INTEGRAL GENERATORS IN A CERTAIN QUARTIC
FIELD AND RELATED DIOPHANTINE EQUATIONS

Andrew Bremner

1. Given a subring of the ring of integers in an algebraic number field K,
then an effective procedure is known for determining whether or not the ring
is principally generated over Z (see Gyory [6, Corollaire 3.3]). In the case that
the ring does have principal generators, then it clearly has infinitely many, since
Z[lax]l=Z[m+ «] for an arbitrary integer . If, however, one defines two alge-
braic integers «, o’ to be equivalent if o —a’=0mod Z, then Gyodry shows that
the numbers of generators up to equivalence is finite, and effectively bounds
the height of such a generator in terms of the degree of K over Q and the dis-
criminant of K. Actually to determine all the generators in a given ring still
seems in general a difficult question, since the bound on the height of the gen-
erators lies well beyond present computing power. Nagell [10] solves this prob-
lem in the three quartic fields corresponding to the fifth, eighth, and twelfth
roots of unity. An equivalent formulation of the problem is to determine all
those 8 in the number ring Z[«] of index 1; or again, to determine all those
B in Z[«] satisfying discriminant («) = discriminant (8). Nagell [11] in a later
paper observes that in the field Q(£), 24—£+1 =0, then the discriminanis of
£,82 83 % £S 7 are all equal to 229, and notes that it is not known if the dis-
criminant of £” can equal 229 for m>7.

In this paper we solve this problem as a corollary to finding all the genera-
tors for the ring of integers Z[£] in Q(£). This in turn is achieved by solving
in integers the Diophantine equation G2+ 6183 = 4H?; this latter involves a
considerable amount of numerical detail about six particular quartic exten-
sions of Q. In particular, a standard algorithm for computing units had to be
strengthened in order that calculations by computer could be effective. I wish
to thank here the referee for appreciably improving the presentation of this

paper.

2. We consider the quartic field Q(£), where £¢*—£+1=0, and wish to
determine those « in Z[£] with Z[a]=Z[£]. Denote the conjugates of £ by
&1=¢&, &, &3, &4 and similarly define «;, i =1, ...,4. Since disc(a) =disc(&¢) and
disc(@)= TII (a;—«;)?,

l<i<j=4
a.—.a.
¢)) (-i-——’)=i1.
15;‘1;11'54 £i—§&;

Now if i, j, k,/ is a permutation of 1,2, 3,4, then &;&;+ &% is a zero of the
resolvent cubic equation associated to the quartic polynomial x*—x+1, namely
the equation Z>—4/&—1=0. Simple Galois theory shows that
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indeed, since up to equivalence « may be taken as o = b&+ c£2+d &> for integers

b,c,d,
(";:Z‘j’) Z’;:‘;’) = M—N(&i&+ £ £,
where
) M=b%—cd+d?, N=—bd+c?.
Since the left-hand side of (1) is simply a norm from Q(Z), (1) may be rewritten as
(3) M?—4MN?*—N3= =1,

Now the conjugates of % are all real, so Z[ %] has two fundamental units 7;, 7>
and (3) implies

+(M—NEZ)=nn3.

Equating the coefficients of Z2 gives a single equation in the two exponents
r,s, and it is difficult in general to apply p-adic arguments. It is necessary to
introduce relative extensions of Q(ZE) and the arithmetic details become very
technical; see for example Ljunggren [7] and Baulin [1], who solve in this manner
the equations x3 —3xy?—y3=1, x*+x%y—2xy%—y3 =1, respectively. It is pref-
erable to use relations between the quadratic and cubic covariants of the cubic
form at (3) which give an equation to which Skolem’s p-adic methods may be
directly applied. See for example Tzanakis [13], who solves Ljunggren’s equation
in this manner.

The relation between covariants (see e.g. Mordell [9, Chapter 24]) gives,
from (3),

4) G?+27.229=4H",
where

) G=27TM3+288M?>N+108MN?—101N3,
H=12M?+9MN+16N?.

Equation (4) is solved in the next two sections, thus giving all solutions to (3);
then all (b, ¢, d) at (2) are found in §5. In §6, the original problem is solved and
all £ of discriminant 229 are found.

3.1. We proceed to solve in integers the equation
(6) G%+6183 =4H>.
Let K = Q(¥) where ¢> =458. Then (6) may be written
(7 (2H—3y)(4H*+ 6 HY +9¢?) =2G>,
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Arithmetic details of K are as follows (see Beach, Williams, and Zarnke [2]): the
ring of integers is Z[1, ¥, w] with w = (1—y + ¢2)/3; the class-number is 6; and a
fundamental unit is given by

€3] € = 90685 — 16644y + 6332

with inverse

¢:39) e 1 =13049097841 + 1692876702y + 219619131/ 2.

It is readily checked that we have the following prime ideal factorizations:
©) @) =p}  G)=pips;  (B—¥)=pp3ps’

with

(10) p3=(3,¢¥+1Lw);pi=3,¥+1,0—1),

and

an p2 = (1402 4209y + 72 w).

The highest common factor of the two factors on the left-hand side at (7) is
(2H —3y, 27¢?). Since clearly (H,229)=1 and 2H — 3y is divisible by only the
first power of p,, this highest common factor is precisely p, in the case (H,3) =1.
Then in this instance, (7) implies the existence of an integral ideal a of K satisfying

(12) (2H—3y) =paa’.

In the case that 3 | H, then 9|G. Put H=3h, G=9g; then (6) implies 4h3 =
3224229 so that

(13) h=1mod 3, g=0mod 3.

Then Norm (24 — y) = 84> — 458 = 6g”> = 0mod 3 by (13). Now 2hA— ¢ =
2(h—4)+(8—1); and since p3p5 = (3) cannot divide 22—, (9) and (13) force
(2h—y) =0mod p,p;3p5>. Accordingly, the highest common factor of the two
factors on the left-hand side at (7) is

(QH—3y¢,27¢*) = (3)2h— ¢, 9¢?)

= (3)p2p3p¥’
=(3)(8—¥).
So (7) implies the existence of an integral ideal a of K satisfying
(14) (2h—y¢)=(8—y)a’.
Now in K we have the further factorizations:
(15) (11) = pupir,

with
(16) i =(365—20y —12w).
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It is straightforward to show that p;; is not principal as follows. Let ps be the first
degree prime factor of 5 in K. Since y>=3mod 5, ¥ =2 mod ps. Then

€ = 90685 — 16644y + 633y*> = 4 mod ps,
365 —20y —12w =3 mod ps.

Consequently, no generator of pj is a square mod ps, and so py; is not principal.
Thus p;; may be taken as the nontrivial element of order 2 in the class group of
K, and in each of the equations (12) and (14) it is necessary to consider the two
possibilities, either that a is principal or that a ~ py;.

3.2. Take equation (14) where we first assume « is principal. Then there exist
integers a, b, ¢ such that :
17 2h—y=x(B—y)e' (a+by+cw)’, r=0,1.

We have the following multiplication table of elements in K:
Y2i=—14+y+3w
Yow=153—w
w?=—102+51y + w.

Then at (13), using A=1mod 3, (17) implies —1—y¢ = x(—1— ¥)(a—b)? mod 3.
From (10), (¢ +1)=0mod p3pj, so we deduce 1= +(a—b)>*mod p3, that is,
1= +(a—b)?>mod 3. Hence, the upper sign holds. When r =0, expanding (17)
and equating coefficients of 1, ¥, w gives:

(18) h=4a*—233b*>—459¢*+ab—153ac+1377bc,
(18%) —1=—q%+8b%+459¢2+14ab —306bc,
(18") 0=4b%—24c*—ab+ 3ac—3bc.

Modulo 3, the latter two equations give (a—-b)zs I, (a—b)b=0, so that b=
0 mod 3. Put b=3c+3d; then (18”) gives

ad = c*>+2lcd +12d?,

and since from (18’) a, ¢, d can have no common factor, it follows (without loss
of generality assuming d > 0) that there exist co-prime integers 1, n such that

(19) a=m?*+21mn+12n?; c = mn; d=n?; b=3n(m+n).
Substituting (19) into (18”) results in
(20) m*—72m*n*—108mn> —432n* =1.

From the solution =+(m,n)=(1,0) we recover (a,b,c)=(1,0,0), (H,G)=
(12,27); and in §4.1 we show that (20) has no further solutions.
If r=1 at (17), then multiplying out and equating coeflicients of ¥, w gives



INTEGRAL GENERATORS IN A CERTAIN QUARTIC FIELD 299

—1=—2021292%+10377830b% +34736661c%+ 423458ab
+ 6642648ac — 68494122 bc
0=10854a%+217783b%—6701433¢c>—223837ab +227037ac + 3094287 bc.

These quadratics simplify under the transformation

A 1299 —1229 —20364 a
B | = 325 —365 —5269 b |;
C 5 14 —138 c

a —124136 454698 957259 A
b )= —18505 67782 142699 B
c —6375 23351 49160 C

to give
1) —1=581A4%+8253B%+399C?%—43804B —960AC + 3618 BC,
(21) 0=—A%+3AB+3B*>+ AC.

Modulo 3, 1=A42% 0= —A%+AC; and thus C=A+3D say, with
0=AB+B?*+ AD.
On assuming A >0, then A=m?, B=mn, D= —mn—n?, C=m?*—3mn—3n?>
for co-prime integers m, n. Substitution into (21) gives
—1=20m*—276m>n+1476m*n>—3672mn>+3591n*.

Certainly n=1mod 2; then 0=4m*+4m>+4m?mod 8, so m=0mod 2. Then
—1=7mod 16, a contradiction. So there are no solutions to (17) when r=1.

3.3. Suppose now in (14) that a ~ p;;. Then from (16) it follows that

(22) (365 —20y —12w)(2h—y¢)= +(8—yY)e (a+ by +cw)?, r=0,1

for integers a, b, c. Now py, is of first degree, and > =7 mod 11; so ¥ = 6 mod py;,
and then w =3 mod p;;. From (22), ¢+ by + cw =0 mod p;;, and so

(23) a+6b+3c=0mod 11.

As before, (22) taken modulo 3 gives 1 = +(a—b)? mod p; so that only the upper
sign is possible.
Suppose r =0 in (22). Equating coefficients of 1, ¥, w and simplifying gives

—1=7a*+416b*+2163¢c>+108ab + 246ac + 1896 bc,
0=248a%+14736b>*+76548¢c?*+3823ab +8715ac + 67173bc.

Certainly a4+ c=1mod 2, b=0mod 2, and then —1= —a?—2ac+3c?mod § so
that @=1mod 2, c=0mod 2. Similarly, 0= —a’+abmod 3, —1=a?—b*mod 3,
so that a =0 mod 3. Combining these congruences with (23), put
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a=33a’—12b’'—6c’, b=2b’, c=2c".

Then under the further transformation

a’ 10 -1 1 A A 10 1 9 a’
b’ )= —99 10 -1 B |; B =99 10 89 b’
c’ 0O 0 —1 C C 0O 0 -1 c’

the quadratics become
(24) —1=—21780A4%>—-217B*—~ C*+4356 AB — 1188 AC + 122 BC,
(24") 0=1744%>—-37AB+2B*+ AC.

It follows that A =0 mod 2, and so assuming A > 0, there exist co-prime integers
m, n with A=2n2, B=mn, C=—m>+37Tmn—348n>
Substituting into (24) gives

m* +48m3n—4608m*n*4-95904mn’ —618624n* =1.
Put 2n=N, m= —M+11N; then
25) M*—68M3N+366M>N?—680MN>*+397TN*=1.

Now (25) has the points +(M,N) = (1,0), (9, 8) and from §4.2 no further
solutions. From the former, we recover (a,b,c)=(—-51,2,2), (H,G)=
(228, 6885); and from the latter, (a, b, c) = (—5739, 218, 234), (H, G) =
(3041076, 10606470939).

Suppose secondly that r =1 in (22). As before, only the upper sign is permis-
sible. From (23), put a = 5b —3c+11d. Then (22) becomes, after a certain amount
of arithmetic,

2h—y =[43148b%+ 13953782 +19826d % — 602382 bc + 486362 bd — 1440474 cd |
+y[11087b° — 12564 c* — 40345d* — 35130 bc — 40408 bd 4175674 cd ]
+w[—7320b%—73908¢%24+16572d % + 49698 bc — 9954 bd + 4914 cd |.

Under the transformation

A 35 =77 —-34 b
B )= —109 498 —251 c |;
C -50 224 —109 d
b 1942 —16009 36259 A
c |= 669 —5515 12491 B |,
d 484 —3990 9037 C

after equating coefficients of ¥, w there results
(26) —1=84A4%+2717B*+13782C?*—-954 AB + 2148 AC — 12240 BC,
(26) 0= —5B24+3C?*+10BC+ AB.
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Modulo 3, B>=1, B(A+ B+ C)=0. Thus, we may put A= —B—C+3D togive
0= —2B?+3BC+ C?+BD. Then, assuming B > 0, there exist co-prime integers
m,n with B=m?, C=mn, D=2m?—-3mn—n?, A=5m*—10mn—3n%. Sub-
stituting into (26) and putting M =2n, N=m —2n, results in

27 M*+22M3N—12M*N?—32MN3—-188N* =4.
Now MN=0mod 5, and so M*=N*=1mod 5. Then (27) implies
2MN(M+2N)?*=1mod 5,

and it is easy to check that this is a congruence with no solution. Thus, (27) has
no integer solutions.

3.4. Consider now equation (12) with a principal. Using (11), (12) implies an
equation
(28) 2H -3y = +€e"(1402 +209¢ + 72w) (a+ by + cw)?, r=0,1

for integers a, b, c. Positivity implies the upper sign. When r =0, expanding and
equating coefficients of ¢, w yields

—3=209a%+ 12418 %+ 64515¢c>+3222ab + 7344ac + 56610bc,
0=36a2+2139b2+ 11113¢%+ 555ab + 1265ac + 9751 bc.
It follows that ¢ =0 mod 2. Putting

a —31 101 19 A A 13 101 230 a
b |= 4 —13 -7 B |; B )={ 4 31 141/2 b },
c 0 0o 2 C C 0 0 1/2 c

the two quadratics become
(29) —3=94%+165B*—3C?*—-76 AB—12AC + 58 BC,
(29%) 0=12B%2—-3AB+AC.

Modulo 3, 0= —AB+BC=AC. If A= C=0then (29’) would imply B =0 mod 3,
which is impossible. So B=0mod3 and AC=0mod9. If we suppose C=
0 mod 9, then (29’) gives 0= —3B+Cmod 27. Put A=D, B=3FE, C=9E-27F
so that (29) and (29’) give

(30) —1=3D?+936E*—729F*—112DE + 108 DF — 1080 EF,
(30") 0=4E?*—DF.

Modulo 2, D+ F=1. If F=0mod 4 then (30) gives —1=3D?mod 8, which is
impossible. So from (30"), D =4m?, F=n?, E=mn, and substitution into (30)
gives

—1=48m*—448m>n+1368m>*n*—1080mn> —729n",
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whence 8 =9n*—1=8m?n%+8mn*=0mod 16, a contradiction. It follows that
A=0mod9 in (29’); whence also A=0mod 27. Put A=27D, B=3E, C=F so
that (29) and (29’) give

31 —1=2187D*+495E%— F?>—2052DE — 108 DF + 58EF,
31) 0=4E?*—9DE + DF.

Modulo 4, 1=D?*+(E—F)?, 0=D(E—F). Then modulo 8, 1=5D?+(E—F)?
so that D=0mod4, E—~F=1mod2. From (31’) we may suppose D =4m",
9F — F =n?, E = mn; and substituting into (31) with the further transformation
M=10m—n, N=2n, results in

(32) MA*—A0M3N+108M?*N?*—92MN3 —52N* =1.

From the point *(M,N)=(1,0) we get (a,b,c)=(—-19,7, =-2), (H,G) =
(82,1483). In §4.4, we show there are no further solutions to (32).
When r=1 in (28) we obtain, in a manner similar to the above,

(33) —3=275a*>—19184b%—15657c>+738ab —12852ac + 97002 bc,
33) 0= —63a’+78b*+30523¢%+951ab —307ac—18971bc.

A 24 —161 0 a
B |= 5 14 —138 b );
C 46 —85 —649 c

a 20816 104489 —22218 A
b )= 3103 15576 —3312 B |},
c 1069 5366 —1141 C

the equations (33) and (33’) become
(34 —3=—-3A4%+4+215B%*+3C?+34A4AB—60BC
(34%) 0=3B>—5BC+C?*-AC.

Transforming via

Assuming C >0, then (34’) implies either (A, B, C) =(31n2—5n1n+n2, mn,nz)
or (A4, B, C)=(m?*—5mn+3n?, mn, 3n2) for co-prime integers m, n. In the for-
mer instance, substitution into (34) gives 3 =m(27m?> —192m?*n+48mn>—4n°)
so that m |3, and there are no solutions. In the latter instance, substitution into
(34) gives 3 =m((3m>*—64m?*n+48mn*—12n3), and again m |3 with a solution
precisely when n=0. So

(4,B,C)=(1,0,0),
(a, b, c) = (20816, 3103, 1069),
(H, G)=1(232,7067).
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3.5. Consider finally (12) with a ~p;;. Then

(35)
(365 —20y —12w) (2H —3y) = +e' (1402 +209¢y + 72w) (a + by +cw)?, r=0,1

for integers a, b, ¢ satisfying the congruence (23). By positivity, only the upper
sign can occur. Put a =5b—3c+11d; then (35) can be rewritten in the form

2H—3y =¢""'[(~126b2—2508c%+134d %+ 1254bc +722bd + 1902 cd)
(36) + Y (—116%2+102¢%+51d?*+ 6bc +80bd — 306cd)
+w(120%24+98¢%+30d?—T4bc+ 6bd +26¢cd)].

If r =0, then apply the transformation

B —2574 —2951 -—2228 b
C |J=[ —5810 —6661 —5029 c |
b 85360 —37817 —129 B
c |=[| —22459 9950 34 C ),
d —68869 30511 104 D

and equate coefficients of ¢, w:
(37) —3 = —1297513B%>—256374C? —3D? 41153526 BC + 3946 BD —1754CD,
37) 0=3B2+661BC—293C?*—CD.
Assuming C >0, then (37’) implies either
(B, C, D)= (mn, n*,3m*+ 661mn—293n?)
or
(B, C, D) = (mn, 3n*, m*+ 661mn—879n?)
for co-prime integers m, n. In the former instance, substitution into (37) gives
3=27Tm*+60m3*n—42m?n?+8mn3—n*.

Certainly m+n=1mod 2, and 3 =3m*—n*mod 8, whence m=1, n=0mod?2.
Then 3 =Um*+12m3n+ 6m2*n? mod 16; but with n =2k we have

12m3n+6m?n?=24m?*k(m+k)=0mod 16,

so that 3 =11m* mod 16, a contradiction. In the latter instance substitution into
(37) gives

—3=-3m*—20m3n+42m*n?—24mn>+9n°.
Then m3n=0 mod 3, and clearly m %= 0 mod 3. So putting m=»M, n=3N:

(38) M*4+20M3N—126 M2N? +216 MN3 —243N* =1.
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In §4.5 we show that (38) has only the solution +(M,N)=(1,0), with corre-
sponding (a, b, c)=(397, —129, 34), (H, G) = (46, 619).
If r =1 in (36), then applying the transformation

(5)(e 32)C) (- 32)6)

and equating coefficients of ¢, w yields
(39) —3=—79B?—-257C2—3D?+288BC+32BD—58CD’
(39) 0= —4B2+5BC+3C?+BD.
Then assuming B > 0, (39’) implies either (B, C, D) = (m?, mn, 4m>—5mn—3n?)
or (B, C,D)=3m? mn,12m?—5mn—n?) for co-prime integers m, n. In the
former case, substitution into (39) gives
—3=m*+16m3*n—66m*n*+84mn3 —27n4,
which, as before, is insolvable modulo 16. In the latter case, substitution into
(39) gives
—3=9m*+48m3n—66m>n>+28mn>—3n".
Clearly m=0mod 3. Put m=3N, n=—M+6N, giving
(40) M*4+4M3N—-90M?* N2+ 216 MN3 —459N* =1.

In §4.6 we show that the only solution of (40) is + (M, N) = (1, 0), with corre-
sponding (a, b,c)=(58,9,3), (H,G)=(16,101).

4.1. We turn now to the solution of the quartic equations obtained in §3.
First, we present a modification of the well-known theorem of Skolem [12]. I
am grateful to the referee for suggesting this form of the lemma.

LEMMA. Let 0 be an algebraic integer of degree 4 which has two real and two
complex conjugates, and with minimal polynomial f(X). Let F(X,Y) be the
binary form defined by F(X,Y)=Y*f(X/Y) for Y #0. Let K = Q(9), and let O
denote the ring of integers of K with an integral basis given by (1,0, ¢, ®}. If
ae K, denote by «(l),x(8),a(d), x(P), the rational numbers defined by
a=c(1)+a(0)0+a(P)p+a(P)P. Let {€, e} be a system of fundamental units
in ®k, let p>2 be a prime number, and let L, M be positive integers such that

(41) el = +1+pE,, eM= +1+4 pE,

Sfor certain E\,E; € ®k. Let R’, S’ be rational integers with |R’|<L/2, |S'|=<
M/2 such that

(42) e es (p)=¢f €5 (P)=0mod p
and
A= (€5 E1) (D) (eff €5 Ex) (@) — (eff €5 E1) (@) -(eff'e3 Ea) (9)

43)
# 0 mod p.
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Then the equation

(44) F,y)=1, x,yeZ

has at most one solution satisfying

(45) xX—yl= +efed

where R; S are rational integers with R=R’'mod L, S=S"mod M.

Proof. Certainly for a solution x, y of (44) there exist R, S € Z such that (45)
holds. Suppose (xg, ¥o) is a solution of (44) for which (45) holds with integers
R, S satisfying R=R’mod L, S=S8"mod M. Suppose (x,y) is a further solu-
tion of (44) with this property. Then there are rational integers R”, S” such that
x—y0=+(xo—y00)ef® e}'5". Together with (41), this implies that
(46)

Xx—y0=x(xo—y00) (1= pE))* (1 + pE,)™
= (x0—y00) £p[(xXo—YoO) E1R" £ (xo—¥00)E2S"1+p*( )+p>( )+---

where the expressions ( ) denote polynomials in R”, S” of which the coefficients
are of type oo+ (30 +vy¢p+ 6P with «, 8, v, 6 € Z,. Equating coeflicients of ¢, ® in
(46), using (42) and xo— yo0 = *¢if €5 mod p, and dividing by p yields

R+ 38"+ p( )+p*( )+ --- =0,

BIR"+B28"+p( )+p*( )+ -+ =0,
where (a;, 8;) = = ((ef €3 Ei) (), (e 53 E;)(®)) mod p, for i=1,2, and the
expressions ( ) denote polynomials in Z,[R”,S”]. But by (43), a1B2= a8, #
0 mod p. Thus, by Skolem’s theorem [12], (47) can have at most one solution in
R”,8” which is obviously equal to R”"=0, S”=0. Hence (xg, yo) is the only

solution of (44) for which (45) holds with R, S satisfying R=R’'mod L, S=
S’mod M. ]

(47)

In each particular instance that follows, the arithmetic details of the relevant
quartic extension of the rationals are quoted, with justification postponed to §7.

Consider first equation (20). Define K = Q(6) where 04 —7260%—1086—432 =0.
Then K has integer base {1, 0, ¢, ®} where ¢ = 02/6, P = 63/36, with discriminant
A%(K) = —22.33.2292, A pair of independent units in X is

71 =31+1160+38¢ + 24P,
12 = 483602731+ 1742021200 + 316187252¢ — 293718704 .

In §7.2 we show that there exists in K a pair of fundamental units ¢, e, satisfying
€Ei=N; mod 3.
Equation (20) can be written in the form Norm (m —#n8) =1, so that

(48) +(m—nb)=efes

for integers r, s.
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Now
—30+3¢pmod9,

+360+3¢—3%P mod 9.

Put r=3R+p, s=9S4+0with0=<p <2, 0 <0 =<8, and then (48) implies that the
coefficients of ¢, ® in €fe; must both be zero modulo 3. This forces p =0, o=
0,3,6. Put R=3P+p’, S=3Q+0’, 0=<p’,0’<2; then (48) gives

+(m—n0) =etPed’C-e}P 37+

NO —w
il
ey i

whence the coefficients of ¢, ® in the latter factor must both be zero modulo 9;
and this forces p’'=0, ¢’=0=0. The lemma now applies, with p=3, (L, M) =
3,9), (R, S")=(0,0). The only solution of (48) is r =s =0, with corresponding
+(m,n)=(1,0).

4.2. Define K =Q(0), where 0*—680°+36602>— 6800+ 397 =0. Then K has
integer base ({1,6,¢,®} where ¢ =(0+1)%/6, ® =(0+1)3/36, and A*(K) =
—22.33.2292, A pair of fundamental units is given by

€1 =251—-7760+916¢ — 80P,
€2 = 145415 — 2188880 4+ 214656 ¢ — 18432 %,
(e5'=—9+860).
Now (22) takes the form Norm (M —N@) =1, so that
49) +(M—NG)=¢je5.

The p-adic method of dealing with equations such as (49) is to find a prime p such
that the coefficients of ¢, ® in €{e3, taken modulo p, vanish as infrequently as
possible. To save excessive calculation it is best to consider first those primes which
split completely in K, so that the orders of ¢;, ¢; taken modulo p divide p—1. See
Bremner [3; 4] and Bremner and Tzanakis [5] for other numerical examples.
Here the primes splitting completely in K include 199, 271, 337,421,457, .... Itis
best to work with p =421. Machine computation gives

ef® =14421F;, with E;=61+560—134¢+198% mod 421,
€320 =1+421E, with E,=153+1360+168¢ —170®% mod 421,

and (p, 0)=(0,0), (0, —1) are the only values of p, o satisfying —52 < p < 53,
—210 = 0 < 210 such that the coefficients of ¢, ® in € e; both vanish modulo 421.
The lemma now applies with p =421, (L, M) =(105,420), and (R’,S’)=(0,0)
or (0, —1) (it is straightforward to check condition (43)). The only solutions to
49) are (r,s)=(0,0), (0, —1) with corresponding +(M,N)=(1,0), (9,8),
respectively.

4.3. Define K =Q(0) where 6*—4060%+1080%>—920—52=0. Then K has
integer base (1,0, ¢, ®} where ¢ = (02+2)/2, ¢ =(0>—2660%+140—4)/54, and
A%(K)= —2%.3-2292. A pair of fundamental units is
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e; = —807—11300+5635¢ + 16209,
€2 = —120697 — 338780 + 409864 ¢ + 159264 P.

The primes that factor completely in K include 127, 163, 193.... It is appropriate
here to use p =163. Computation gives

efl=—1—-163E, with E;=—52+680+49¢ + 67 mod 163
e3'=14+163E, with E,=73—180+78¢—57® mod 163

and (p, 0) =(0, 0) are the only values of p, ¢ satisfying —40 < p, o0 <41 such that
the coefficients of ¢, ® in €/ ¢e; both vanish modulo 163. Thus we can now apply
the lemma with p =163, (L, M) = (81, 81), (R’,S’)=(0,0) to show that (32) has
the unique solution in integers + (M, N) = (1, 0).

4.4. Let K=Q(0) where 6%+200°—1260%+2160—243 =0. Then K has
integer base (1,0, ¢, ®} where ¢ =(02+20+3)/6, ®=(0>+20>—270)/54, and
A% (K) = —2%.3.2292, A pair of fundamental units is

€1 =36 —13800+2950¢ + 10659,
€2 =1552—305430 4+ 68814¢ +28686P.

Primes factoring completely in X include 163, 337, 547.... We work here with
p =337. Computation gives

ei?=—1—337E, with E;= —132+850+134¢ —32® mod 337,
€33 =1+4337E, with E,=128+200+109¢ —147® mod 337,

and (p, ) = (0, 0) are the only values of p, o satisfying —21 < p <21, —168 <0<
168 such that the coefficients of ¢, ® in e{¢; are both zero modulo 337. Applying
the lemma with p =337, (L, M) = (42, 336), (R’,S’)=(0, 0) shows that (38) has
only the solution +(M,N)=(1,0).

4.5. Let K=Q(0) where 0*+46°—900%+2160—459 =0. Then K has inte-
ger base (1,0, ¢, ®} where ¢ =(02—20+3)/6, & =(0°+62+150—45)/108, and
A*(K)= —22.3.2292%, A pair of fundamental units is

€1 =179 —-1130+27¢ +126 P,
€2 = —6087998 + 12859040 — 3940781¢ — 7498800 P.

Primes splitting completely in K include 163, 271, 523.... Working with the prime
271,

e£®=1+271FE, with E;=11+750—68¢+96% mod 271,
€3'°=1+271E, with E;= —28—1040+33¢+24® mod 271,

and (p, o) =(0,0) are the only values of p, o satisfying —135 < p, 0 <135 such
that the coefficients of ¢, ® in the product €/¢; are both zero modulo 271. Apply-
ing the lemma with p =271, (L, M) =(270,270), (R’,S’) = (0,0), (40) can have
only the solution (M, N) =(1, 0).
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Putting the foregoing together yields the following result.
THEOREM 1. The only integer solutions of G*>+ 6183 =4 H? are the following:
(H, £G) = (12, 27), (16, 101), (46, 619), (82, 1483), (228, 6885),
(232,7067), (3041076, 10606470939).

COROLLARY 2. The only integer solutions of X>—4XY?*—Y3=1 are the
Jollowing:

(51) (Xs Y) =(_2’ —I)’ (O’ _1)5 (1’ 0)9 (1’ _4)’ (23 _1), (5089 _273)-

Proof. For each (H, G) listed at (50) it is simple to find the correspond-
ing (X, Y) (if any) via the transformations at (2), (4), and (5). Only the point
(228, +6885) has no corresponding (X,Y). ]

(50

We note here also the following result.

COROLLARY 3. There are essentially seven distinct monic cubic polynomials
in Z[X] with discriminant 229, namely:

x3—dx—1; x34+x2—5x+42; x*—x2—15x+28; x3—x?—27x+64;

(52) 3 3 2 3
x3—76x—255; x3—x2—77x—236; x>—1013692x +392832257.

Proof. “Essentially” here means up to translation by an integer, or changing
the sign of x.

Since there is a unique cubic field of discriminant 229, namely Q(Z), then a
polynomial of the required type has an algebraic integer root in Q(%) which is of
index 1 in Z[Z]; the result follows from the previous sections. Alternatively,
there is the following polynomial identity. Let x>+ ax?+ bx+c¢ have discrimi-
nant 229; then

(27c—9ab+2a3)*>+ 6183 =4(a*—3b)3,

and using (50) it is straightforward to list the possibilities for a, b, c normalizing
in each case so as to achieve |a| <1. O

5.1. In order to solve the problem of generators in the ring Z[£], it is now nec-
essary by the remarks of §1 to investigate for each (M, N)=(X,Y), (—X, —Y),
where (X, Y) is one of the points listed at (51), the solvability in integers of the
equations

b —cd+d?*=M,
(53)

—bd+c*=N.
For a real parameter A\, (53) may be written in the form
1. \? 1 N N—an+1
54 MAANN=(b——N\d ———d) ———d*>
(54) +A ( 2)\ )-!—)\(C 3N ) N
Taking A\ =1,

(55) M+N= b—id 2+ —-l—d 2+—1—d2
= (b-74) +(e-59) + 347
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and so the system (53) is insolvable if M + N is negative. Thus, it remains to con-
sider only the cases (M, N)=(-—1,4), (0,1), (1,0), (2, —1), (2,1), (508, —273).
First, suppose (M, N) = (508, —273). Taking A =508/273 at (54) gives

254 \?* 508 283 \? 1 5
0= (b_ 273 d) 273 (c" 1016 d) ~4.508-273°¢
and, in particular,
254
b— '573—0' # 0,

Thus,

1 5 1

4.508.27329 7 2737

whence
(56) d?>4.508 =2032.

But from (55), d? <2(M+ N) =470, contradicting (56). Hence, (53) is unsolv-
able for (M, N)= (508, —273).

In the remaining cases (M, N)=(—1,4), (0,1), (1,0), (2, —1), (2,1), b,c,d
can be determined from (53) and (55) by straightforward computation. Thus, we
obtain table (57).

(M,N) Solutions (b, ¢, d) of (53)

(—1,4) No solutions
(57) 0,1) +(0,1,0), +(0,1,1)
1, 0) +(1,0,0), =(0,0, 1), =(1,1,1)
2, —-1) +(1,0,1)
2,1) +(—1,0,1), +(0, —1,1), =(0,1,2).

6. We have thus proved the following result.

THEOREM 7. Up to equivalence, precisely the following integers o of Z|[#],
£4—£41=0, satisfy Zla]l=Z[£]:

(58) ta=§8% 8 b b+ £2 83, 82483, 824283, 282 4 83,

THEOREM 8. In Z[£], precisely the following powers of & generate the ring of
integers:

ETTETS ETNE T TR e g B 83, 4, 85, £,

Proof. It is required to find those integers »n such that

(59) +&"=a+p(§)
for some integer a, where p(£) is one of the elements « listed at (58). Now
(60) £0=1+4X, X=-2-5&+1582—-12¢3,

Let n=30N+v, —15 =p <15, so that (59) implies
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(61) +&"=a+ p(£) mod 4.

It is easy to check that (61) has no solution in the instances p(£) = £+ £°, 282483
The following table (62) gives the solutions » for the remaining possibilities for

p(§).

p&) v
3 1,4
g2 2
g3 —1,3,14
(62) E'—E3 —-6,7
E4+E24 83 -3,—4,11
£24+ 83 -2
£2—¢g3 6,13
£24283 —13, —7.

Consider for example p(£) = £2+2£3, » = —7. Then (59) and (60) give
+ETT1+4X)V=a+E2 4283

Since E_"7 = —3+4+£242£3, a congruence mod 4 implies the upper sign.
Putting (1+4X)V=Lo+L £+ Lyt +L3&>, where

Lo=1+4(—2N)+4%( )
Li=4(—=5N)+42%( )
L,=4(15N)+4%( )
Ly =4(—12N)+4%( ),

and equating coefficients of £2 gives Lo— L, — L3 =1, whence there is the 2-adic
equation

—5N+4( )+4%( )+---=0.

Skolem’s theorem once again implies at most one solution, which is clearly N =0.
The cases v =7, +6, +4, +3, +2, +1 with the corresponding p(¢), in which
there actually does exist a solution to (59) (viz. with n = »), are entirely analo-
gous, and details are omitted.
It remains to show that there are no solutions to (59) in the four cases p(§¢) =
£, v=14; p(§) =£2—§£>, v=13; p(§) =£>+28>, v=—13; p(§)=E+£2+87,
v = 11. In the first case n =14, —16 mod 60; but

g=3—-4£+38%, £ %=_-1-8£-8£>-5¢°.

Since £%°=1mod 8 (from (60)), (59) gives an impossible congruence modulc 8.
Similar arguments dispose of the second and third cases, using

EV= 1438738, £V =-9-8£-5E7+E,
£ =8-382—-6£% « t7=4-—4:-35*+68°.
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In the last case n=11, —19 mod 60. Since £“=2—3£+22+E3, the case n=
11 mod 60 is impossible, by taking (59) modulo 8. Then n= —19, 41 mod 120. But
£ = 22+ £4+9£2 41783, M= —198+153£+233£%2—351¢3, so using £'¥=
1 mod 16, (59) gives an impossible congruence modulo 16.

7.1. We give in the following sections the arithmetic details of the quartic
fields Q(0). In each instance, the module generated over Z by {1, 8, ¢, ®} is the
ring of integers of K. To show that ¢, ® are indeed integers, we simply give the
minimal polynomials. It is easy to verify that 2 and 3 are the only primes which
may divide the index of this module in the ring of integers. So it is then straight-
forward to check that (ag+a,0+a,¢+az;P)/p, with 0 <a; <p, cannot be an
integer for p =2, 3, unless each q; is zero. The explicit details are omitted.

Each quartic field has two real embeddings and one pair of complex embed-
dings into C, so that there are indeed two fundamental units in K. The procedure
we adopt to find a pair of fundamental units is as follows. First, find a pair of
independent units. In each case, this was achieved by factoring ideals of small
norm and suitably combining the factors to give units; independence follows
from the non-vanishing of the regulator, and is easily verified in each of the
specific instances below. Now normalize the independent units ¢}, €5 to satisfy
€2 > €1 > 1. To show that ¢, ¢, are actually fundamental, we invoke the following
theorem of Baulin [1].

THEOREM. If there exist two independent units e, e, in K such that neither
relation

(63) e =11
(64) eler =15
holds for any units T, 7, and integers I, m, n, then ¢, e; are fundamental units.

So it is necessary in each instance to show the impossibility of relations (63)
and (64) where clearly it may be supposed m, n > 0. We strengthen the technique
used by London and Finkelstein [8] as follows. Clearly, it may be supposed in
(64) that |/| <n/2, since putting / =kn+1’, |I’| < n/2, gives the relation ele=
(m2¢1 %)". We first give congruences modulo appropriate first degree primes in the
relevant field K which show that (63) and (64) can have no solution if m < ng or
n<ng for a fixed integer no. If now (63) and (64) are to hold, then there exist
units 7, 7> such that

(65) r1=¢l™, m=n,

(66) ra=el"e}", n=ny, |l|<n/2.

We can thus bound 7; and its conjugates 7/, 77, 7/. Certainly
(67) 7, =< €}/M0,

(67) 7, < e]/2e)/M0,

and conjugating (63) and (64) gives
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(68) |T1'|=|61’|'/”’smax(1, |61’|1/n0),

(69) |Tﬁ| = max(|61'|1/2, [e”—l/Z) -max(1, |€éll/”0).
Similarly

(70) |7¢'| = |77 | = max(1, |e] |'/"0),

an 78] = 72| < max(lef Y2, |ef]~2) - max(1, |eg |70,

In some cases, the bounds at (67°), (69), (71) may be rather weak, and so it
can also be advantageous to consider two ranges for the value of / at (66) as
follows.

First, if |/| <n/4, then we clearly obtain

(72) 2 < e//4e)/,
(73) |75| < max(|ef|"/4, |ef| /%) -max (1, |e3|"/"0),
(74) |75 | = |75 | < max(Jef |4, [ef | ~/*)-max (1, |5 ]"/"0).

Second, suppose n/4<|l/|=<n/2. Then we may write n=k|l|+!’ with |lI'|<
|1]/2, 2 <k =<4. So raising (64) to the kth power gives the relation e;/'!l/lef =
(rXe;11/1yn, that is, a relation

(75) rs=¢lmeSM, |1”|<n/4, 2<k=<A4.

Then we have the bounds

(76) 73 < €/e3/"0,

(77) |75| = max (|e{|"?, |ef| ~"*)-max(l, |e3|*"0),
(78) |75 | =|75| < max(|ef |'*, |ef | "/*)-max(l, |5 |*/"0).

The region defined by the bounds at (72), (73), (74) is a subset of the region
at (76), (77), (78); and the region for the unit r; defined by the bounds at (67),
(68), (70) is a subset of the region for 7, at (67’), (69), (71). Accordingly, it suf-
fices to determine all the units 7 satisfying either the inequalities (67’), (69),
(71) or the inequalities (76), (77), (78), whichever is the stronger. Let now 7=
a-+ b0+cg§+d<1> represent either 7, or 73. Then the equations

at+bld+cop+dd=r,
a+b0'+cop’'+dd'=17,
a+b0"+codp”"+dd"=1",
a+b0"+cod"+d®" =71",

(79)

can be solved for a, b, c,d to give
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d=(Dy7+Dy1’+Ds7"+Dy7")/|Al,
(80) c=Dyar+Dya’'t'+D3ya”"t"+ Dy’ ) /| Al
b=(D\81+D,8't'+D3B"1t"+D4s 3" ")/ |Al,

where A2 is the discriminant A%(K) of the field K; «,p are certain linear and
quadratic functions respectively of #; and (—1)'D; is the determinant of the
matrix obtained by deleting the ith column from the matrix

1 1 1 1
(0 o 07 0 )
¢ ¢/ ¢Il ¢II

Thus, the inequalities (67’), (69), (71) and (76), (77), (78) give explicit bounds on
d,c, b at (80), whence a can be bounded directly from any of the equations at
(79). The finitely many possibilities for 7 can now be tested by computer to find
the potential units; in no case do ‘new’ units occur, and ¢;, €; being fundamental
units then follows.

7.2.
K =Q(9), 6% —72602—1086 —432 =0.
2 3
_0 g0
6 36°

04 —24¢3+12046%+234¢ + 144 =0; ®*—9P3—-333H%2+189% —48 =0.

AY(K) = —22%.33.2292,

Multiplication table:

0°=6¢, $2=12+30+124,
0 =6, ¢ =20+39+12®,
0P =12+30+12¢, B2 =24+60+26¢+3P.
Units:
m =31+110+38¢ +24P; i t=—174250+4¢—12;

72 = 483602731+ 1742021200 + 316187252¢ — 293718704 P
(n, arises from the identity
N2 (d+50+2¢p—P)(1+0+2¢+ D)2 =2 +34—23)%).

Now (3) factors in K as pj so that the multiplicative group G; of residues mod-
ulo 3 has order 54. It is easily checked that 5; has order 3 modulo 3, %, has order
9 modulo 3, and the residues 7{n5 mod 3, for 0 < p <2, 0 < ¢ < 8, are all distinct.
So &3 is generated by the residues of i, n, mod 3, together with —1. If ¢, €; are
fundamental units in K, then the subgroup of &3 generated by ¢, €2, —1 certainly
contains 751, 72 mod 3 and so is precisely &3. Thus there exist fundamental units
congruent modulo 3 to 5y, 3.
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7.3.
K=0Q(), 6°—680°+3660%—6800+397 =0.
0 +1)2 6+1)3
¢=(——6—l_, @:‘—;L, AX(K) = —22.3%.2292,

1 —672¢3+2820062—4086¢ + 1764 = 0;
®*—7047d3 + 1413992 —10989P + 2058 = 0.
Multiplication table:

02=—1—-20+69¢, ¢ =3+450—96¢+ 72,
0p=—¢+6P, ¢P =29+5330—1107¢ + 768,
0P =34+450—96p+ 71D, $2=300+56760—11755¢ + 8109 .
€1 =251—7760+916¢ — 80 &; e ' =34+560—116¢ + 80P,

€, =145415—2188880 e; | =—9+80.

+214656 ¢ — 184329,

Congruences: The appropriate first degree prime factor of p is identified by the
residue class of 6.

p 13 19 31 43 61 71 79 83 89 103 139 149 173
0 3 17 26 13 44 30 32 55 42 74 47 84 74 130 16 31 50
¢ 7 16 13 4 2 30 4 75 73 66 28 62 62 57 73 121 1
® 9 10 12 38 15 13 22 68 39 78 46 18 54 63 33 99 95
€ 1 3 13 32 45 3 43 54 33 31 76 31 37 58 62 141 93
e 7 3 12 24 53 4 23 11 33 42 81 69 50 12 144 101 50

229 233 239 277 313 349 373 397 419 659 1117

p

0 109 125 164 205 130 239 155 0 399 204 235 323
¢ 32 83 116 240 304 177 326 331 130 524 496 741
$ 205 112 83 207 273 100 270 386 147 330 618 919
€, 27 143 88 131 121 329 327 225 324 299 45 750
e, 108 79 135 134 44 148 10 296 119 121 516 606

We take ng =53, and for each prime value of n less than 53 indicate which con-
gruences mod p show the impossibility of +efe;=7", |l/|<n/2: n=2, p=13;
n=3, p=13,19; n=5, p=31,61; n=7,p=43,71; n=11, p=89,397; n=13,
p=179,313; n=17, p=103,239; n=19, p=229,419; n=23, p=139,277;
n=29, p=233,349; n=31, p=373,1117; n=37, p=149; n=41, p=83; n =43,
p=173; n=47, p=659.

Real values (all calculations were performed with quadruple precision): the
exponent of 10 is given in brackets at the end of the number.
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0 ~1.1250022(0), 0’'~6.2298637(1), 0"~ 2.2881802(0)+6.5474585(—1)i,
€1 ~4.6061280(1), €]~2.0423669(—6), e ~—9.0306409(0)+1.0270527(2)i,
€2 ~5.5803835(4), €3~2.0433639(—3), €5~ 8.1606967(—2)—4.5935980(—2)i.

The polynomials «, 8 at (80) are given by a =(—71+0)/6, 3= (505 —706+62)/36.
The bounds resulting on a, b, ¢, d using (76)-(78) are:
la| =91, |b| <44, lc| =47, |d| = 4.

The only units in the range are 1, e{l.

7.4.
K =Q(9), 04+4+220°—120>—320—188 =0.
02+20+4 03 —30%2+4
=—i6—i—, @:——i—g—f—, A*(K) = —2*.33.229%,

¢*—80¢p3+198¢2—26¢+1=0; &+ 71453 —1260P% +768P — 21 =0.
Multiplication table:

02=—4—20+60¢, 2=11430—5¢—9%,
fp=—4—0+5¢+3, ¢P = —107 —290 +72¢ + 86D,
0P =30490—21¢—25®, B2 =991 4+ 2690 — 667 —795F.

Units:
€1=¢; e '=10—-30—¢;
€, =95+8460+208¢ +20P; e "1 =38575 4104600 — 25952¢ — 30980 D.

Congruences:
p 7 13 17 19 23 31 43 61 71 79 131
0 6 9 4 1 7 20 28 16 18 29 70 8
¢ 4 2 16 17 15 5 27 20 20 44 77 14
$ 0 6 3 17 6 10 11 37 33 8 34 18
¢ 4 2 16 17 15 5 27 20 20 44 77 103
€& 3 3 11 8 13 2 6 18 22 57 77 109

We take ng=17; and with the notation of §7.3, n=2, p=13,17; n=3, p=7,19;
n=5,p=31,6l;n=7, p=43,7l; n=11, p=23; n=13, p=79, 131.
Real values:

0 ~2.3901604(0), 6’'~ —2.2486894(1), 6"~ —9.5163306(—1)+1.6100452(0){,
€1~ 2.4155312(0), €{~7.7447771(1), €~ 6.8348944(—2)+2.5957655(—2)i,
€~ 7.9877738(2), €5~5.008078(—8), €5~4.6611311(1)+1.5108032(2)..



316 ANDREW BREMNER

The polynomials «, 8 at (80) are given by o = (25+6)/3, 8= (—62+200+02%)/18.
The bounds resulting on a, b, ¢, d using (67'), (69), (71) are:

la| =11, |b| =3, lc| <6, d=0.
The only units in the range are 1, ¢;, ¢ .

7.5.
K =0Q(0), 0% —400°+1086%—920—52 =0,
6%+2 0> —260%2+140—4
===, 8= 5: . AXK)=—2%.3.2292,

0+ —232¢3+348¢%—246¢+54=0; $*—29493—-292H%2—-552% — 120 = 0.
Multiplication table:

02=—2+6¢, $2=—46—130+156¢+ 60D,
0p=—8—20+26¢p+9d, ¢P = —-58—-160+198¢ +78F,
0b=—-8—-204+300p+14P, $2=—-76—220+256¢+98D.
Units:
€1= —807—11300+ 5635¢ +1620P; e,“‘ = —6743 — 197050 — 115 ¢ + 2595¢;
€2 = —120697 — 3387860 + 409864 ¢ + 159264 P;
e{‘ = 74367 — 769546+ 60800¢ — 38064 P.
Congruences:
p 5 7 13 29 31 41 53 67 331
6 3 6 0 6 12 13 10 32 14 21 226
¢ 1 4 9 16 5 13 17 12 33 18 238
® 4 5 11 15 28 16 23 16 13 3 44
6 3 2 11 8 8 9 39 22 12 13 40
& 4 2 6 17 26 27 3 8 47 1 12

We take ng=17; and with notation as above, n=2, p=5,41; n=3, p=17,13;
n=5, p=31L,41; n=7, p=29; n=11, p=67,331; n=13, p=153.
Real values:

0 ~3.7161391(1), 0’'~ —3.7596381(—1), 6”~1.6072864(0)+1.0670220(0)i,
€1 ~1.7339328(6), €1~1.2391714(3), ef~ —1.8365571(—5)+1.1318855(—5)i,
€2 ~1.4007416(8), €3~7.4540294(—6), €5~ —3.0469625(—2)—5.4174817(—3)..

The polynomials «, 3 at (80) are given by a =(—14+46)/9; 8 =(94 —400 + 02)/54.
The bounds resulting on a, b, ¢, d using (76)-(78) are:

la| =22, |b| =12, |c| =24, |d| <14

The only unit in the range is 1.
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7.6.
K=0Q(), 0*+46%°—900%+2166—459=0.
2 3, g2 .
o= 72043 26B+3, g0 +0 1“:);50 Y ANK) = —22.3.2292,

*—36¢>+138¢2+126¢p+27 =0; P +1793—5292—-509—18 =0.
Multiplication table:

0°=—-3420+6¢, $2=—6+30+18¢—24,
0p=9—30—-3¢+18%, ¢pP=9-30—-8¢+21®,
0P —6¢—3P, d2=—24+0+7¢$—9%.

Units:
€1=179—-1130+27¢+126P; el"' = 6089 —23300—9363¢ +17424P;

€, = 6087998 — 12859040 + 3940781 ¢ + 7498800
€5 ' =4337 —16610 — 6653 ¢ + 12390 .

Congruences:

13 29 31 41 43 67 79 89 131

8 18 14 14 16 27 37 12 47
23 5 13 8 2 46 32 65 91
2 18 21 39 21 36 68 26 100
3 26 13 37 39 25 58 27 100
13 7 1 14 10 22 35 28 39

A O

We take ng=17; and for n=2, p=13,29; n=3, p=13,43; n=5, p=31,41;
n=7,p=29; n=11, p=67,89; n=13, p=79,131.
Real values:

0 ~ 6.4593879(0), 6’'~ —1.2672530(1), 0”~1.1065711(0)+2.0935268(0)i,
€1 ~1.5855978(1), €1~ —1.6678785(—6), ei'~ —8.9279882(0)—1.9425091(2)i,
€2~ 4.3884124(7), €3~ —2.3466788(—6), €5~ —5.6011315(—2)+ 8.1075148(—2)i.

The polynomials «, 3 at (80) are given by a = (3 +8)/18; 8= (—99+60+62)/108.
The bounds resulting on a, b,c, d using (76)-(78) are:

la| <32, |b| <5, lc| =12, |d| < 24.

The only unit in the range is 1.

7.7.
K=0Q(0), 04 +200° —1260%+42160—243 =0.
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0242 3 2
b= + 0+3’ (I>=0 +20°—270

6 54 ’
®*—104¢3 +504¢%—566¢p+418 =0; &4 +266P>+418P%+312d + 81 =0.

A*(K)= —2%-3.2292,

Multiplication table:

0= —3—-20+6¢, $>=—T—270+28¢p—24d,
0p=504+99, PP =17+660—58¢+71d,
0P =—-3—-180+15¢—18P, $2= —44 —1776 4+154¢ —190D.
Units:
€1=36—13800+2950¢)+1065P; ¢ —1= —18209+ 4800+ 44756 +1560d;
€>=1552—-305430+ 68814¢ + 28686, 62_' = —614—25050+2178¢ —2676%.
Congruences:
D 11 13 19 23 29 41 47 59 79 103 137 149 157
6 1 7 9 12 18 20 5 25 14 4 10 16 45 6 70 10 114 41
@ 1 0 4 0 3 1 16 26 31 28 44 19 58 48 68 89 44 85
(5 2 I 12 6 19 9 19 10 4 5 12 38 29 55 78 2 47 33
€ 7 10 2 12 3 13 19 19 2 3 36 18 32 40 58 69 72 131
e, 10 5 2 2 3 5 3 11 11 42 10 37 21 18 69 92 69 34
D 191 223 373 683 739 821 941 947

0 30 123 16 108 181 37 297 198 832 746 767
¢ 65 80 160 302 57 241 23 484 376 38 132
P 9 70 3 207 211 67 594 187 630 210 301
e 104 79 15 11 374 410 2 593 615 457 37
e, 166 169 160 203 34 12 152 767 202 805 574

We take ng=>53; and for n=2, p=13,41; n=3, p=13,19; n=5, p=1l; n=7,
p=29; n=11, p=23; n=13, p=79,157; n=17, p=103,137; n=19, p=191;
n=23, p=47;, n=29, p=59; n=31, p=373,683; n=37, p=149,223; n=41,
p=739,821; n=43, p=947; n=47, p=941.

Real values:

0 ~3.5899700(0), 0'~ —2.5326689(1), 6”~ 8.6835938(—1)+1.3851249(0)/,
€1~ 5.9327085(3), €1~4.5321292(4), €{'~5.9499101(—5)—1.3379673(—5)i,
€3~ 1.4324827(5), €5~1.0142277(—6), €5~1.3319892(—1)—2.6201560(0):.

The polynomials «, 3 at (80) are given by a = (18 +8)/9, 8=(—135+ 1804 602)/54.
The bounds resulting on a, b, ¢, d using (76)-(78) are:

la|<72, |b|=<18, |c|=22, |d|=]0.

The only unit in the range is 1.
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