INTEGRAL GENERATORS IN A CERTAIN QUARTIC FIELD AND RELATED DIOPHANTINE EQUATIONS

Andrew Bremner

Given a subring of the ring of integers in an algebraic number field K, then an effective procedure is known for determining whether or not the ring is principally generated over **Z** (see Györy [6, Corollaire 3.3]). In the case that the ring does have principal generators, then it clearly has infinitely many, since $\mathbf{Z}[\alpha] = \mathbf{Z}[m+\alpha]$ for an arbitrary integer m. If, however, one defines two algebraic integers α , α' to be equivalent if $\alpha - \alpha' \equiv 0 \mod \mathbb{Z}$, then Györy shows that the numbers of generators up to equivalence is finite, and effectively bounds the height of such a generator in terms of the degree of K over \mathbf{Q} and the discriminant of K. Actually to determine all the generators in a given ring still seems in general a difficult question, since the bound on the height of the generators lies well beyond present computing power. Nagell [10] solves this problem in the three quartic fields corresponding to the fifth, eighth, and twelfth roots of unity. An equivalent formulation of the problem is to determine all those β in the number ring $\mathbb{Z}[\alpha]$ of index 1; or again, to determine all those β in $\mathbf{Z}[\alpha]$ satisfying discriminant (α) = discriminant (β) . Nagell [11] in a later paper observes that in the field $Q(\xi)$, $\xi^4 - \xi + 1 = 0$, then the discriminants of $\xi, \xi^2, \xi^3, \xi^4, \xi^6, \xi^7$ are all equal to 229, and notes that it is not known if the discriminant of ξ^m can equal 229 for m > 7.

In this paper we solve this problem as a corollary to finding all the generators for the ring of integers $\mathbb{Z}[\xi]$ in $\mathbb{Q}(\xi)$. This in turn is achieved by solving in integers the Diophantine equation $G^2 + 6183 = 4H^3$; this latter involves a considerable amount of numerical detail about six particular quartic extensions of \mathbb{Q} . In particular, a standard algorithm for computing units had to be strengthened in order that calculations by computer could be effective. I wish to thank here the referee for appreciably improving the presentation of this paper.

2. We consider the quartic field $Q(\xi)$, where $\xi^4 - \xi + 1 = 0$, and wish to determine those α in $\mathbb{Z}[\xi]$ with $\mathbb{Z}[\alpha] = \mathbb{Z}[\xi]$. Denote the conjugates of ξ by $\xi_1 = \xi, \xi_2, \xi_3, \xi_4$ and similarly define α_i , i = 1, ..., 4. Since $\mathrm{disc}(\alpha) = \mathrm{disc}(\xi)$ and $\mathrm{disc}(\alpha) = \prod_{1 \le i < j \le 4} (\alpha_i - \alpha_j)^2$,

(1)
$$\prod_{1 \le i < j \le 4} \left(\frac{\alpha_i - \alpha_j}{\xi_i - \xi_j} \right) = \pm 1.$$

Now if i, j, k, l is a permutation of 1, 2, 3, 4, then $\xi_i \xi_j + \xi_k \xi_l$ is a zero of the resolvent cubic equation associated to the quartic polynomial $x^4 - x + 1$, namely the equation $\Xi^3 - 4\Xi - 1 = 0$. Simple Galois theory shows that

Received December 8, 1983. Revision received October 11, 1984. Michigan Math. J. 32 (1985).

$$\left(\frac{\alpha_i - \alpha_j}{\xi_i - \xi_j}\right) \left(\frac{\alpha_k - \alpha_l}{\xi_k - \xi_l}\right) \in \mathbf{Q}(\xi_i \xi_j + \xi_k \xi_l);$$

indeed, since up to equivalence α may be taken as $\alpha = b\xi + c\xi^2 + d\xi^3$ for integers b, c, d,

$$\left(\frac{\alpha_i-\alpha_j}{\xi_i-\xi_j}\right)\left(\frac{\alpha_k-\alpha_l}{\xi_k-\xi_l}\right)=M-N(\xi_i\xi_j+\xi_k\xi_l),$$

where

(2)
$$M = b^2 - cd + d^2$$
, $N = -bd + c^2$.

Since the left-hand side of (1) is simply a norm from $Q(\Xi)$, (1) may be rewritten as

$$M^3 - 4MN^2 - N^3 = \pm 1.$$

Now the conjugates of Ξ are all real, so $\mathbb{Z}[\Xi]$ has two fundamental units η_1, η_2 and (3) implies

$$\pm (M-N\Xi) = \eta_1^r \eta_2^s$$
.

Equating the coefficients of \mathbb{Z}^2 gives a single equation in the two exponents r, s, and it is difficult in general to apply p-adic arguments. It is necessary to introduce relative extensions of $\mathbb{Q}(\Xi)$ and the arithmetic details become very technical; see for example Ljunggren [7] and Baulin [1], who solve in this manner the equations $x^3 - 3xy^2 - y^3 = 1$, $x^3 + x^2y - 2xy^2 - y^3 = 1$, respectively. It is preferable to use relations between the quadratic and cubic covariants of the cubic form at (3) which give an equation to which Skolem's p-adic methods may be directly applied. See for example Tzanakis [13], who solves Ljunggren's equation in this manner.

The relation between covariants (see e.g. Mordell [9, Chapter 24]) gives, from (3),

$$(4) G^2 + 27.229 = 4H^3,$$

where

(5)
$$G = 27M^{3} + 288M^{2}N + 108MN^{2} - 101N^{3},$$

$$H = 12M^{2} + 9MN + 16N^{2}.$$

Equation (4) is solved in the next two sections, thus giving all solutions to (3); then all (b, c, d) at (2) are found in §5. In §6, the original problem is solved and all ξ^m of discriminant 229 are found.

3.1. We proceed to solve in integers the equation

(6)
$$G^2 + 6183 = 4H^3.$$

Let $K = \mathbf{Q}(\psi)$ where $\psi^3 = 458$. Then (6) may be written

(7)
$$(2H-3\psi)(4H^2+6H\psi+9\psi^2)=2G^2.$$

Arithmetic details of K are as follows (see Beach, Williams, and Zarnke [2]): the ring of integers is $\mathbb{Z}[1, \psi, \omega]$ with $\omega = (1 - \psi + \psi^2)/3$; the class-number is 6; and a fundamental unit is given by

(8)
$$\epsilon = 90685 - 16644\psi + 633\psi^2$$

with inverse

(8')
$$\epsilon^{-1} = 13049097841 + 1692876702\psi + 219619131\psi^{2}.$$

It is readily checked that we have the following prime ideal factorizations:

(9)
$$(2) = \mathfrak{p}_2^3; \qquad (3) = \mathfrak{p}_3^2 \mathfrak{p}_3'; \qquad (8 - \psi) = \mathfrak{p}_2 \mathfrak{p}_3 \mathfrak{p}_3'^2$$

with

(10)
$$\mathfrak{p}_3 = (3, \psi + 1, \omega); \, \mathfrak{p}_3' = (3, \psi + 1, \omega - 1),$$

and

(11)
$$\mathfrak{p}_2 = (1402 + 209\psi + 72\omega).$$

The highest common factor of the two factors on the left-hand side at (7) is $(2H-3\psi, 27\psi^2)$. Since clearly (H, 229) = 1 and $2H-3\psi$ is divisible by only the first power of \mathfrak{p}_2 , this highest common factor is precisely \mathfrak{p}_2 in the case (H, 3) = 1. Then in this instance, (7) implies the existence of an integral ideal \mathfrak{q} of K satisfying

$$(12) (2H-3\psi) = \mathfrak{p}_2\mathfrak{a}^2.$$

In the case that $3 \mid H$, then $9 \mid G$. Put H = 3h, G = 9g; then (6) implies $4h^3 = 3g^2 + 229$ so that

(13)
$$h \equiv 1 \mod 3, \qquad g \equiv 0 \mod 3.$$

Then Norm $(2h - \psi) = 8h^3 - 458 = 6g^2 \equiv 0 \mod 3^3$ by (13). Now $2h - \psi = 2(h-4) + (8-\psi)$; and since $\mathfrak{p}_3^2\mathfrak{p}_3' = (3)$ cannot divide $2h - \psi$, (9) and (13) force $(2h - \psi) \equiv 0 \mod \mathfrak{p}_2\mathfrak{p}_3\mathfrak{p}_3'^2$. Accordingly, the highest common factor of the two factors on the left-hand side at (7) is

$$(2H-3\psi, 27\psi^2) = (3)(2h-\psi, 9\psi^2)$$
$$= (3)\mathfrak{p}_2\mathfrak{p}_3\mathfrak{p}_3^2$$
$$= (3)(8-\psi).$$

So (7) implies the existence of an integral ideal a of K satisfying

(14)
$$(2h - \psi) = (8 - \psi)a^{2}.$$

Now in K we have the further factorizations:

(15)
$$(11) = \mathfrak{p}_{11}\mathfrak{p}'_{11},$$

with

(16)
$$\mathfrak{p}_{11}^2 = (365 - 20\psi - 12\omega).$$

It is straightforward to show that \mathfrak{p}_{11} is not principal as follows. Let \mathfrak{p}_5 be the first degree prime factor of 5 in K. Since $\psi^3 \equiv 3 \mod 5$, $\psi \equiv 2 \mod \mathfrak{p}_5$. Then

$$\epsilon = 90685 - 16644 \psi + 633 \psi^2 \equiv 4 \mod \mathfrak{p}_5,$$

 $365 - 20 \psi - 12 \omega \equiv 3 \mod \mathfrak{p}_5.$

Consequently, no generator of \mathfrak{p}_{11}^2 is a square mod \mathfrak{p}_5 , and so \mathfrak{p}_{11} is not principal. Thus \mathfrak{p}_{11} may be taken as the nontrivial element of order 2 in the class group of K, and in each of the equations (12) and (14) it is necessary to consider the two possibilities, either that \mathfrak{a} is principal or that $\mathfrak{a} \sim \mathfrak{p}_{11}$.

3.2. Take equation (14) where we first assume a is principal. Then there exist integers a, b, c such that

(17)
$$2h - \psi = \pm (8 - \psi)\epsilon^{r} (a + b\psi + c\omega)^{2}, \quad r = 0, 1.$$

We have the following multiplication table of elements in K:

$$\psi^{2} = -1 + \psi + 3\omega$$

$$\psi\omega = 153 - \omega$$

$$\omega^{2} = -102 + 51\psi + \omega.$$

Then at (13), using $h \equiv 1 \mod 3$, (17) implies $-1 - \psi \equiv \pm (-1 - \psi)(a - b)^2 \mod 3$. From (10), $(\psi + 1) \equiv 0 \mod \mathfrak{p}_3 \mathfrak{p}_3'$, so we deduce $1 \equiv \pm (a - b)^2 \mod \mathfrak{p}_3$, that is, $1 \equiv \pm (a - b)^2 \mod 3$. Hence, the upper sign holds. When r = 0, expanding (17) and equating coefficients of $1, \psi, \omega$ gives:

(18)
$$h = 4a^2 - 233b^2 - 459c^2 + ab - 153ac + 1377bc,$$

(18')
$$-1 = -a^2 + 8b^2 + 459c^2 + 14ab - 306bc,$$

(18")
$$0 = 4b^2 - 24c^2 - ab + 3ac - 3bc.$$

Modulo 3, the latter two equations give $(a-b)^2 \equiv 1$, $(a-b)b \equiv 0$, so that $b \equiv 0 \mod 3$. Put b = 3c + 3d; then (18") gives

$$ad = c^2 + 21cd + 12d^2$$
,

and since from (18') a, c, d can have no common factor, it follows (without loss of generality assuming d > 0) that there exist co-prime integers m, n such that

(19)
$$a = m^2 + 21mn + 12n^2$$
; $c = mn$; $d = n^2$; $b = 3n(m+n)$.

Substituting (19) into (18') results in

$$(20) m4 - 72m2n2 - 108mn3 - 432n4 = 1.$$

From the solution $\pm(m,n)=(1,0)$ we recover (a,b,c)=(1,0,0), (H,G)=(12,27); and in §4.1 we show that (20) has no further solutions.

If r=1 at (17), then multiplying out and equating coefficients of ψ , ω gives

$$-1 = -202129a^2 + 10377830b^2 + 34736661c^2 + 423458ab + 6642648ac - 68494122bc$$

$$0 = 10854a^2 + 217783b^2 - 6701433c^2 - 223837ab + 227037ac + 3094287bc.$$

These quadratics simplify under the transformation

$$\begin{pmatrix} A \\ B \\ C \end{pmatrix} = \begin{pmatrix} 1299 & -1229 & -20364 \\ 325 & -365 & -5269 \\ 5 & 14 & -138 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix};$$

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} -124136 & 454698 & 957259 \\ -18505 & 67782 & 142699 \\ -6375 & 23351 & 49160 \end{pmatrix} \begin{pmatrix} A \\ B \\ C \end{pmatrix}$$

to give

$$(21) -1 = 581A^2 + 8253B^2 + 399C^2 - 4380AB - 960AC + 3618BC,$$

(21')
$$0 = -A^2 + 3AB + 3B^2 + AC.$$

Modulo 3, $1 \equiv A^2$, $0 \equiv -A^2 + AC$; and thus C = A + 3D say, with

$$0 = AB + B^2 + AD.$$

On assuming A > 0, then $A = m^2$, B = mn, $D = -mn - n^2$, $C = m^2 - 3mn - 3n^2$ for co-prime integers m, n. Substitution into (21) gives

$$-1 = 20m^4 - 276m^3n + 1476m^2n^2 - 3672mn^3 + 3591n^4$$
.

Certainly $n \equiv 1 \mod 2$; then $0 \equiv 4m^4 + 4m^3 + 4m^2 \mod 8$, so $m \equiv 0 \mod 2$. Then $-1 \equiv 7 \mod 16$, a contradiction. So there are no solutions to (17) when r = 1.

3.3. Suppose now in (14) that $a \sim p_{11}$. Then from (16) it follows that

(22)
$$(365 - 20\psi - 12\omega)(2h - \psi) = \pm (8 - \psi)\epsilon^{r}(a + b\psi + c\omega)^{2}, \quad r = 0, 1$$

for integers a, b, c. Now \mathfrak{p}_{11} is of first degree, and $\psi^3 \equiv 7 \mod 11$; so $\psi \equiv 6 \mod \mathfrak{p}_{11}$, and then $\omega \equiv 3 \mod \mathfrak{p}_{11}$. From (22), $a + b\psi + c\omega \equiv 0 \mod \mathfrak{p}_{11}$, and so

(23)
$$a+6b+3c \equiv 0 \mod 11.$$

As before, (22) taken modulo 3 gives $1 \equiv \pm (a-b)^2 \mod \mathfrak{p}_3$ so that only the upper sign is possible.

Suppose r = 0 in (22). Equating coefficients of 1, ψ , ω and simplifying gives

$$-1 = 7a^{2} + 416b^{2} + 2163c^{2} + 108ab + 246ac + 1896bc,$$

$$0 = 248a^{2} + 14736b^{2} + 76548c^{2} + 3823ab + 8715ac + 67173bc.$$

Certainly $a+c \equiv 1 \mod 2$, $b \equiv 0 \mod 2$, and then $-1 \equiv -a^2-2ac+3c^2 \mod 8$ so that $a \equiv 1 \mod 2$, $c \equiv 0 \mod 2$. Similarly, $0 \equiv -a^2+ab \mod 3$, $-1 \equiv a^2-b^2 \mod 3$, so that $a \equiv 0 \mod 3$. Combining these congruences with (23), put

$$a = 33a' - 12b' - 6c', b = 2b', c = 2c'.$$

Then under the further transformation

$$\begin{pmatrix} a' \\ b' \\ c' \end{pmatrix} = \begin{pmatrix} 10 & -1 & 1 \\ -99 & 10 & -1 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} A \\ B \\ C \end{pmatrix}; \qquad \begin{pmatrix} A \\ B \\ C \end{pmatrix} = \begin{pmatrix} 10 & 1 & 9 \\ 99 & 10 & 89 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} a' \\ b' \\ c' \end{pmatrix}$$

the quadratics become

$$(24) -1 = -21780A^2 - 217B^2 - C^2 + 4356AB - 1188AC + 122BC,$$

$$(24') 0 = 174A^2 - 37AB + 2B^2 + AC.$$

It follows that $A \equiv 0 \mod 2$, and so assuming A > 0, there exist co-prime integers m, n with $A = 2n^2$, B = mn, $C = -m^2 + 37mn - 348n^2$.

Substituting into (24) gives

$$m^4 + 48m^3n - 4608m^2n^2 + 95904mn^3 - 618624n^4 = 1$$
.

Put 2n = N, m = -M + 11N; then

$$(25) M4 - 68M3N + 366M2N2 - 680MN3 + 397N4 = 1.$$

Now (25) has the points $\pm (M, N) = (1, 0)$, (9, 8) and from §4.2 no further solutions. From the former, we recover (a, b, c) = (-51, 2, 2), (H, G) = (228, 6885); and from the latter, (a, b, c) = (-5739, 218, 234), (H, G) = (3041076, 10606470939).

Suppose secondly that r = 1 in (22). As before, only the upper sign is permissible. From (23), put a = 5b - 3c + 11d. Then (22) becomes, after a certain amount of arithmetic,

$$2h - \psi = [43148b^{2} + 1395378c^{2} + 19826d^{2} - 602382bc + 486362bd - 1440474cd]$$
$$+ \psi [11087b^{2} - 12564c^{2} - 40345d^{2} - 35130bc - 40408bd + 175674cd]$$
$$+ \omega [-7320b^{2} - 73908c^{2} + 16572d^{2} + 49698bc - 9954bd + 4914cd].$$

Under the transformation

$$\begin{pmatrix} A \\ B \\ C \end{pmatrix} = \begin{pmatrix} 35 & -77 & -34 \\ -109 & 498 & -251 \\ -50 & 224 & -109 \end{pmatrix} \begin{pmatrix} b \\ c \\ d \end{pmatrix};$$

$$\langle b \rangle \qquad \langle 1942 & -16009 & 36259 \rangle \langle A \rangle$$

$$\begin{pmatrix} b \\ c \\ d \end{pmatrix} = \begin{pmatrix} 1942 & -16009 & 36259 \\ 669 & -5515 & 12491 \\ 484 & -3990 & 9037 \end{pmatrix} \begin{pmatrix} A \\ B \\ C \end{pmatrix},$$

after equating coefficients of ψ , ω there results

(26)
$$-1 = 84A^2 + 2717B^2 + 13782C^2 - 954AB + 2148AC - 12240BC,$$

(26')
$$0 = -5B^2 + 3C^2 + 10BC + AB.$$

Modulo 3, $B^2 \equiv 1$, $B(A+B+C) \equiv 0$. Thus, we may put A = -B-C+3D to give $0 = -2B^2 + 3BC + C^2 + BD$. Then, assuming B > 0, there exist co-prime integers m, n with $B = m^2$, C = mn, $D = 2m^2 - 3mn - n^2$, $A = 5m^2 - 10mn - 3n^2$. Substituting into (26) and putting M = 2n, N = m - 2n, results in

$$(27) M4 + 22M3N - 12M2N2 - 32MN3 - 188N4 = 4.$$

Now $MN \not\equiv 0 \mod 5$, and so $M^4 \equiv N^4 \equiv 1 \mod 5$. Then (27) implies

$$2MN(M+2N)^2 \equiv 1 \bmod 5,$$

and it is easy to check that this is a congruence with no solution. Thus, (27) has no integer solutions.

3.4. Consider now equation (12) with a principal. Using (11), (12) implies an equation

(28)
$$2H - 3\psi = \pm \epsilon^{r} (1402 + 209\psi + 72\omega) (a + b\psi + c\omega)^{2}, \quad r = 0, 1$$

for integers a, b, c. Positivity implies the upper sign. When r = 0, expanding and equating coefficients of ψ , ω yields

$$-3 = 209a^{2} + 12418b^{2} + 64515c^{2} + 3222ab + 7344ac + 56610bc,$$

$$0 = 36a^{2} + 2139b^{2} + 11113c^{2} + 555ab + 1265ac + 9751bc.$$

It follows that $c \equiv 0 \mod 2$. Putting

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} -31 & 101 & 19 \\ 4 & -13 & -7 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} A \\ B \\ C \end{pmatrix}; \qquad \begin{pmatrix} A \\ B \\ C \end{pmatrix} = \begin{pmatrix} 13 & 101 & 230 \\ 4 & 31 & 141/2 \\ 0 & 0 & 1/2 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix},$$

the two quadratics become

(29)
$$-3 = 9A^2 + 165B^2 - 3C^2 - 76AB - 12AC + 58BC,$$

$$(29') 0 = 12B^2 - 3AB + AC.$$

Modulo 3, 0 = -AB + BC = AC. If A = C = 0 then (29') would imply $B = 0 \mod 3$, which is impossible. So $B = 0 \mod 3$ and $AC = 0 \mod 9$. If we suppose $C = 0 \mod 9$, then (29') gives $0 = -3B + C \mod 27$. Put A = D, B = 3E, C = 9E - 27F so that (29) and (29') give

(30)
$$-1 = 3D^2 + 936E^2 - 729F^2 - 112DE + 108DF - 1080EF,$$

(30')
$$0 = 4E^2 - DF.$$

Modulo 2, $D+F\equiv 1$. If $F\equiv 0 \mod 4$ then (30) gives $-1\equiv 3D^2 \mod 8$, which is impossible. So from (30'), $D=4m^2$, $F=n^2$, E=mn, and substitution into (30) gives

$$-1 = 48m^4 - 448m^3n + 1368m^2n^2 - 1080mn^3 - 729n^4$$

whence $8 \equiv 9n^4 - 1 \equiv 8m^2n^2 + 8mn^3 \equiv 0 \mod 16$, a contradiction. It follows that $A \equiv 0 \mod 9$ in (29'); whence also $A \equiv 0 \mod 27$. Put A = 27D, B = 3E, C = F so that (29) and (29') give

(31)
$$-1 = 2187D^2 + 495E^2 - F^2 - 2052DE - 108DF + 58EF.$$

(31')
$$0 = 4E^2 - 9DE + DF.$$

Modulo 4, $1 \equiv D^2 + (E - F)^2$, $0 \equiv D(E - F)$. Then modulo 8, $1 \equiv 5D^2 + (E - F)^2$ so that $D \equiv 0 \mod 4$, $E - F \equiv 1 \mod 2$. From (31') we may suppose $D = 4m^2$, $9E - F = n^2$, E = mn; and substituting into (31) with the further transformation M = 10m - n, N = 2n, results in

(32)
$$M^4 - 40M^3N + 108M^2N^2 - 92MN^3 - 52N^4 = 1.$$

From the point $\pm (M, N) = (1, 0)$ we get (a, b, c) = (-19, 7, -2), (H, G) = (82, 1483). In §4.4, we show there are no further solutions to (32).

When r = 1 in (28) we obtain, in a manner similar to the above,

(33)
$$-3 = 275a^2 - 19184b^2 - 15657c^2 + 738ab - 12852ac + 97002bc,$$

(33')
$$0 = -63a^2 + 78b^2 + 30523c^2 + 951ab - 307ac - 18971bc.$$

Transforming via

$$\begin{pmatrix} A \\ B \\ C \end{pmatrix} = \begin{pmatrix} 24 & -161 & 0 \\ 5 & 14 & -138 \\ 46 & -85 & -649 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix};$$

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 20816 & 104489 & -22218 \\ 3103 & 15576 & -3312 \\ 1069 & 5366 & -1141 \end{pmatrix} \begin{pmatrix} A \\ B \\ C \end{pmatrix},$$

the equations (33) and (33') become

(34)
$$-3 = -3A^2 + 215B^2 + 3C^2 + 34AB - 60BC$$

$$(34') 0 = 3B^2 - 5BC + C^2 - AC.$$

Assuming C > 0, then (34') implies either $(A, B, C) = (3m^2 - 5mn + n^2, mn, n^2)$ or $(A, B, C) = (m^2 - 5mn + 3n^2, mn, 3n^2)$ for co-prime integers m, n. In the former instance, substitution into (34) gives $3 = m(27m^3 - 192m^2n + 48mn^2 - 4n^3)$ so that $m \mid 3$, and there are no solutions. In the latter instance, substitution into (34) gives $3 = m(3m^3 - 64m^2n + 48mn^2 - 12n^3)$, and again $m \mid 3$ with a solution precisely when n = 0. So

$$(A, B, C) = (1, 0, 0),$$

 $(a, b, c) = (20816, 3103, 1069),$
 $(H, G) = (232, 7067).$

3.5. Consider finally (12) with $a \sim p_{11}$. Then

(35)

$$(365 - 20\psi - 12\omega)(2H - 3\psi) = \pm \epsilon^r (1402 + 209\psi + 72\omega)(a + b\psi + c\omega)^2, \quad r = 0, 1$$

for integers a, b, c satisfying the congruence (23). By positivity, only the upper sign can occur. Put a = 5b - 3c + 11d; then (35) can be rewritten in the form

$$2H - 3\psi = \epsilon^{r-1} [(-126b^2 - 2508c^2 + 134d^2 + 1254bc + 722bd + 1902cd)$$

$$+ \psi (-11b^2 + 102c^2 + 51d^2 + 6bc + 80bd - 306cd)$$

$$+ \omega (12b^2 + 98c^2 + 30d^2 - 74bc + 6bd + 26cd)].$$

If r = 0, then apply the transformation

$$\begin{pmatrix} B \\ C \\ D \end{pmatrix} = \begin{pmatrix} -2574 & -2951 & -2228 \\ -5810 & -6661 & -5029 \\ 1 & 13 & -3 \end{pmatrix} \begin{pmatrix} b \\ c \\ d \end{pmatrix};$$

$$\begin{pmatrix} b \\ c \\ d \end{pmatrix} = \begin{pmatrix} 85360 & -37817 & -129 \\ -22459 & 9950 & 34 \\ -68869 & 30511 & 104 \end{pmatrix} \begin{pmatrix} B \\ C \\ D \end{pmatrix},$$

and equate coefficients of ψ , ω :

$$(37) -3 = -1297513B^2 - 256374C^2 - 3D^2 + 1153526BC + 3946BD - 1754CD,$$

(37')
$$0 = 3B^2 + 661BC - 293C^2 - CD.$$

Assuming C > 0, then (37') implies either

$$(B, C, D) = (mn, n^2, 3m^2 + 661mn - 293n^2)$$

or

/

$$(B, C, D) = (mn, 3n^2, m^2 + 661mn - 879n^2)$$

for co-prime integers m, n. In the former instance, substitution into (37) gives

$$3 = 27m^4 + 60m^3n - 42m^2n^2 + 8mn^3 - n^4.$$

Certainly $m+n \equiv 1 \mod 2$, and $3 \equiv 3m^4 - n^4 \mod 8$, whence $m \equiv 1$, $n \equiv 0 \mod 2$. Then $3 \equiv 11m^4 + 12m^3n + 6m^2n^2 \mod 16$; but with n = 2k we have

$$12m^3n + 6m^2n^2 = 24m^2k(m+k) \equiv 0 \bmod 16,$$

so that $3 \equiv 11m^4 \mod 16$, a contradiction. In the latter instance substitution into (37) gives

$$-3 = -3m^4 - 20m^3n + 42m^2n^2 - 24mn^3 + 9n^4$$
.

Then $m^3 n \equiv 0 \mod 3$, and clearly $m \not\equiv 0 \mod 3$. So putting m = M, n = 3N:

(38)
$$M^4 + 20M^3N - 126M^2N^2 + 216MN^3 - 243N^4 = 1.$$

In §4.5 we show that (38) has only the solution $\pm (M, N) = (1, 0)$, with corresponding (a, b, c) = (397, -129, 34), (H, G) = (46, 619).

If r = 1 in (36), then applying the transformation

$$\begin{pmatrix} B \\ C \\ D \end{pmatrix} = \begin{pmatrix} -3 & 13 & -6 \\ -2 & 8 & -3 \\ 0 & 1 & -2 \end{pmatrix} \begin{pmatrix} b \\ c \\ d \end{pmatrix}; \qquad \begin{pmatrix} b \\ c \\ d \end{pmatrix} = \begin{pmatrix} -11 & -20 & -9 \\ 4 & -6 & -3 \\ 2 & -3 & -2 \end{pmatrix} \begin{pmatrix} B \\ C \\ D \end{pmatrix}$$

and equating coefficients of ψ , ω yields

(39)
$$-3 = -79B^2 - 257C^2 - 3D^2 + 288BC + 32BD - 58CD$$

$$(39') 0 = -4B^2 + 5BC + 3C^2 + BD.$$

Then assuming B > 0, (39') implies either $(B, C, D) = (m^2, mn, 4m^2 - 5mn - 3n^2)$ or $(B, C, D) = (3m^2, mn, 12m^2 - 5mn - n^2)$ for co-prime integers m, n. In the former case, substitution into (39) gives

$$-3 = m^4 + 16m^3n - 66m^2n^2 + 84mn^3 - 27n^4$$

which, as before, is insolvable modulo 16. In the latter case, substitution into (39) gives

$$-3 = 9m^4 + 48m^3n - 66m^2n^2 + 28mn^3 - 3n^4.$$

Clearly $m \equiv 0 \mod 3$. Put m = 3N, n = -M + 6N, giving

(40)
$$M^4 + 4M^3N - 90M^2N^2 + 216MN^3 - 459N^4 = 1.$$

In §4.6 we show that the only solution of (40) is $\pm (M, N) = (1, 0)$, with corresponding (a, b, c) = (58, 9, 3), (H, G) = (16, 101).

4.1. We turn now to the solution of the quartic equations obtained in §3. First, we present a modification of the well-known theorem of Skolem [12]. I am grateful to the referee for suggesting this form of the lemma.

LEMMA. Let θ be an algebraic integer of degree 4 which has two real and two complex conjugates, and with minimal polynomial f(X). Let F(X,Y) be the binary form defined by $F(X,Y) = Y^4 f(X/Y)$ for $Y \neq 0$. Let $K = \mathbb{Q}(\theta)$, and let \mathfrak{D}_K denote the ring of integers of K with an integral basis given by $\{1, \theta, \phi, \Phi\}$. If $\alpha \in K$, denote by $\alpha(1), \alpha(\theta), \alpha(\phi), \alpha(\Phi)$, the rational numbers defined by $\alpha = \alpha(1) + \alpha(\theta)\theta + \alpha(\phi)\phi + \alpha(\Phi)\Phi$. Let $\{\epsilon_1, \epsilon_2\}$ be a system of fundamental units in \mathfrak{D}_K , let p > 2 be a prime number, and let L, M be positive integers such that

(41)
$$\epsilon_1^L = \pm 1 + pE_1, \quad \epsilon_2^M = \pm 1 + pE_2$$

for certain $E_1, E_2 \in \mathfrak{G}_K$. Let R', S' be rational integers with $|R'| \leq L/2$, $|S'| \leq M/2$ such that

(42)
$$\epsilon_1^{R'} \epsilon_2^{S'}(\phi) \equiv \epsilon_1^{R'} \epsilon_2^{S'}(\Phi) \equiv 0 \mod p$$

and

(43)
$$\Delta = (\epsilon_1^{R'} \epsilon_2^{S'} E_1)(\phi) \cdot (\epsilon_1^{R'} \epsilon_2^{S'} E_2)(\Phi) - (\epsilon_1^{R'} \epsilon_2^{S'} E_1)(\Phi) \cdot (\epsilon_1^{R'} \epsilon_2^{S'} E_2)(\phi)$$

$$\neq 0 \mod p.$$

Then the equation

$$(44) F(x, y) = 1, \quad x, y \in \mathbb{Z}$$

has at most one solution satisfying

$$(45) x - y\theta = \pm \epsilon_1^R \epsilon_2^S$$

where R, S are rational integers with $R \equiv R' \mod L$, $S \equiv S' \mod M$.

Proof. Certainly for a solution x, y of (44) there exist R, $S \in \mathbb{Z}$ such that (45) holds. Suppose (x_0, y_0) is a solution of (44) for which (45) holds with integers R, S satisfying $R \equiv R' \mod L$, $S \equiv S' \mod M$. Suppose (x, y) is a further solution of (44) with this property. Then there are rational integers R'', S'' such that $x - y\theta = \pm (x_0 - y_0\theta) \epsilon_1^{LR''} \epsilon_2^{MS''}$. Together with (41), this implies that

$$x - y\theta = \pm (x_0 - y_0\theta) (1 \pm pE_1)^{R''} (1 \pm pE_2)^{S''}$$

= \pm (x_0 - y_0\theta) \pm p[(x_0 - y_0\theta)E_1R'' \pm (x_0 - y_0\theta)E_2S''] + p^2() + p^3() + \cdots

where the expressions () denote polynomials in R'', S'' of which the coefficients are of type $\alpha + \beta \theta + \gamma \phi + \delta \Phi$ with α , β , γ , $\delta \in \mathbb{Z}_p$. Equating coefficients of ϕ , Φ in (46), using (42) and $x_0 - y_0 \theta \equiv \pm \epsilon_1^{R'} \epsilon_2^{S'} \mod p$, and dividing by p yields

(47)
$$\alpha_1 R'' + \alpha_2 S'' + p(\) + p^2(\) + \dots = 0, \\ \beta_1 R'' + \beta_2 S'' + p(\) + p^2(\) + \dots = 0,$$

where $(\alpha_i, \beta_i) \equiv \pm ((\epsilon_1^{R'} \epsilon_2^{S'} E_i)(\phi), (\epsilon_1^{R'} \epsilon_2^{S'} E_i)(\Phi)) \mod p$, for i = 1, 2, and the expressions () denote polynomials in $\mathbb{Z}_p[R'', S'']$. But by (43), $\alpha_1 \beta_2 - \alpha_2 \beta_1 \not\equiv 0 \mod p$. Thus, by Skolem's theorem [12], (47) can have at most one solution in R'', S'' which is obviously equal to R'' = 0, S'' = 0. Hence (x_0, y_0) is the only solution of (44) for which (45) holds with R, S satisfying $R \equiv R' \mod L$, $S \equiv S' \mod M$.

In each particular instance that follows, the arithmetic details of the relevant quartic extension of the rationals are quoted, with justification postponed to §7.

Consider first equation (20). Define $K = \mathbf{Q}(\theta)$ where $\theta^4 - 72\theta^2 - 108\theta - 432 = 0$. Then K has integer base $\{1, \theta, \phi, \Phi\}$ where $\phi = \theta^2/6$, $\Phi = \theta^3/36$, with discriminant $\Delta^2(K) = -2^2 \cdot 3^3 \cdot 229^2$. A pair of independent units in K is

$$\eta_1 = 31 + 11\theta + 38\phi + 24\Phi,$$

$$\eta_2 = 483602731 + 174202120\theta + 316187252\phi - 293718704\Phi.$$

In §7.2 we show that there exists in K a pair of fundamental units ϵ_1 , ϵ_2 satisfying $\epsilon_i \equiv \eta_i \mod 3$.

Equation (20) can be written in the form Norm $(m-n\theta)=1$, so that

$$\pm (m - n\theta) = \epsilon_1^r \epsilon_2^s$$

for integers r, s.

Now

$$\epsilon_1^3 \equiv \eta_1^3 \equiv 1 - 3\theta + 3\phi \mod 9,$$

$$\epsilon_2^9 \equiv \eta_2^9 \equiv 1 + 3\theta + 3\phi - 3\Phi \mod 9.$$

Put $r = 3R + \rho$, $s = 9S + \sigma$ with $0 \le \rho \le 2$, $0 \le \sigma \le 8$, and then (48) implies that the coefficients of ϕ , Φ in $\epsilon_1^{\rho} \epsilon_2^{\sigma}$ must both be zero modulo 3. This forces $\rho = 0$, $\sigma = 0, 3, 6$. Put $R = 3P + \rho'$, $S = 3Q + \sigma'$, $0 \le \rho'$, $\sigma' \le 2$; then (48) gives

$$\pm (m - n\theta) = \epsilon_1^{9P} \epsilon_2^{27Q} \cdot \epsilon_1^{3\rho'} \epsilon_2^{9\sigma' + \sigma}$$

whence the coefficients of ϕ , Φ in the latter factor must both be zero modulo 9; and this forces $\rho' = 0$, $\sigma' = \sigma = 0$. The lemma now applies, with p = 3, (L, M) = (3, 9), (R', S') = (0, 0). The only solution of (48) is r = s = 0, with corresponding $\pm (m, n) = (1, 0)$.

4.2. Define $K = \mathbf{Q}(\theta)$, where $\theta^4 - 68\theta^3 + 366\theta^2 - 680\theta + 397 = 0$. Then K has integer base $\{1, \theta, \phi, \Phi\}$ where $\phi = (\theta + 1)^2/6$, $\Phi = (\theta + 1)^3/36$, and $\Delta^2(K) = -2^2 \cdot 3^3 \cdot 229^2$. A pair of fundamental units is given by

$$\epsilon_1 = 251 - 776\theta + 916\phi - 80\Phi,$$

$$\epsilon_2 = 145415 - 218888\theta + 214656\phi - 18432\Phi,$$

$$(\epsilon_2^{-1} = -9 + 8\theta).$$

Now (22) takes the form $Norm(M-N\theta)=1$, so that

$$\pm (M - N\theta) = \epsilon_1^r \epsilon_2^s.$$

The p-adic method of dealing with equations such as (49) is to find a prime p such that the coefficients of ϕ , Φ in $\epsilon_1^r \epsilon_2^s$, taken modulo p, vanish as infrequently as possible. To save excessive calculation it is best to consider first those primes which split completely in K, so that the orders of ϵ_1 , ϵ_2 taken modulo p divide p-1. See Bremner [3; 4] and Bremner and Tzanakis [5] for other numerical examples. Here the primes splitting completely in K include 199, 271, 337, 421, 457, It is best to work with p=421. Machine computation gives

$$\epsilon_1^{105} = 1 + 421E_1$$
 with $E_1 \equiv 61 + 56\theta - 134\phi + 198\Phi \mod 421$,
 $\epsilon_2^{420} = 1 + 421E_2$ with $E_2 \equiv 153 + 136\theta + 168\phi - 170\Phi \mod 421$,

and $(\rho, \sigma) = (0, 0)$, (0, -1) are the only values of ρ , σ satisfying $-52 \le \rho < 53$, $-210 \le \sigma < 210$ such that the coefficients of ϕ , Φ in $\epsilon_1^{\rho} \epsilon_2^{\sigma}$ both vanish modulo 421. The lemma now applies with p = 421, (L, M) = (105, 420), and (R', S') = (0, 0) or (0, -1) (it is straightforward to check condition (43)). The only solutions to (49) are (r, s) = (0, 0), (0, -1) with corresponding $\pm (M, N) = (1, 0)$, (9, 8), respectively.

4.3. Define $K = \mathbf{Q}(\theta)$ where $\theta^4 - 40\theta^3 + 108\theta^2 - 92\theta - 52 = 0$. Then K has integer base $\{1, \theta, \phi, \Phi\}$ where $\phi = (\theta^2 + 2)/2$, $\phi = (\theta^3 - 26\theta^2 + 14\theta - 4)/54$, and $\Delta^2(K) = -2^4 \cdot 3 \cdot 229^2$. A pair of fundamental units is

$$\epsilon_1 = -807 - 1130\theta + 5635\phi + 1620\Phi,$$

 $\epsilon_2 = -120697 - 33878\theta + 409864\phi + 159264\Phi.$

The primes that factor completely in K include 127, 163, 193.... It is appropriate here to use p = 163. Computation gives

$$\epsilon_1^{81} = -1 - 163E_1 \quad \text{with } E_1 \equiv -52 + 68\theta + 49\phi + 67\Phi \mod 163$$

$$\epsilon_2^{81} = 1 + 163E_2 \quad \text{with } E_2 \equiv 73 - 18\theta + 78\phi - 57\Phi \mod 163$$

and $(\rho, \sigma) = (0, 0)$ are the only values of ρ , σ satisfying $-40 \le \rho$, $\sigma < 41$ such that the coefficients of ϕ , Φ in $\epsilon_1^{\rho} \epsilon_2^{\sigma}$ both vanish modulo 163. Thus we can now apply the lemma with p = 163, (L, M) = (81, 81), (R', S') = (0, 0) to show that (32) has the unique solution in integers $\pm (M, N) = (1, 0)$.

4.4. Let $K = \mathbf{Q}(\theta)$ where $\theta^4 + 20\theta^3 - 126\theta^2 + 216\theta - 243 = 0$. Then K has integer base $\{1, \theta, \phi, \Phi\}$ where $\phi = (\theta^2 + 2\theta + 3)/6$, $\Phi = (\theta^3 + 2\theta^2 - 27\theta)/54$, and $\Delta^2(K) = -2^4 \cdot 3 \cdot 229^2$. A pair of fundamental units is

$$\epsilon_1 = 36 - 1380\theta + 2950\phi + 1065\Phi,$$

 $\epsilon_2 = 1552 - 30543\theta + 68814\phi + 28686\Phi.$

Primes factoring completely in K include 163, 337, 547.... We work here with p = 337. Computation gives

$$\epsilon_1^{42} = -1 - 337E_1$$
 with $E_1 \equiv -132 + 85\theta + 134\phi - 32\Phi \mod 337$, $\epsilon_2^{336} = 1 + 337E_2$ with $E_2 \equiv 128 + 20\theta + 109\phi - 147\Phi \mod 337$,

and $(\rho, \sigma) = (0, 0)$ are the only values of ρ , σ satisfying $-21 \le \rho < 21$, $-168 \le \sigma < 168$ such that the coefficients of ϕ , Φ in $\epsilon_1^{\rho} \epsilon_2^{\sigma}$ are both zero modulo 337. Applying the lemma with p = 337, (L, M) = (42, 336), (R', S') = (0, 0) shows that (38) has only the solution $\pm (M, N) = (1, 0)$.

4.5. Let $K = \mathbf{Q}(\theta)$ where $\theta^4 + 4\theta^3 - 90\theta^2 + 216\theta - 459 = 0$. Then K has integer base $\{1, \theta, \phi, \Phi\}$ where $\phi = (\theta^2 - 2\theta + 3)/6$, $\Phi = (\theta^3 + \theta^2 + 15\theta - 45)/108$, and $\Delta^2(K) = -2^2 \cdot 3 \cdot 229^2$. A pair of fundamental units is

$$\begin{aligned} \epsilon_1 &= 179 - 113\theta + 27\phi + 126\Phi, \\ \epsilon_2 &= -6087998 + 1285904\theta - 3940781\phi - 7498800\Phi. \end{aligned}$$

Primes splitting completely in K include 163, 271, 523.... Working with the prime 271,

$$\epsilon_1^{270} = 1 + 271E_1$$
 with $E_1 \equiv 11 + 75\theta - 68\phi + 96\Phi \mod 271$,
 $\epsilon_2^{270} = 1 + 271E_2$ with $E_2 \equiv -28 - 104\theta + 33\phi + 24\Phi \mod 271$,

and $(\rho, \sigma) = (0, 0)$ are the only values of ρ , σ satisfying $-135 \le \rho$, $\sigma < 135$ such that the coefficients of ϕ , Φ in the product $\epsilon_1^{\rho} \epsilon_2^{\sigma}$ are both zero modulo 271. Applying the lemma with p = 271, (L, M) = (270, 270), (R', S') = (0, 0), (40) can have only the solution $\pm (M, N) = (1, 0)$.

Putting the foregoing together yields the following result.

THEOREM 1. The only integer solutions of $G^2 + 6183 = 4H^3$ are the following:

(50)
$$(H, \pm G) = (12, 27), (16, 101), (46, 619), (82, 1483), (228, 6885), (232, 7067), (3041076, 10606470939).$$

COROLLARY 2. The only integer solutions of $X^3-4XY^2-Y^3=1$ are the following:

(51)
$$(X,Y) = (-2,-1), (0,-1), (1,0), (1,-4), (2,-1), (508,-273).$$

Proof. For each (H, G) listed at (50) it is simple to find the corresponding (X, Y) (if any) via the transformations at (2), (4), and (5). Only the point (228, ± 6885) has no corresponding (X, Y).

We note here also the following result.

COROLLARY 3. There are essentially seven distinct monic cubic polynomials in $\mathbb{Z}[X]$ with discriminant 229, namely:

(52)
$$x^3 - 4x - 1; \quad x^3 + x^2 - 5x + 2; \quad x^3 - x^2 - 15x + 28; \quad x^3 - x^2 - 27x + 64;$$

$$x^3 - 76x - 255; \quad x^3 - x^2 - 77x - 236; \quad x^3 - 1013692x + 392832257.$$

Proof. "Essentially" here means up to translation by an integer, or changing the sign of x.

Since there is a unique cubic field of discriminant 229, namely $Q(\Xi)$, then a polynomial of the required type has an algebraic integer root in $Q(\Xi)$ which is of index 1 in $Z[\Xi]$; the result follows from the previous sections. Alternatively, there is the following polynomial identity. Let $x^3 + ax^2 + bx + c$ have discriminant 229; then

$$(27c-9ab+2a^3)^2+6183=4(a^2-3b)^3$$

and using (50) it is straightforward to list the possibilities for a, b, c normalizing in each case so as to achieve $|a| \le 1$.

5.1. In order to solve the problem of generators in the ring $\mathbb{Z}[\xi]$, it is now necessary by the remarks of $\S 1$ to investigate for each (M, N) = (X, Y), (-X, -Y), where (X, Y) is one of the points listed at (51), the solvability in integers of the equations

(53)
$$b^{2}-cd+d^{2}=M, \\ -bd+c^{2}=N.$$

For a real parameter λ , (53) may be written in the form

(54)
$$M + \lambda N = \left(b - \frac{1}{2}\lambda d\right)^2 + \lambda \left(c - \frac{1}{2\lambda}d\right)^2 - \frac{\lambda^3 - 4\lambda + 1}{4\lambda}d^2.$$

Taking $\lambda = 1$,

(55)
$$M+N=\left(b-\frac{1}{2}d\right)^2+\left(c-\frac{1}{2}d\right)^2+\frac{1}{2}d^2,$$

and so the system (53) is insolvable if M+N is negative. Thus, it remains to consider only the cases (M,N)=(-1,4),(0,1),(1,0),(2,-1),(2,1),(508,-273).

First, suppose (M, N) = (508, -273). Taking $\lambda = 508/273$ at (54) gives

$$0 = \left(b - \frac{254}{273}d\right)^2 + \frac{508}{273}\left(c - \frac{283}{1016}d\right)^2 - \frac{1}{4 \cdot 508 \cdot 273^2}d^2$$

and, in particular,

$$b - \frac{254}{273}d \neq 0.$$

Thus,

$$\frac{1}{4\cdot508\cdot273^2}d^2 > \frac{1}{273^2},$$

whence

$$(56) d^2 > 4 \cdot 508 = 2032.$$

But from (55), $d^2 < 2(M+N) = 470$, contradicting (56). Hence, (53) is unsolvable for (M, N) = (508, -273).

In the remaining cases (M, N) = (-1, 4), (0, 1), (1, 0), (2, -1), (2, 1), b, c, d can be determined from (53) and (55) by straightforward computation. Thus, we obtain table (57).

(M, N) Solutions
$$(b, c, d)$$
 of (53)
(-1, 4) No solutions
(0, 1) $\pm (0, 1, 0), \pm (0, 1, 1)$
(1, 0) $\pm (1, 0, 0), \pm (0, 0, 1), \pm (1, 1, 1)$
(2, -1) $\pm (1, 0, 1)$
(2, 1) $\pm (-1, 0, 1), \pm (0, -1, 1), \pm (0, 1, 2).$

6. We have thus proved the following result.

THEOREM 7. Up to equivalence, precisely the following integers α of $\mathbb{Z}[\xi]$, $\xi^4 - \xi + 1 = 0$, satisfy $\mathbb{Z}[\alpha] = \mathbb{Z}[\xi]$:

(58)
$$\pm \alpha = \xi, \xi^2, \xi^3, \xi \pm \xi^3, \xi + \xi^2 + \xi^3, \xi^2 \pm \xi^3, \xi^2 + 2\xi^3, 2\xi^2 + \xi^3.$$

THEOREM 8. In $\mathbf{Z}[\xi]$, precisely the following powers of ξ generate the ring of integers:

$$\xi^{-7}, \xi^{-6}, \xi^{-4}, \xi^{-3}, \xi^{-2}, \xi^{-1}, \xi, \xi^{2}, \xi^{3}, \xi^{4}, \xi^{6}, \xi^{7}.$$

Proof. It is required to find those integers n such that

for some integer a, where $p(\xi)$ is one of the elements α listed at (58). Now

(60)
$$\xi^{30} = 1 + 4X, \quad X = -2 - 5\xi + 15\xi^2 - 12\xi^3.$$

Let $n = 30N + \nu$, $-15 \le \nu < 15$, so that (59) implies

$$\pm \xi^{\nu} \equiv a + p(\xi) \bmod 4.$$

It is easy to check that (61) has no solution in the instances $p(\xi) = \xi + \xi^3$, $2\xi^2 + \xi^3$. The following table (62) gives the solutions ν for the remaining possibilities for $p(\xi)$.

(62)
$$\frac{p(\xi)}{\xi} \quad \nu$$

$$\frac{\xi}{\xi^2} \quad 1, 4$$

$$\xi^2 \quad 2$$

$$\xi^3 \quad -1, 3, 14$$

$$\xi - \xi^3 \quad -6, 7$$

$$\xi + \xi^2 + \xi^3 \quad -3, -4, 11$$

$$\xi^2 + \xi^3 \quad -2$$

$$\xi^2 - \xi^3 \quad 6, 13$$

$$\xi^2 + 2\xi^3 \quad -13, -7.$$

Consider for example $p(\xi) = \xi^2 + 2\xi^3$, $\nu = -7$. Then (59) and (60) give

$$\pm \xi^{-7} (1+4X)^N = a + \xi^2 + 2\xi^3$$
.

Since $\xi^{-7} = -3 + \xi^2 + 2\xi^3$, a congruence mod 4 implies the upper sign. Putting $(1+4X)^N = L_0 + L_1\xi + L_2\xi^2 + L_3\xi^3$, where

$$L_0 = 1 + 4(-2N) + 4^2()$$

$$L_1 = 4(-5N) + 4^2()$$

$$L_2 = 4(15N) + 4^2()$$

$$L_3 = 4(-12N) + 4^2(),$$

and equating coefficients of ξ^2 gives $L_0 - L_2 - L_3 = 1$, whence there is the 2-adic equation

$$-5N+4()+4^{2}()+\cdots=0.$$

Skolem's theorem once again implies at most one solution, which is clearly N=0. The cases $\nu=7,\pm6,\pm4,\pm3,\pm2,\pm1$ with the corresponding $p(\xi)$, in which there actually does exist a solution to (59) (viz. with $n=\nu$), are entirely analo-

gous, and details are omitted.

It remains to show that there are no solutions to (59) in the four cases $p(\xi) = \xi^3$, $\nu = 14$; $p(\xi) = \xi^2 - \xi^3$, $\nu = 13$; $p(\xi) = \xi^2 + 2\xi^3$, $\nu = -13$; $p(\xi) = \xi + \xi^2 + \xi^3$, $\nu = 11$. In the first case $n \equiv 14$, $-16 \mod 60$; but

$$\xi^{14} = 3 - 4\xi + 3\xi^3$$
, $\xi^{-16} = -1 - 8\xi - 8\xi^2 - 5\xi^3$.

Since $\xi^{60} \equiv 1 \mod 8$ (from (60)), (59) gives an impossible congruence modulo 8. Similar arguments dispose of the second and third cases, using

$$\xi^{13} = -1 + 3\xi^2 - 3\xi^3,$$
 $\xi^{-17} = -9 - 8\xi - 5\xi^2 + \xi^3,$ $\xi^{-13} = 8 - 3\xi^2 - 6\xi^3,$ $\xi^{17} = 4 - 4\xi - 3\xi^2 + 6\xi^3.$

In the last case n = 11, $-19 \mod 60$. Since $\xi^{11} = 2 - 3\xi + \xi^2 + \xi^3$, the case $n = 11 \mod 60$ is impossible, by taking (59) modulo 8. Then n = -19, 41 mod 120. But $\xi^{-19} = -22 + \xi + 9\xi^2 + 17\xi^3$, $\xi^{41} = -198 + 153\xi + 233\xi^2 - 351\xi^3$, so using $\xi^{120} = 1 \mod 16$, (59) gives an impossible congruence modulo 16.

7.1. We give in the following sections the arithmetic details of the quartic fields $Q(\theta)$. In each instance, the module generated over Z by $\{1, \theta, \phi, \Phi\}$ is the ring of integers of K. To show that ϕ , Φ are indeed integers, we simply give the minimal polynomials. It is easy to verify that 2 and 3 are the only primes which may divide the index of this module in the ring of integers. So it is then straightforward to check that $(a_0 + a_1\theta + a_2\phi + a_3\Phi)/p$, with $0 \le a_i < p$, cannot be an integer for p = 2, 3, unless each a_i is zero. The explicit details are omitted.

Each quartic field has two real embeddings and one pair of complex embeddings into \mathbb{C} , so that there are indeed two fundamental units in K. The procedure we adopt to find a pair of fundamental units is as follows. First, find a pair of independent units. In each case, this was achieved by factoring ideals of small norm and suitably combining the factors to give units; independence follows from the non-vanishing of the regulator, and is easily verified in each of the specific instances below. Now normalize the independent units ϵ_1 , ϵ_2 to satisfy $\epsilon_2 > \epsilon_1 > 1$. To show that ϵ_1 , ϵ_2 are actually fundamental, we invoke the following theorem of Baulin [1].

THEOREM. If there exist two independent units ϵ_1 , ϵ_2 in K such that neither relation

$$\epsilon_1 = \tau_1^m,$$

$$\epsilon_1'\epsilon_2 = \tau_2^n$$

holds for any units τ_1 , τ_2 and integers l, m, n, then ϵ_1 , ϵ_2 are fundamental units.

So it is necessary in each instance to show the impossibility of relations (63) and (64) where clearly it may be supposed m, n > 0. We strengthen the technique used by London and Finkelstein [8] as follows. Clearly, it may be supposed in (64) that $|l| \le n/2$, since putting l = kn + l', $|l'| \le n/2$, gives the relation $\epsilon_1^{l'} \epsilon_2 = (\tau_2 \epsilon_1^{-k})^n$. We first give congruences modulo appropriate first degree primes in the relevant field K which show that (63) and (64) can have no solution if $m < n_0$ or $n < n_0$ for a fixed integer n_0 . If now (63) and (64) are to hold, then there exist units τ_1, τ_2 such that

$$\tau_1 = \epsilon_1^{1/m}, \quad m \ge n_0,$$

(66)
$$\tau_2 = \epsilon_1^{l/n} \epsilon_2^{1/n}, \quad n \ge n_0, \quad |l| \le n/2.$$

We can thus bound τ_i and its conjugates τ_i' , $\overline{\tau_i''}$. Certainly

$$\tau_1 \le \epsilon_1^{1/n_0},$$

(67')
$$\tau_2 \le \epsilon_1^{1/2} \epsilon_2^{1/n_0},$$

and conjugating (63) and (64) gives

(68)
$$|\tau_1'| = |\epsilon_1'|^{1/m} \le \max(1, |\epsilon_1'|^{1/n_0}),$$

(69)
$$|\tau_2'| \leq \max(|\epsilon_1'|^{1/2}, |\epsilon_1'|^{-1/2}) \cdot \max(1, |\epsilon_2'|^{1/n_0}).$$

Similarly

(70)
$$|\tau_1''| = |\overline{\tau_1''}| \le \max(1, |\epsilon_1''|^{1/n_0}),$$

(71)
$$|\tau_2''| = |\overline{\tau_2''}| \le \max(|\epsilon_1''|^{1/2}, |\epsilon_1''|^{-1/2}) \cdot \max(1, |\epsilon_2''|^{1/n_0}).$$

In some cases, the bounds at (67'), (69), (71) may be rather weak, and so it can also be advantageous to consider two ranges for the value of l at (66) as follows.

First, if $|l| \le n/4$, then we clearly obtain

$$\tau_2 \le \epsilon_1^{1/4} \epsilon_2^{1/n_0},$$

(73)
$$|\tau_2'| \leq \max(|\epsilon_1'|^{1/4}, |\epsilon_1'|^{-1/4}) \cdot \max(1, |\epsilon_2'|^{1/n_0}),$$

(74)
$$|\tau_2''| = |\overline{\tau_2''}| \le \max(|\epsilon_1''|^{1/4}, |\epsilon_1''|^{-1/4}) \cdot \max(1, |\epsilon_2''|^{1/n_0}).$$

Second, suppose $n/4 < |l| \le n/2$. Then we may write n = k|l| + l' with $|l'| \le |l|/2$, $2 \le k \le 4$. So raising (64) to the kth power gives the relation $\epsilon_1^{-l'|l|/l} \epsilon_2^k = (\tau_2^k \epsilon_1^{-|l|/l})^n$, that is, a relation

(75)
$$\tau_3 = \epsilon_1^{l''/n} \epsilon_2^{k/n}, \quad |l''| \le n/4, \ 2 \le k \le 4.$$

Then we have the bounds

(76)
$$\tau_3 \le \epsilon_1^{1/4} \epsilon_2^{4/n_0},$$

(77)
$$|\tau_3'| \leq \max(|\epsilon_1'|^{1/4}, |\epsilon_1'|^{-1/4}) \cdot \max(1, |\epsilon_2'|^{4/n_0}),$$

(78)
$$|\tau_3''| = |\overline{\tau_3''}| \le \max(|\epsilon_1''|^{1/4}, |\epsilon_1''|^{-1/4}) \cdot \max(1, |\epsilon_2''|^{4/n_0}).$$

The region defined by the bounds at (72), (73), (74) is a subset of the region at (76), (77), (78); and the region for the unit τ_1 defined by the bounds at (67), (68), (70) is a subset of the region for τ_2 at (67'), (69), (71). Accordingly, it suffices to determine all the units τ satisfying either the inequalities (67'), (69), (71) or the inequalities (76), (77), (78), whichever is the stronger. Let now $\tau = a + b\theta + c\phi + d\Phi$ represent either τ_2 or τ_3 . Then the equations

(79)
$$a+b\theta+c\phi+d\Phi=\tau,$$

$$a+b\theta'+c\phi'+d\Phi'=\tau',$$

$$a+b\theta''+c\phi''+d\Phi''=\tau'',$$

$$a+b\overline{\theta''}+c\overline{\phi''}+d\overline{\Phi''}=\overline{\tau''},$$

can be solved for a, b, c, d to give

(80)
$$d = (D_1 \tau + D_2 \tau' + D_3 \tau'' + D_4 \overline{\tau''})/|\Delta|,$$

$$c = (D_1 \alpha \tau + D_2 \alpha' \tau' + D_3 \alpha'' \tau'' + D_4 \overline{\alpha''} \overline{\tau''})/|\Delta|,$$

$$b = (D_1 \beta \tau + D_2 \beta' \tau' + D_3 \beta'' \tau'' + D_4 \overline{\beta''} \overline{\tau''})/|\Delta|,$$

where Δ^2 is the discriminant $\Delta^2(K)$ of the field K; α, β are certain linear and quadratic functions respectively of θ ; and $(-1)^i D_i$ is the determinant of the matrix obtained by deleting the *i*th column from the matrix

$$\begin{pmatrix} 1 & 1 & 1 & \frac{1}{\theta''} \\ \theta & \theta' & \theta'' & \frac{\overline{\theta''}}{\overline{\phi''}} \end{pmatrix}$$

Thus, the inequalities (67'), (69), (71) and (76), (77), (78) give explicit bounds on d, c, b at (80), whence a can be bounded directly from any of the equations at (79). The finitely many possibilities for τ can now be tested by computer to find the potential units; in no case do 'new' units occur, and ϵ_1 , ϵ_2 being fundamental units then follows.

7.2.

$$K = \mathbf{Q}(\theta), \qquad \theta^4 - 72\theta^2 - 108\theta - 432 = 0.$$

$$\phi = \frac{\theta^2}{6}, \qquad \Phi = \frac{\theta^3}{36}, \qquad \Delta^2(K) = -2^2 \cdot 3^3 \cdot 229^2.$$

$$\phi^4 - 24\phi^3 + 120\phi^2 + 234\phi + 144 = 0; \qquad \Phi^4 - 9\Phi^3 - 333\Phi^2 + 189\Phi - 48 = 0.$$

Multiplication table:

$$\theta^2 = 6\phi$$
, $\phi^2 = 12 + 3\theta + 12\phi$, $\theta \phi = 6\Phi$, $\phi \Phi = 2\theta + 3\phi + 12\Phi$, $\Phi \Phi = 12 + 3\theta + 12\phi$, $\Phi^2 = 24 + 6\theta + 26\phi + 3\Phi$.

Units:

$$\eta_1 = 31 + 11\theta + 38\phi + 24\Phi;$$
 $\eta_1^{-1} = -17 + 25\theta + 4\phi - 12\Phi;$
 $\eta_2 = 483602731 + 174202120\theta + 316187252\phi - 293718704\Phi$

(η_2 arises from the identity

$$\eta_1^5 \eta_2 (4+5\theta+2\phi-\Phi)(1+\theta+2\phi+\Phi)^2 = (2+3\phi-2\Phi)^4$$
).

Now (3) factors in K as \mathfrak{p}_3^4 so that the multiplicative group \mathfrak{G}_3 of residues modulo 3 has order 54. It is easily checked that η_1 has order 3 modulo 3, η_2 has order 9 modulo 3, and the residues $\eta_1^\rho \eta_2^\sigma \mod 3$, for $0 \le \rho \le 2$, $0 \le \sigma \le 8$, are all distinct. So \mathfrak{G}_3 is generated by the residues of η_1 , η_2 mod 3, together with -1. If ϵ_1 , ϵ_2 are fundamental units in K, then the subgroup of \mathfrak{G}_3 generated by ϵ_1 , ϵ_2 , -1 certainly contains η_1 , η_2 mod 3 and so is precisely \mathfrak{G}_3 . Thus there exist fundamental units congruent modulo 3 to η_1 , η_2 .

7.3.

$$K = \mathbf{Q}(\theta), \qquad \theta^4 - 68\theta^3 + 366\theta^2 - 680\theta + 397 = 0.$$

$$\phi = \frac{(\theta+1)^2}{6}, \qquad \Phi = \frac{(\theta+1)^3}{36}, \qquad \Delta^2(K) = -2^2 \cdot 3^3 \cdot 229^2.$$

$$\phi^4 - 672\phi^3 + 2820\phi^2 - 4086\phi + 1764 = 0;$$

$$\Phi^4 - 7047\Phi^3 + 14139\Phi^2 - 10989\Phi + 2058 = 0.$$

Multiplication table:

$$\theta^2 = -1 - 2\theta + 6\phi,$$
 $\phi^2 = 3 + 45\theta - 96\phi + 72\Phi,$ $\theta \phi = -\phi + 6\Phi,$ $\phi \Phi = 29 + 533\theta - 1107\phi + 768\Phi,$ $\theta \Phi = 3 + 45\theta - 96\phi + 71\Phi,$ $\phi^2 = 300 + 5676\theta - 11755\phi + 8109\Phi.$ $\epsilon_1 = 251 - 776\theta + 916\phi - 80\Phi;$ $\epsilon_1^{-1} = 3 + 56\theta - 116\phi + 80\Phi,$ $\epsilon_2 = 145415 - 218888\theta$ $\epsilon_2^{-1} = -9 + 8\theta.$ $\epsilon_2^{-1} = -9 + 8\theta.$

Congruences: The appropriate first degree prime factor of p is identified by the residue class of θ .

p	13	19	31	43	61	7	1	79		83	8	9	103	139	14	19	173
$\overline{ heta}$	3	17	26	13	44	30	32	55	42	74	47	84	74	130	16	31	50
$oldsymbol{\phi}$	7	16	13	4	2	30	4	75	73	66	28	62	62	57	73	121	1
Φ	9	10	12	38	15	13	22	68	39	78	46	18	54	63	33	99	95
ϵ_1	1	3	13	32	45	3	43	54	33	31	76	31	37	58	62	141	93
ϵ_2	7	3	12	24	53	4	23	11	33	42	81	69	50	12	144	101	50
<i>p</i>	229	23	3 2	39	277	313	34	9 3	73	397	419		659	11	17		
$\boldsymbol{\theta}$	109	12	5 1	64	205	130	239	9 1	55	0	399	204	1 235	5 3	23		
$oldsymbol{\phi}$	32	8	3 1	16	240	304	17	7 3	26	331	130	524	496	5 7	41		
Φ	205	11	2	83	207	273	10	0 2	270	386	147	330	618	3 9	19		
ϵ_1	27	14	3	88	131	121	329	9 3	27	225	324	299	45	5 7	50		
ϵ_2	108	7	9 1	35	134	44	14	8	10	296	119	121	516	5 6	06		

We take $n_0 = 53$, and for each prime value of n less than 53 indicate which congruences mod p show the impossibility of $\pm \epsilon_1^l \epsilon_2 = \tau^n$, $|l| \le n/2$: n = 2, p = 13; n = 3, p = 13, 19; n = 5, p = 31, 61; n = 7, p = 43, 71; n = 11, p = 89, 397; n = 13, p = 79, 313; n = 17, p = 103, 239; n = 19, p = 229, 419; n = 23, p = 139, 277; n = 29, p = 233, 349; n = 31, p = 373, 1117; n = 37, p = 149; n = 41, p = 83; n = 43, p = 173; n = 47, p = 659.

Real values (all calculations were performed with quadruple precision): the exponent of 10 is given in brackets at the end of the number.

 $\theta \sim 1.1250022(0), \quad \theta' \sim 6.2298637(1), \quad \theta'' \sim 2.2881802(0) + 6.5474585(-1)i,$ $\epsilon_1 \sim 4.6061280(1), \quad \epsilon_1' \sim 2.0423669(-6), \quad \epsilon_1'' \sim -9.0306409(0) + 1.0270527(2)i,$ $\epsilon_2 \sim 5.5803835(4), \quad \epsilon_2' \sim 2.0433639(-3), \quad \epsilon_2'' \sim 8.1606967(-2) - 4.5935980(-2)i.$ The polynomials α , β at (80) are given by $\alpha = (-71 + \theta)/6, \quad \beta = (505 - 70\theta + \theta^2)/36.$ The bounds resulting on a, b, c, d using (76)-(78) are:

$$|a| \le 91$$
, $|b| \le 44$, $|c| \le 47$, $|d| \le 4$.

The only units in the range are 1, ϵ_2^{-1} .

7.4.

$$K = \mathbf{Q}(\theta), \qquad \theta^4 + 22\theta^3 - 12\theta^2 - 32\theta - 188 = 0.$$

$$\phi = \frac{\theta^2 + 2\theta + 4}{6}, \qquad \Phi = \frac{\theta^3 - 3\theta^2 + 4}{18}, \qquad \Delta^2(K) = -2^4 \cdot 3^3 \cdot 229^2.$$

$$\phi^4 - 80\phi^3 + 198\phi^2 - 26\phi + 1 = 0; \qquad \Phi^4 + 714\Phi^3 - 1260\Phi^2 + 768\Phi - 21 = 0.$$

Multiplication table:

$$\theta^{2} = -4 - 2\theta + 6\phi, \qquad \phi^{2} = 11 + 3\theta - 5\phi - 9\Phi,$$

$$\theta\phi = -4 - \theta + 5\phi + 3\Phi, \qquad \phi\Phi = -107 - 29\theta + 72\phi + 86\Phi,$$

$$\theta\Phi = 30 + 9\theta - 21\phi - 25\Phi, \qquad \Phi^{2} = 991 + 269\theta - 667\phi - 795\Phi.$$

Units:

$$\epsilon_1 = \phi;$$
 $\epsilon_1^{-1} = 10 - 3\theta - \phi;$ $\epsilon_2 = 95 + 84\theta + 208\phi + 20\Phi;$ $\epsilon^{-1} = 38575 + 10460\theta - 25952\phi - 30980\Phi.$

Congruences:

p	7	13	17	19	2	3	31	43	61	71	79	131
$\boldsymbol{\theta}$	6	9	4	1	7	20	28	16	18	29	70	8
$oldsymbol{\phi}$	4	2	16	17	15	5	27	20	20	44	77	14
Φ	0	6	3	17	6	10	11	37	33	8	34	18
ϵ_1	4	2	16	17	15	5	27	20	20	44	77	103
ϵ_2	3	3	11	8	13	2	6	18	22	57	77	109

We take $n_0 = 17$; and with the notation of §7.3, n = 2, p = 13, 17; n = 3, p = 7, 19; n = 5, p = 31, 61; n = 7, p = 43, 71; n = 11, p = 23; n = 13, p = 79, 131. Real values:

$$\theta \sim 2.3901604(0), \quad \theta' \sim -2.2486894(1), \quad \theta'' \sim -9.5163306(-1) + 1.6100452(0)i,$$
 $\epsilon_1 \sim 2.4155312(0), \quad \epsilon_1' \sim 7.7447771(1), \quad \epsilon_1'' \sim 6.8348944(-2) + 2.5957655(-2)i,$
 $\epsilon_2 \sim 7.9877738(2), \quad \epsilon_2' \sim 5.008078(-8), \quad \epsilon_2'' \sim 4.6611311(1) + 1.5108032(2)i.$

The polynomials α , β at (80) are given by $\alpha = (25 + \theta)/3$, $\beta = (-62 + 20\theta + \theta^2)/18$. The bounds resulting on a, b, c, d using (67'), (69), (71) are:

$$|a| \le 11$$
, $|b| \le 3$, $|c| \le 6$, $d = 0$.

The only units in the range are 1, ϵ_1 , ϵ_1^{-1} .

7.5.

$$K = \mathbf{Q}(\theta), \qquad \theta^4 - 40\theta^3 + 108\theta^2 - 92\theta - 52 = 0,$$

$$\phi = \frac{\theta^2 + 2}{6}, \qquad \Phi = \frac{\theta^3 - 26\theta^2 + 14\theta - 4}{54}, \qquad \Delta^2(K) = -2^4 \cdot 3 \cdot 229^2.$$

$$\phi^4 - 232\phi^3 + 348\phi^2 - 246\phi + 54 = 0; \qquad \Phi^4 - 294\Phi^3 - 292\Phi^2 - 552\Phi - 120 = 0.$$

Multiplication table:

$$\theta^2 = -2 + 6\phi,$$
 $\phi^2 = -46 - 13\theta + 156\phi + 60\Phi,$ $\theta\phi = -8 - 2\theta + 26\phi + 9\Phi,$ $\phi\Phi = -58 - 16\theta + 198\phi + 78\Phi,$ $\Phi\Phi = -8 - 2\theta + 30\phi + 14\Phi,$ $\Phi^2 = -76 - 22\theta + 256\phi + 98\Phi.$

Units:

$$\epsilon_1 = -807 - 1130\theta + 5635\phi + 1620\Phi; \qquad \epsilon_1^{-1} = -6743 - 19705\theta - 115\phi + 2595\phi;$$

$$\epsilon_2 = -120697 - 33878\theta + 409864\phi + 159264\Phi;$$

$$\epsilon_2^{-1} = 74367 - 76954\theta + 60800\phi - 38064\Phi.$$

Congruences:

p	5	7	13	2	9	31	41	5	3	67	331
$\boldsymbol{\theta}$	3	6	0	6	12	13	10	32	14	21	226
$oldsymbol{\phi}$	1	4	9	16	5	13	17	12	33	18	238
Φ	4	5	11	15	28	16	23	16	13	3	44
ϵ_1	3	2	11	8	8	9	39	22	12	13	40
ϵ_2	4	2	6	17	26	27	3	8	47	_ 1	12

We take $n_0 = 17$; and with notation as above, n = 2, p = 5, 41; n = 3, p = 7, 13; n = 5, p = 31, 41; n = 7, p = 29; n = 11, p = 67, 331; n = 13, p = 53. Real values:

$$\theta \sim 3.7161391(1), \quad \theta' \sim -3.7596381(-1), \quad \theta'' \sim 1.6072864(0) + 1.0670220(0)i,$$

 $\epsilon_1 \sim 1.7339328(6), \quad \epsilon_1' \sim 1.2391714(3), \quad \epsilon_1'' \sim -1.8365571(-5) + 1.1318855(-5)i,$
 $\epsilon_2 \sim 1.4007416(8), \quad \epsilon_2' \sim 7.4540294(-6), \quad \epsilon_2'' \sim -3.0469625(-2) - 5.4174817(-3)i.$

The polynomials α , β at (80) are given by $\alpha = (-14 + \theta)/9$; $\beta = (94 - 40\theta + \theta^2)/54$. The bounds resulting on a, b, c, d using (76)–(78) are:

$$|a| \le 22$$
, $|b| \le 12$, $|c| \le 24$, $|d| \le 14$

The only unit in the range is 1.

7.6.

$$K = \mathbf{Q}(\theta), \qquad \theta^4 + 4\theta^3 - 90\theta^2 + 216\theta - 459 = 0.$$

$$\phi = \frac{\theta^2 - 2\theta + 3}{6}, \qquad \Phi = \frac{\theta^3 + \theta^2 + 15\theta - 45}{108}, \qquad \Delta^2(K) = -2^2 \cdot 3 \cdot 229^2.$$

$$\phi^4 - 36\phi^3 + 138\phi^2 + 126\phi + 27 = 0; \qquad \Phi^4 + 17\Phi^3 - 52\Phi^2 - 50\Phi - 18 = 0.$$

Multiplication table:

$$\theta^2 = -3 + 2\theta + 6\phi,$$
 $\phi^2 = -6 + 3\theta + 18\phi - 24\Phi,$ $\theta = 9 - 3\theta - 3\phi + 18\Phi,$ $\phi = 9 - 3\theta - 8\phi + 21\Phi,$ $\theta = 6\phi - 3\Phi,$ $\Phi^2 = -2 + \theta + 7\phi - 9\Phi.$

Units:

$$\epsilon_1 = 179 - 113\theta + 27\phi + 126\Phi;$$
 $\epsilon_1^{-1} = 6089 - 2330\theta - 9363\phi + 17424\Phi;$
$$\epsilon_2 = 6087998 - 1285904\theta + 3940781\phi + 7498800\Phi$$

$$\epsilon_2^{-1} = 4337 - 1661\theta - 6653\phi + 12390\Phi.$$

Congruences:

We take $n_0 = 17$; and for n = 2, p = 13, 29; n = 3, p = 13, 43; n = 5, p = 31, 41; n = 7, p = 29; n = 11, p = 67, 89; n = 13, p = 79, 131. Real values:

$$\theta \sim 6.4593879(0), \quad \theta' \sim -1.2672530(1), \quad \theta'' \sim 1.1065711(0) + 2.0935268(0)i,$$
 $\epsilon_1 \sim 1.5855978(1), \quad \epsilon_1' \sim -1.6678785(-6), \quad \epsilon_1'' \sim -8.9279882(0) -1.9425091(2)i,$
 $\epsilon_2 \sim 4.3884124(7), \quad \epsilon_2' \sim -2.3466788(-6), \quad \epsilon_2'' \sim -5.6011315(-2) + 8.1075148(-2)i.$

The polynomials α , β at (80) are given by $\alpha = (3+\theta)/18$; $\beta = (-99+6\theta+\theta^2)/108$. The bounds resulting on a, b, c, d using (76)–(78) are:

$$|a| \le 32$$
, $|b| \le 5$, $|c| \le 12$, $|d| \le 24$.

The only unit in the range is 1.

7.7.

$$K = \mathbf{Q}(\theta), \qquad \theta^4 + 20\theta^3 - 126\theta^2 + 216\theta - 243 = 0.$$

$$\phi = \frac{\theta^2 + 2\theta + 3}{6}, \qquad \Phi = \frac{\theta^3 + 2\theta^2 - 27\theta}{54}, \qquad \Delta^2(K) = -2^4 \cdot 3 \cdot 229^2.$$

$$\Phi^4 - 104\phi^3 + 504\phi^2 - 566\phi + 418 = 0;$$
 $\Phi^4 + 266\Phi^3 + 418\Phi^2 + 312\Phi + 81 = 0.$

Multiplication table:

$$\theta^2 = -3 - 2\theta + 6\phi,$$
 $\phi^2 = -7 - 27\theta + 28\phi - 24\Phi,$ $\theta\phi = 5\theta + 9\Phi,$ $\phi\Phi = 17 + 66\theta - 58\phi + 71\Phi,$ $\Phi\Phi = -3 - 18\theta + 15\phi - 18\Phi,$ $\Phi^2 = -44 - 177\theta + 154\phi - 190\Phi.$

Units:

$$\epsilon_1 = 36 - 1380\theta + 2950\phi + 1065\Phi;$$
 $\epsilon^{-1} = -18209 + 480\theta + 4475\phi + 1560\Phi;$ $\epsilon_2 = 1552 - 30543\theta + 68814\phi + 28686\Phi;$ $\epsilon_2^{-1} = -614 - 2505\theta + 2178\phi - 2676\Phi.$

Congruences:

p	1	1	13	19	2	3	2	9	41	4	7	5	9	79	103	137	149	157
θ	.1	7	9	12	18	20	5	25	14	4	10	16	45	6	70	10	114	41
$oldsymbol{\phi}$	1	0	4	0	3	1	16	26	31	28	44	19	58	48	68	89	44	85
Φ	2	1	12	6	19	9	19	10	4	5	12	38	29	55	78	2	47	33
ϵ_1	7	10	2	12	3	13	19	19	2	3	36	18	32	40	58	69	72	131
ϵ_2	10	5	2	2	3	5	3	11	11	42	10	37	21	18	69	92	69	34

p	19	91	223	373	683	739	821	941		947	
$\boldsymbol{\theta}$	30	123	16	108	181	37	297	198	832	746	767
$oldsymbol{\phi}$	65	80	160	302	57	241	23	484	376	38	132
Φ	9	70	3	207	211	67	594	187	630	210	301
ϵ_1	104	79	15	11	374	410	2	593	615	457	37
ϵ_2	166	169	160	203	34	12	152	767	202	805	574

We take $n_0 = 53$; and for n = 2, p = 13, 41; n = 3, p = 13, 19; n = 5, p = 11; n = 7, p = 29; n = 11, p = 23; n = 13, p = 79, 157; n = 17, p = 103, 137; n = 19, p = 191; n = 23, p = 47; n = 29, p = 59; n = 31, p = 373, 683; n = 37, p = 149, 223; n = 41, p = 739, 821; n = 43, p = 947; n = 47, p = 941. Real values:

$$\theta \sim 3.5899700(0), \quad \theta' \sim -2.5326689(1), \quad \theta'' \sim 8.6835938(-1) + 1.3851249(0)i,$$

 $\epsilon_1 \sim 5.9327085(3), \quad \epsilon_1' \sim 4.5321292(4), \quad \epsilon_1'' \sim 5.9499101(-5) - 1.3379673(-5)i,$
 $\epsilon_2 \sim 1.4324827(5), \quad \epsilon_2' \sim 1.0142277(-6), \quad \epsilon_2'' \sim 1.3319892(-1) - 2.6201560(0)i.$

The polynomials α , β at (80) are given by $\alpha = (18 + \theta)/9$, $\beta = (-135 + 18\theta + \theta^2)/54$. The bounds resulting on a, b, c, d using (76)–(78) are:

$$|a| \le 72$$
, $|b| \le 18$, $|c| \le 22$, $|d| \le 10$.

The only unit in the range is 1.

REFERENCES

- 1. V. I. Baulin, On an indeterminate equation of the third degree with least positive discriminant (Russian), Tul'sk. Gos. Ped. Inst. Učen. Zap. Fiz.-Mat. Nauk Vyp. 7 (1960), 138–170.
- 2. B. D. Beach, H. C. Williams, and C. R. Zarnke, *Some computer results on units in quadratic and cubic fields*. Proceedings of the Twenty-Fifth Summer Meeting Canadian Mathematical Congress (Lakehead Univ., Thunder Bay, Ont., 1971), 609-648, Lakehead Univ., Thunder Bay, Ont., 1971.
- 3. A. Bremner, Solution of a problem of Skolem, J. Number Theory 9 (1977), 499–501.
- 4. ——, A Diophantine equation arising from tight 4-designs, Osaka J. Math. 16 (1979), 353-356.
- 5. A. Bremner and N. Tzanakis, *Integer points on* $y^2 = x^3 7x + 10$, Math. Comp. 41 (1983), 731-741.
- 6. K. Györy, Sur les polynômes à coefficients entiers et de discriminant donné, III, Publ. Math. Debrecen 23 (1976), 141–165.
- 7. W. Ljunggren, Einige Bemerkungen über die Darstellung ganzer Zahlen durch binäre kubische Formen mit positiver Diskriminante, Acta Math. 75 (1942), 1–21.
- 8. H. London and R. Finkelstein, On Mordell's equation $y^2 k = x^3$, Bowling Green State Univ. Press, Bowling Green, Ohio, 1973.
- 9. L. J. Mordell, Diophantine equations, Academic Press, London, 1969.
- 10. T. Nagell, Sur les discriminants des nombres algébriques, Ark. Mat. 7 (1967), 265-282.
- 11. ———, Sur les unités dans les corps biquadratiques primitifs du premier rang, Ark. Mat. 7 (1967), 359–394.
- 12. Th. Skolem, *Ein Verfahren zur Behandlung gewisser exponentialer Gleichungen*, 8 de Skand. Mat. Kongress, Stockholm, 1934, 163–188.
- 13. N. Tzanakis, The Diophantine equation $x^3-3xy^2-y^3=1$ and related equations, J. Number Theory 18 (1984), 192-205.

Department of Mathematics Arizona State University Tempe, Arizona 85287