po) =0 and the Im z” axis is perpendicular to 8D. Let &B3.(po) denote
the “ball”

n—1 .
635(190)={ S |2/ <o (po), |Z"|<66(p0)].

Since aD is smooth, it follows that there is an €y > 0 such that, for py e D suffi-
ciently near dD and pe Be,(po), we have

(4) 18(po) <8(p) <28(po).

5.1. LEMMA. For each 0 < e < ¢g there is a compact subset K of D, a sequence
{p;} in D\K, and a positive integer M such that

(@) the family {®B.(p;)} covers D\K, and

(b) each point of D lies in at most M of the sets &, (p;).

Proof. By compactness, it suffices to establish the result in a small neighbor-
hood of a fixed boundary point pgy. Let e, ..., e,_ be an orthonormal basis for
the complex tangent space to dD at py, and let e,, denote the outward unit normal
to dD at po. For R>0, let Lg denote the lattice in 7,,(0D) generated by the
vectors R'/Zej, R l"ZJeJ,- (/=1,...,n—1) and RJe,. For n > 0 sufficiently small, let
IT, denote the projection of 7,,(0D) on the hypersurface {p: 6(p) =7} along the
direction e,, and let L(R;n)=1I,(Lg). For any e satisfying 0 < e < ¢ there are,
by a straightforward continuity argument, a neighborhood U of pg and positive



372 FRANK BEATROUS, JR.

constants 6p and C (depending on ¢€) such that for 0 <y < §y the balls @&, centered
at the points of L(Cn;n) cover the tube {p e U: |6(p) — 5| < Cy}. Moreover, if U
and &y are sufficiently small, then the number of times a point in U is covered by
the balls @, is bounded by a constant independent of 1.

For each non-negative integer j set T;={pe U: 602 /1< 6(p)=<60277}. Let
N be the least integer greater than 1/C and let 2”j_'6p =8 <8< <8N=2778
be a uniform partition of the interval [2 /7180, 2 7/8¢]. Then the family of balls
@3, centered at the points L(Céj, 6}), i=1,...,N, covers the tube T; but the balls
&, do not intersect the tubes 7; for i ¢ {j—1, j, j+1}. It follows that the points
of U;, ; L(Céj, 6;) have the required properties. D

The next result is closely related to a classical estimate of Hardy and Little-
wood on the growth of the means of holomorphic functions in the unit disc. (See

[6, p. 87].)

5.2. THEOREM. Let D be a bounded domain with smooth boundary.
(@) ForO<pi=p;<oo, t>—1, and py(s+n+1) > p,n we have

1A 1ps.s = ClS b,

Jor any holomorphic function f on D.
(b) ForO<p,=p,<coand pi(s+n+1)>pyn

"f"pz,s = C"f”p;, -1
Jor any holomorphic function f on D.

In the present setting we do not know whether the estimate in (b) remains valid
when pi(s+n+1)=pyn.

Proof. 1t follows from the subharmonicity of | f|# that for any compact set K
in D the metric in AZ(D) is equivalent to that defined by integration over D\K.
In particular, to prove (a) it suffices to show that

(SD\K |f|P15sDV>I/P1 _ C(SD P dV)l/pz

for some compact subset K of D.

Let K and ¢g be as in Lemma (5.1) and for e = %60 let p; be as in the lemma. For
brevity we denote by @ ; the “ball” &.(p;) and by &j the ball &.,(p;). For any
p € ®; let A(p) denote a polydisc centered at p with radius €6(p;) in the normal
direction and radii (eé( pj))l/ 2(n—1)""2 in complex tangential directions. Note
that for any p e G3; we have A(p) CG~3,-, so for any non-negative pluri-subhar-
monic function ¥ on 83; we have, for pe &;,

¥(p)=Ceso ™|, wav

<C(ed(p)) ™| wavs CS&. ¥5-""'av.

a3 J
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In particular, if f is holomorphic in D we have

If(p)|"!scS® |f|P1e~ """ dv.

It thus follows that

P2/py
)1y = cowy ([, 11767t av)
J

p2/Py
=C S if|p15—n—l+s(p1/p2) dVv
®;

Integrating over G3; gives

Pz/ﬂ]
S | f1P28° dV < 06(19,-)"“0 | f|Pre T s /p) dV)
®; ®;

P2/Py
< C(S(g. Iflplﬁ(n+l)(pl/p2~1)+s(p1/p2) dV) .
J

Thus we have

1oty <3| | flreav

»“D\K j j

p2/P)
=C3 (ch | f]P18! dV)
J J

» [pz/pt
SC(%:S&J' /] 16)

Pa/py
< CMP2/P1 (SD |f|P151) )

Here M is the bound on the covering multiplicity from Lemma (5.1). The third
inequality comes from the condition p; < p,. This completes the proof of (a).

The proof of (b) is similar. Fix a small positive number 6y and for each non-
negative integer j let 7, ={pe D: 602 /1< 8(p) <8027 /}. The argument used
in the proof of (a) shows that

/
S lf'pzas dV < C[(602—j)("+1)(p1/P2—1)+S(P1/P2) § Iflpl] palpn
7 7

where T;=T;_; UT;UT; . But the integral on the right is dominated by a con-
stant multiple of §02 7/ ||f||§}’ _;» SO

|, 71728 av=c2 =112
J

, —1

with t=n+1)(1—p>/p1)+s+p>/p;, which by hypothesis is greater than 0.
Thus it follows that
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P28S — S P2ss
S{O<6<60/21 lfl 6" dv ?Snlfl 6~ dv

= C| A1, _

which concludes the proof of (b). 0]

5.3. COROLLARY. Let D be a bounded strictly pseudoconvex domain in C"
(or in an n-dimensional Stein manifold) and let ®(z, {) be as in Section 2. Let f
be holomorphic on D and let r be an arbitrary real number.

(@) ForO<p=<land p(s+n+1)=n+1+t we have

p
(SD S | 2(2, )]78(5)° dV(s“)) =c| 171718 9)]78() dV(d).

(b) ForO<p=1and p(s+n+1)>n we have
P p —
(fu A8z, DI85 dV(i’)) <csup | /(17|18 )" do(3).
e>0 Y90,

Proof. By Lemma (3.1), |®(z, )| |®(¢, z)| ™' is bounded above and below by
positive constants, so it suffices to verify the estimates with ®(z, ¢) replaced by
& (¢, z). If z is restricted to some compact subset of D, then |®(¢, z)|” is bounded,
so the required estimates are immediate from Theorem (4.2). Thus, it suffices to
prove the result when z is near a boundary point py. Let U;, U, be neighborhoods
of po with U; CC U,. Assume that U, is chosen sufficiently small that there is a
continuous branch of ®({,z)” on (DNU,)xX(DNU,), and that U,ND has
smooth boundary. Since |®({, z)|"is bounded on (D\U,) X (DNU), the desired
estimates are immediate from Theorem (4.2) if the left-hand integral is taken
over D\ U, and z is constrained to lie in DN U,;. Thus, to complete the proof, it
suffices to estimate the integral over DN U,. But this integral can be estimated by
applying Theorem (4.2) to the holomorphic function f®(-,z)" in DNU,. O

We are now ready to prove Theorem (1.1) in the case O<p<1. Let Dand M
be as in the theorem and let fe A?(D) with p<1. By Theorem (5.2) we have
fe AND) for sufficiently large 7. By Corollary (2.4) (with M = D) we have, for
any z € M and any sufliciently large positive integer ¢,

5 t
r@i=c | li’,{ﬂ')l,ff)m av(s).
By Corollary (5.3),
Pa r
AN = Cup [, TR ey AV ),

with r =p(n+1+4+¢)—(n+1). Thus by Fubini’s Theorem and Corollary (3.9) we
have, for s > —1 and ¢ sufficiently large,
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5(z)s+n—m dVM(Z)
M |<-I-)(Z, g_)lp(n+l+t)

[ 1r@rsyrrmavu@=c, | 1rorsey | avis)

=G, | 171785y 805" avis)

=115,

which proves part (a) of Theorem (1.1) when s> —1. To establish part (a) in the
Hardy space case, s = —1, note that it follows from the case 1 < p < oo considered
in Section 4 that the measure 6"~ "~ ! dV,, is a Carleson measure on D. (See Hor-
mander [10].) Thus it follows that for 0 < p < oo,

[, 1r1rem=m=taviy = Cl 115, -

for any holomorphic function f on D, which completes the proof of part (a).
Part (b) is similar. By Corollary (2.6), Theorem (5.1), and Corollary (5.2) we
have, for any sufficiently large positive integer ¢,

|S(D)P8(5)
M |&;(z, g—)lp(m+]+f

Ef2)|”=<Cp,. | F dVi(§)

with r=p(m+1+1¢)—(m+1). It follows from Fubini’s theorem and Corollary
(3.9) (or Lemma (3.10) in the case s = —1) that

| 1EA)IP8 av@ =C, || 178 " dVie (§)

which is the estimate of part (b) of Theorem (1.1). O

We will end this section with an approximation result which extends a theorem
of Stout [14].

5.4. THEOREM. Let D be a strictly pseudoconvex domain in C". For 0<
p<oands=—1, O(D) is dense in AP (D).

The result of Stout is the case s=—1, 1 < p <o,

Proof. We will use a separation of singularities argument. Cover dD by balls
By, ..., By centered at boundary points py, ..., py and with radii sufficiently small
that the outward normal »; to dD at p; is transverse to dD at each point of
B;NaD. Let Bg= D, and choose x;e Cg(B;) such that ¥ x,;=1 in a neighbor-
hood of D. Let fe A?(D). By Theorem (5.2), fe AND) for sufficiently large #,
so by Corollary (2.4) we have, for any sufficiently large positive integer ¢,

f@ =\ Kz 08) av(),

where K(z, ¢) is a kernel of type n+¢+1. Thus it follows that
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=2 | X/ SK @z, 8() dV ()

= 3 fi(z).

Clearly foe O(D) and f; has boundary singularities only in B, for j=1,...,N.
We will show that fj e AZ(D). In the case 1 < p < oo, s> —1, this is an immediate
consequence of Theorem (4.1). For the remaining cases, we use the reproducing
property of the kernel to write

5@ =X, 0@+ | 060 = x,@)ADK =, 98 dV(§)

=x,;(2) f(z)+ &, f(z).
Thus it is enough to show that §; fe LY (D). But
z—¢8(5)'
|8, f(z)] SCSD | S(D)] |<Il>(z §|)|n+l+t dv(s)

S) ‘

<=C ' 8(£) dV

= le(i‘)l 1Bz, 0|+ 172 ($).
We will first consider the case s = —1, 1 < p < o0, It is easy to check, using the esti-

mate (2) from Section 2, that

8()" dV(§)
o Tt oy =

so it follows from Jensen’s inequality that

8($)’
|‘i‘(2, g-)ln+t+l/2

|8; f(2)|P=C,p SD | A(D]P dvi(y).

By Lemma (3.10) and Fubini’s theorem,

do(z)
aD, ]‘5(2, ;—)In+t+1/2

[, 18 /@17 dot2)=C, 17021780 av(s)

=G, [ IADIP) V2 av ()

=Cpl S5, -1/2
= Cpl f15, -1
We now turn to the case 0 < p=<1. By (5) and Corollary (5.3),

| S P8(5)
D |’$(Z, g—)lp(n+t+1/2)
with r = p(n+¢+1)—(n+1). For s> —1, it follows from Fubini’s theorem that

6(z)° dV(z)
D |.i°)(z’ g—)lp(n+r+l/2)

& s =C | av(s),

18 F15.5= Cps | 1717800 av(s).
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Choosing ¢ sufficiently large that p(n+¢+1/2) >s+n+1, it follows from Cor-
ollary (3.9) that the inner integral is dominated by &(¢)S~PUTH+V/D+n+l
6(§)s—r+p/2, SO

18 f15.s= Cp,s|f15.s+p12= Cp,s| f15,s-

For the case s = —1 a similar argument, using Lemma (3.10) instead of Corollary
(3.9), shows that

[, 185r1do=Colfihpn1=ColfI2, 1.

Thus, in every case, fj€ AL whenever fe Af.

To complete the proof, it is only necessary to show that each f; can be approx-
imated by functions in ©(D). For e> 0 sufficiently small, the function ff(z)=
fi(z—ev;) is in O(D). Moreover, maximal function estimates (see Stein [13])
show that | /| 5,s = C| fj| p,s» so it follows from the Lebesgue dominated conver-
gence theorem that for fe A we have | f;— ff| s — 0 as e > 0%, and the proof is
complete. ]

6. The L™ estimate. In this section we use a slightly modified version of an
argument of Henkin [8]. Since L™ estimates for the extension operator E are ele-
mentary outside of a small neighborhood of dM, it suffices to show that every
p € OM has a neighborhood U such that | f(z)| < |f|~ for ze U and fe H*(M).

For p e dM fixed, choose local coordinates near p such that M =DN{z, 1=
--- =2, =0} in a neighborhood of p and such that aD is strictly convex near p.
For z,e€ M near p, let H, denote the hyperplane {z:3 p;(z+)(z/ —zi)=0}.
Since the characterizing function p for D can be chosen to be strictly convex near
D, the following result follows immediately from Taylor’s Formula.

6.1. LEMMA. There is a neighborhood U of p such that for z,e MNU and

ze DNH,, we have
8(2) + 60 (2)* ~ 8(z4).

It follows from the inverse function theorem that for z sufficiently near p there
is a unique z. near p satisfying Zi=3 pi(z+) (27 —2d), zd =2’ for j=2,...,m,
and z{=0 for j=m+1,...,n (cf. [8, Lemma 6]). Thus z.€ M, ze H;,, and z,
depends continuously on z. From Corollary (2.6) we have

NGz,
B V) =[SO O dVu(©),

so, for z sufficiently near p,

Efm=| 1)

Ef@ = SK@n ) dViu()+ | F K ) =K (2e, £)) dVir(§)

= f(z+) + 8 f(2).

Thus it suffices to show that the error term & f satisfies |8 f(z)| = C| f|« for z
sufficiently near p. Since the kernel is well behaved away from the diagonal, it



378 FRANK BEATROUS, JR.

suffices to estimate the integral over a small neighborhood of p. But for z and ¢
near p, the kernel has the form K (z, §) = N(z, ) &(z, ) ™! with N smooth. By
the mean value theorem, setting z) =2z.+(1—A)(2—24) for 0=A=<1, we have
for z, { near p

2 0z =zd) | IZ—Z*||Z>\—§'|}
|8(zx, )M T2 |8(zx, O)|™MF2 )
Since z € H,, the numerator in the first term on the right can be expressed as
X (0 () — pj(ze)) (27 —2d),

so the first term is dominated by |z.— ¢]|z2—2«||&(2z, £)| ™" % Since |z.— ¢ =<
|z«—2za| + |20 — | we obtain from (6) the estimate

|z+— 21| |z\— ¢ }

© Kz ) —K(ze 9| = ngl\p[

+sup

K ’ —‘K %9 ———C T &% ~ ~
| (Z f) (Z §)|< |Z < |[Sl;p Ig(Z)\: g-)lm+2 N lg(Zx, g-)lm+2

1 |zn—¢]
@) sC[z—z* 2sup — + |2 —Z«|SUp 7 ]
2=z sup e TR S e e
SC[S(Z*)sup +8(z4)"? sup 1 ]
x|8(zx, §)|M2 N |8(zx, )32

The last inequality follows from Lemma (5.1) since |z —z.| < Céa(z).
By Corollary (3.5) and Lemma (5.1), for any z € H,;,MN.D which is sufficiently
near p we have

18(z, §)| = C(8(2) +6m(2)>+6(8) + 72(§) + & —24]?)
= C(8(z+) +8(5) +|Im I pj(2) (7 —27) |+ | —24]%)
= C(8(z+) +8() +| X Im pj(z4) (£ —27) | +|§—24|?)
=C|g(z* 9)|.
Thus it follows from (7) that

6(z«) 5(Z*)1/2
K s —K *y —_ C ~ ~ b
I (z,$) (z §-)| = ( Ig(Z*, §)|m+2 Ig(z’ g—)|m+3/2)

SO

av,
e =Cla (5 |, 7SO

By Lemma (3.6) we have |€f(z)| = C| flw-
This completes the proof of Theorem (1.1) in the case p = co. 0

v 2| o drl) )

M |§(z4, $)|MH3/2

7. Concluding remarks. It scems worthy of note that global strict pseudocon-
vexity of dD is not essential in Theorem (1.1). It is only necessary to assume that
D is pseudoconvex and that dD is strictly pseudoconvex at each point of dM (cf.
Adachi [1]). Part (a) can be proved in this case by constructing a strictly pseudo-
convex domain D’ with D’C D and dM C dD’. One then applies the result for
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strictly pseudoconvex domains to D’. Part (b) can be proved by replacing
Lemma (2.1) by an analogue of Theorem (2.1) of Beatrous [2]. On the other
hand, strict pseudoconvexity of @D at each point of dM is essential. For example,
fix a number r with 0 <r <1 and set D= [(z, w) € C2: |z|2+e~VI¥I* < r2}. Then
D is a smooth, bounded, pseudoconvex domain, and dD is strictly pseudoconvex
at each point with w=#0. Let M =DN{w=0]}. For Fe O(D), set f(z)=F(z,0)
for ze A,={AeC:|\|<r}. For any fixed ze€ A, the function F(z,-) is holo-
morphic in the disc of radius 5, = [—log(r?— |z|2)]“'/2, so it follows from sub-
. harmonicity that for 0 < p <o

@I =o—{  _ FGw?dsow),

27,

where ds denotes the arc length measure. By Fubini’s theorem,

2
Sw |F|? do = SA SIWi=n |F(z, w)|? (1+ |z|2n8e?"3)/2 ds(w) dA(z)

\

2m\ (142|282 2| f(z)|P dA(z)

A,

\%

®

B>

r

27
A

5
25 [ Ielnte"| S dacz)
5

1 -2
lf(z)l”(log 7?1272‘) (r*—|z|*)7'|z| dA(2)

ZCESA | ()7 (r*—|z*) 71" dA(2)

for any e > 0. Moreover, an arbitrary Fe H?(D) can be approximated by dila-
tions which are holomorphic in a neighborhood of D, so (8) remains valid for
fe A2 (D). For a € Rlet f, be some branch of (z—r) “on A,. Then for s > —1,
Jfn€AL(A,) if and only if a<(s+2)/p. Thus it follows from (8) that for ¢ <
p<owandl/p<a<(l+¢€)/p wehave f,e A” .. (A,), but f, has no extensionin
AP (D). Thus AP (D) |pD AP 1 (M) for any e>0. Similar considerations
apply to Bergman spaces on D.
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