THE COHOMOLOGY OF THE ALTERNATING GROUPS

Benjamin M. Mann

Introduction. Let A4,, be the alternating group on # letters. In this note we com-
pute the mod p cohomology of A4,, for p an odd prime. As expected the ccho-
mology of A, is closely related to the cohomology of S,,, where S, is the sym-
metric group on #n letters. The symmetric groups have long played an important
role in the study of cohomology of groups begun by Eilenberg and Mac Lane [8]
and Hopf [9]. Steenrod’s fundamental work on cohomology operations ([21]
and [22]), as well as Adem’s calculation of the Adem relations, depend on the
structure of S,,. Furthermore, work of Morse [15], Smith and Richardson [20],
Steenrod [22], Dold [7], Nakoaka [17], and Milgram [12] taken together com-
putes H'(S,,Z/p) as Z/p vector spaces using the homology of symmetric
products.

Let p be an odd prime. Cérdenas [1] then computed H*(S,2, Z/p) as a graded
ring. The key step in Cardenas’ calculation was the determination, in coho-
mology, of the inclusion R;:Z/pXZ/p — S > where R; is the regular representa-
tion. The determination of R;:H*(S,n,Z/p)—> H*(X"Z,,Z/p) for n>2,
where ggain R,: X"Z/p— S,n is the regular representation, was given indepen-
dently by Mui [16], Cooper [4], and the author [10]. This calculation was then
used to determine H*(S,, Z/p).

Since p is odd R, factors through the alternating group. By modifying
the techniques used above we compute R;:H*(S,», Z/p)— H*(Apn, Z/p)—
H*(X"Z/p,Z/p) and then use this computation to determine H*(A,x, Z/p).
This note is arranged so that the reader unfamiliar with the cohomology of S,
may simultaneously learn the structure H*(A4,,Z/p) and H*(S,,Z/p), as well as
the inclusion map between them, without referring to [16], [4], or [10].

1. Statement of results. Throughout this paper p is an odd prime and all
cohomology is understood to be with Z/p coefficients. We begin by recalling
some well-known facts. A p-Sylow subgroup K, of a finite group K contains all
cohomological information; more precisely H*(K) injects into H*(K,) under
the natural inclusion map and is in fact isomorphic to a subring of H*(K) that is
invariant under the action of certain automorphisms. It is also well-known,
dating back to Cauchy [3], that any p-Sylow subgroup of S,» and hence 4, is
isomorphic to {”"Z/p, the n-fold wreath product of Z/p. There is a family of
natural inclusions [see diagram (1.1)], and we will write

(@) T;,, for XP"(X'Z/p)

() 4,0 T; n— Ap,n is the composition of inclusions

© VYi,n=2® n:Ti,—S,nis the composition of J; , with the natural inclu-

sion ¢: Apn— Syn-
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S n
(1.1) s
Apn
1)
xpn—l(Ap) cee — xpn—l(Apf) —> eee —> prpn-—-l — Apn—ISZ/P
) ) )
xP"'(§' Z/p) xXP("'z/p)  {"Z/p
T ) )
X?""(Z/p) xP" (%! Z/p) XP (X" 'Z/p) X"Z/p

A theorem of Quillen [19] ensures that the maps

n n
9p= 11 i,n: H*(Apn) > 11 HX(T}, )

i=1 i=1

and

n
Yn=9% 07 H*(S,n) - 11 H*(T;,,)
i=1
are both injective on sets of multiplicative generators for H*(A,n) and H*(S,n),
respectively. We shall see later that the relations on these generators are trivial 10
compute. Thus our major task is to compute ,;}. (See [10] for ¢ ;:.)

We also recall that H*(T,, ,) =E(ey, ..., €,) ®P(b, ..., b,) where degree(e;) =1
and degree(d;) =2 for all i, and that §8,(e;) = b; where (3, is the Bockstein oper-
ator associated with the exact sequence 0 » Z/p - Z/p*—Z/p — 0.

We now consider specific formal determinants with entries in H*(7, ,) which
date back to Dickson’s work in modular invariant theory ([5], [6]). Let

T ¥ o
(1.2) L,=det| bf" ... bF’ for 0sr<n—1.
b, ... b,

That is, the j, /th entry of L, is b?’.
Forl<i<sn-—1,

bf" ... bP"
N e
(1.3) P ,=det| pr' . pp
by ... by
That is, the b2’ row is omitted.
Pi ’
(1.4) Qin="7"

We note that Moore [13] and Dickson [6] proved Q; , is an integral polyno-
mial mod p.
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ForO=<i=<n-—1,

blpn—l . bnpn-l

AN ~

bP' ... bF
(1.5) M; ,=det| ! "

b ... b,

€] e €y

That is, the b2’ row is omitted. We remark that My, , = L, in the notation of [10].

We now explain why these formal determinants appear in the computation of
H*(A,n). Let w:GL(n, Z/p) — Z/2 be the homomorphism that sends a matrix
to its determinant raised to the (p —1)/2 power. Let GL*(n, Z/p) =ker w. Then,
if T, =0, 2Ty ) and T, , = ¢(T,, ) there are natural isomorphisms

N

(1.6) 50" _, GL(n, Z/p)
Tn,n
and
Ny n
(1.7 e dp® L GL*(n, Z/p),
Tn,n

where Ny ¢ is the normalizer of H in G. Under these isomorphisms the action of
the normalizers on H*(T,, ,) are given as follows: If U, in GL(n, Z/p) represents
the coset x7=‘,,,,, in N7, .. s, then ady: H*(T,, ,) > H*(T,,,) is the unique ring
homomorphism determined by ad.(e,)=U,e, and ad.(b,)=U,b,,, where
en, by are treated as the vectors (0, ...,e,...,0)and (0, ..., b,,, ..., 0) in H*(T, ,)
with non-zero entries in the mth place.

As ad, is a ring homomorphism it is apparent that ad, acts on the for-
mal determinant classes L,, Q; ,, M; , via the determinant function; thart is,
ad,(L,) =det(Uy,)L,. As a classical result in this theory implies that image 0;; ,, C
H*(T,, ) »2/p) the GL*(n, Z/p) invariants of H*(T,, ,); it should be expected
that the formal determinants mentioned above enter into our computations.

We may now describe the maps 0;; ,, and ¢ ,.

DEFINITION 1.8.
(a) Let

(b) Let Wi=E(eb{ )@P(b{ ™) =EWMo, L >)@PLY ™).
(c) For n>1let U, be the subalgebra of H*(7,, ,) generated by:

—-1)/2 —-3)/2
1LLP Y2 Qi M ,LP ™3

withl=i<n—-1,0=<j<n-—1.
(d) For n>1let W, be the subalgebra of H*(7,, ,) generated by:

LLEY Qi s M ,LE~2, M; , M, ,, LE 3

with l=i=n—1,0=j<l/=n-—1.
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Note that U, is a polynomial algebra tensored with an exterior algebra, whereas
W, is not (W, has zero products; see [10]). Clearly W, is contained in U,,. Fur-
thermore if x € U, then x2e W,, and if x and y are exterior classes in U, then xy
is in W,,.

The main result of this paper which permits all further computations is:

THEOREM 1.9. Image ¢, ,=U,,.
THEOREM 1.10 ([16], [4], [10]). Image V,, , = W,,.

More generally, for 1=i=<n, A,.,-; operates on T, » and on the algebra
&®?"7" (U;) contained in H*(T; ») by permuting the p”~! copies of X’ Z/p, and
we have

THEOREM 1.11. Image 8}, = (®”" ™ (U;))*»" "
THEOREM 1.12 ([16], [4], [10]). Image ¥}, = (®?" " (W;))Sr"~".

COROLLARY 1.13. ¢*: H*(S pn) = H *(A pn) restricted to the classes in the
image y} , is given by the natuml inclusion

pn—i Spn—i n—i . Apn—i
® (W) (® )"

Clearly- in order to completely determine H *(A,n) we must know when a
class x€ H*(A,xr) has a non-trivial image under J;, for more than one value
of i.

DEFINITION 1.14. x € H*(A,») is a multiple image class if 47 ,(x) # 0 for at
least two different values of i.

Notice that if x;,x, e H*(A pn) with x; detected only by ¥/,, and x, detected
only by 8%, ., i1 # iz, then x;+x; is trivially a multiple image class.

DEFINITION 1.15. x € H*(A,.) is sum indecomposable if x cannot be written
as x;+x; with 67 ,(x;)#0, 07 ,(x2)=0 and 65 ,(x;) =0, 8} ,(x2)#=0 for some
i#]j.

We now classify all sum indecomposable multiple image classes in H*(A4,»).
Briefly a sum indecomposable multiple image class in H*(A4,,) must be in the
image, under ¢* of a sum indecomposable multiple image class in H*(S,n).
These classes were classified in [10]. This is a formal consequence of the structure

of U,, W, and the Steenrod algebra A4,,. However, for completeness we state the
result precisely.

DEFINITION 1.16. M, is the subalgebra of U, generated by:
19 Mj,nMI,nLg—:;, Qi.ns
withl<i<=n—1,0=<j=<l/=n-—1.

Note that M, C W, C U,,.
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DEFINITION 1.17. Given x,,, ;€ M;, we define Xx,, j_;€ U;_, as follows:
(@) If x,, ;=1then x,, ;_1=1.
(®) If x,,,j=Qi;,j then x,, ;_1=Q;_, 1_1 for2=<j<mnand l<i<j—1, with

the convention that Q, g1 L"
-3
© If xm,j=M,-,jM1,ij-’ then Xm, j—1= _Mi—l,j—lMl——l,j-—ILjP—l for 3 <
Jj=n, O0<i<l=j—1.
(d) If Xm, Jj— xm jxm J then xm j——l'—xﬂl J—lxm J—1-

Note that (a)-(d) define a unique class x,, ;_; for every x,, ;€ M;.

THEOREM 1.18. Suppose xe H*(A,n) is a sum indecomposable multiple
image class. Further suppose i is the Iargest integer such that 9] ,(x)#0. Then

there exists x,, ;e M; for i=m=p"~ ! such that 97, (x) =ALxy s ...,xpn_;,,-) and
i—1,n(x)= A(xl,,al,. s Xy, im1s eees Xpn—i j_1s---s Xpn—i j_1)s Where each X, ;_,
occurs p times in 9;_y, ,(x). If i—1>2 and each x,, ;_ is in M;_; (not just U;_,),

then 9;_3 ,(x)#0 and may be obtained from 9;_, ,(x) precisely as 9;_,,,(x)
was obtained from 9} ,(x). In fact this iteration continues r times until eiiher
i—r=2o0r X, i—1¢€ M;_, when 8;_ 4+, n(x)=0 for all t>0. Thus x has r+1
non-trivial images in the detecting groups H*(T;_s,,) for O<s=r.

Here A(xy, ..., X,n-i) is the Ap,, i invariant class generated by x;x; ... X,n—i.

To complete our computation of H *(A,n) as a graded ring we point out if
In(x1) = (97 ,(x1),0,0,...,0) and 19*(x2)—(0 35 n(x2), 0, ...,0) then I;(x1-x2) =
0, but it does not necessarily follow that x;x, =0. The next theorem summarizes
the situation.

THEOREM 1.19.

(1) H*(Apn) is generated by classes that map non-trivially under 9.

(2) Suppose 8:(u) =0, where u=1I/-, u; with u;e H*(A,n), 95(u;) #0, and
let I; be the smallest power of p such that Ipn (u;) #0 (Ipn,;: Aj —Ayn is
the natural inclusion). Then u#0 in H*(A,.) unless:

(@) ui;=ui, is an odd-dimensional exterlor in H*(A,, ) Jor some 1<i;<
b=r, lj <p ;

®) uij=ui,= =u;, is an even-dimensional exterior class in H*(A,, )
forsome1<11<12< -<ip=<r;or

©) Ilj-1l;;>p".

See [10] for the analog of 1.19 for S, ..

In applications it is sometimes useful to restate 1.19 as follows:

THEOREM 1.20. Let K,,: XP A,n—1— A, n-1 § Z,— A,n be the natural inclusion.
Then we have the injection

95 K .
0— H*(A,n) “250 U,,x( Q@) H*(Apn- 1)>

where the multiple image classes are given, as before, by 1.18.
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Now let m be an arbitrary integer. Then m may be uniquely written as
Yj=o0a;p’ with0=<a;<p—1, a,#0. Then any p-Sylow subgroup of A4,, is iso-
morphic to A, ,= X" ({"Z/p)X --- X X1 (Z/p) and we have the following
commutative diagram of inclusions:

XU (S, )X -+ x XU (S,) L2y 5, Lrthm, g

1 ¢ 19 1¢

a, A a A A Ir+l A
X (p’)x - X XU( )_* m " prle

T /
Amp
THEOREM 1.21.

(1) Ipr+1 m, Ipr+1 ,, are surjections.
) Jx,Jr are injections.
(3) velmageJ;, if and only if

v= EA<UI',1, seey vr,a,>® i ®A<Ui,l’ ceey vl,a]>s
with v, 1€ H*(A,:) for each |.

We now turn to the action of the Steenrod algebra, A4(,), on H*(A4,,). By 1.21
it suffices to consider m = p”. As

p**  if j=o0,
Pf(bpk)z bpk+l if j:pk,
0 otherwise,

it is easy to compute the action of A(,) on U, and hence on H*(A,,»). The follow-
ing result is trivial to verify.

THEOREM 1.22. The following relations and the Cartan formula describe the
Apy action on U,,.

@ B(Mo,n) =Ly
I—1 . —

(b) PP (Q1,0) = Qi—1,n> With Qo,n=L{"".

© PPN M LTy =M LTI,

2. Analysis of 4 ,, at p. We begin this section with a p-primary analysis of
A, n. Recall that if K is a finite group and L is a subgroup of S,, then the wreath
product K § L is a semi-direct product 1 - X" K —- K | L —- L — 1 where L acts on
X" K by permuting the factors. There are two natural inclusions X" K —-> K |L
and K x L — K | L, and it is clear that the inclusions §; , and ¥; , of diagram (1.1)
are obtained by iterating inclusions of these two types. The regular representa-
tion R, mentioned in the introduction is precisely ¥, , [10].

Now let N, be the normalizer of 7,, , in Apn and N, be the normalizer of 7, ,
in S,.. Of course N, C N, and we have the homomorphism first considered by
Cardenas [1]

2.1 ¥:N, >GL(n,Z/p)
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defined as follows: For x € N,, we have xa;x ~! = afi... alr, where a; generates the
ith factor of X" Z/p. We let y(x) be the nx n matrix whose (7, j)th entry is 7; ;.
Clearly ¢(x) is non-singular, and

PROPOSITION 2.2 ([16], [4], [10]). The sequence 1 -»T,, ,, — N, ¥ GL(n,Z/p) -
1 is split exact.

If w:GL(n,Z/p)— Z/2 — 1 is defined by
w(U) = (detU)?P~Y2 and GL*(n, Z/p)=kerw,
we note that ¢ restricted to N, maps to GL*(n, Z/p).
COROLLARY 2.3. The sequence 1 - T, ,— N, GL*(n, Z/p) — 1 is split exact.

In a similar fashion we obtain the following propositions for subgroups of 4,..
Let Nj,ns Njy,ooerim and M; be the normalizers of T, ;, X (X’ Z/p) and
><P"_ Apyiin A, ., and let NJ ,,,N,l ..jm and M; be the normalizers of 7; ,,

L (Xr Z/p) and X?"~ Sp, in S,». Further, S(jl,___,jm) is the subgroup of S,

generated by the transpositions (a, c), where j, = j..
PROPOSITION 2.4. The following commutative diagrams have short split
exact rows:
1— XP"'N; > Nijy S Aynoi — 1
2.5) 1 l !
1— XP"'N; - Nijy S Spnei > 1,

1 - X’.—lN —)le
(2.6) l

. by . .
seesdm -_)A(.ll’"‘l.lln) - 1

2.7 l ! !
1> XP"'S, - M; S Syn — L.

Proof. Minor modification of arguments found in [16], [4], or [10]. Il

We now summarize facts found in [2], [23], [1], [16], [4], and [10] required in
Section 3. (Some quoted results were proved only for S, but minor modification
extends these results to A4,,.)

PROPOSITION 2.8. Let K, be a p-Sylow subgroup of K. Then the transfer
t(K, Kp): H*(Kp) - H*(K)
is an epimorphism and the injection
i(Kp, K): HY(K) —» H*(K)p)

is a monomorphism whose image consists of stable elements of H*(K}). Further-
more, H*(K,) =Im i(K,, K)®Ker t(K, K,,).
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PROPOSITION 2.9. For x € S,,i the homomorphism

ady: HX(T,, ;) » H*(xT, ,x ")

is induced by the inner automorphism y —xyx~'. Furthermore, for E=

Yj=105ejand B= X7, B;b; in HXT,,,), adx(E) =y(x)E and ad(B) = y(x)B
where Y : N,, - GL(n, Z/p) is the homomorphism 2.4.

Since ad, operates on L,,Q; ,,M,; , via multiplication by the determinant
function we have:

COROLLARY 2.10. U,, is contained in H *(T,,,,,)G“(”’ 2/P) W, is contained in
H*(Tn,n)GL("’Z/p).

PROPOSITION 2.11. For x € H*(Apn), &% ,(x)e H*(T, ) "2/P) and for
x€ H*(S,n), ¥ n(x)e HXT,, ,)CLtn2/p),

PROPOSITION 2.12. If K and H are subgroups of a finite group G then
i(H,G)t(G,K)= D t,i.ad,

where i, is the inclusion map H*(xKx ') » H*(xKx "N H), ¢, is the transjer
H*(xKx 'NH)— H*(H), and the sum runs over a set of double coset represen-
tatives K X H.

PROPOSITION 2.13. In2.12 if G=A,n0r S,n, K=A,n-1§Z/p or S,n-1§Z/p,
and H=T, ,, then in the sum X t i.ad, each double coset representative x may
also be chosen to be in N, or N, respectively.

3. Proofs of results. All our proofs and in fact the entire structure of H*(Apn)
is based on the construction and structure of the Steenrod algebra A(,,. We begin
by recollecting one way Steenrod defined his pth power operations ([23]). Let X
be a finite regular cell complex. Steenrod considered the following spaces and
maps:

X245 Wyyp Xz/p XP 2 Wy X270 X =Byypx X,

where j is the inclusion and A is the diagonal map. Given any u € H*(X) there
exists a unique natural class ®(u) in H*(Wz,, Xz, X*”) such that:
1) JHCW)=u® - Qu=u®".
(2) Under the Kunneth isomorphism (1 X A)*(®(u)) =X w, @Dy (u), where
wy generates H¥(Z/p) and Dy: HY(X) - H??~¥(X) are homomorphisms
which define the elements of A(,,.
B) BDy(u)=Dyp—1(u), BDy_1(u) =0, and BDy(u)=0.

THEOREM 3.1 ([23]). If z€e H*(Wyp, Xz/p XP), then z is of the form z=
tz1+22-®(z3) with z1€e H*(X?), z,€ H*(Byz,,), and z3€ H*(X), where t is the
transfer. Furthermore, the sequence

H*(XP) S H*(Wyp Xz XP) 220 H*(By/, % X)
is exact.

Of course the D homomorphisms define the reduced powers.
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DEFINITION 3.2 ([23]). Let ue HY(X). Then

®/(u) =a;,¢Dig—25yp—1y(1) and B’ (u)=a;, ¢Dg—2jyp-1)-1(),

where a; , is a non-zero constant in Z/p dependent on j and gq. If k#
(g—2/)(p—1) or (g—2j)(p—1)—1 for some j, then D;(u)=0

Of course we may approximate B4, by finite regular skeleta in our computa-
tions. 2.3, 2.11, 2.13 and 3.1 immediately imply:

THEOREM 3.3. Image ¢, , consists of the elements in H*(T,,,H)GU("' Z/P) that
are in the image of the composition

i*o(1X A)*: H*(Wgzp Xz/p (Bayn-1)")
=H*(A,n1§Z/p) - H*(Bz/p X Ba,n-1) > H*(Ty,,),
where i:T, ,—~T,_1,n-1V2Z/p—> A,n1 [ Z/p is the inclusion found in (1.1).
We begin the proof of 1.9 with the following proposition and lemmas.
PROPOSITION 3.4. H*(A,) = U,.
Proof. Immediate from 2.3 and 2.8 thru 2.13. ]

LEMMA 3.5. There exists ue H*(A,n) such that 3, ,(u) =M, _,, ”L’(lp—3)/2€
H*(Ty,n).

Proof. By induction. The case for n =1 is contained in 3 4. Let n>1; then we
know there exists a u; in H*(A n—-1) SO that 0,’;‘ Lan—1{)) =M, _» ,,_IL(” 3Y/2 By
3.3 it suffices to show i o(le)*(G’ul) =M, _,, ,,L(p 32 This is a lengthy but
totally routine calculation such as is carried out in Lemma 5.4 of [10]. Details are
left to the reader. O

LEMMA 3.6. There exists u € H*(A,») such that 3; ,(u) =Lf,p—')/2 e H¥(T, ).

Proof. Identical to 3.5. In the inductive step choose u; € H*(A4,x-1) so that
-, ,,_l(ul)—L(p /2 and then compute i*(1 X A)*(b,-Puy). O

LEMMA 3.7. U, Cimage ¢, ,.

Proof. For n=1, 3.7 is merely 3.4. For n>1, 3.5 together with the naturality
of the Steenrod operations and 1.24 ensure that all exterior generators of U, are
in image #7 ,. 1.10 implies P(L?~', Q) 1, ..., Qn—_1,) Cimage y, , Cimage J; ,
(see [11] for a direct proof of this fact using different techniques). Thus 3.6
finishes the proof. O

To prove 1.9 it remains to prove:
LEMMA 3.8. Image 9; ,, C U,.

At this point the specialized arguments used in [10] for H*(Sp,,) which were
based on results of [12] do not generalize to H*(A,x). That is, the relation
between the homology of symmetric products and H*(S,n) allowed a count-
ing argument to prove the S,» analog of 3.8 without considering elements of
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H*(T,, ,)CL0:2/P) not in W,,. [16] and [4] did not use such a counting argument
but rather proved and used the following important result in modular invariant
theory not found in [10]. We use their result to finish the proof of 3.8.

THEOREM 3.9 ([16], [4]). H*(T}, ,)5""%/P) decomposes as

P(Ln’ Ql,n’ ceoy Qn—l,n)@Msl,...,skR’
where

(1) REP(L,,, Ql,na---sQn—-l,n) and
(2) Msl,”.,sk=Msl,nM52,n...Msk,n/Lﬁ_l, With OSS]<S2< b <Sksn_l.

COROLLARY 3.10 ([16], [4]). H*(T,,,,,)G“(”’ 2/P) decomposes as
PP, 00 s ey Quor DM, 5, LT V)R,
where Re P(LY ™%, Q1. nseos Qn_1.n)-

Proof of 3.8. By induction on n. Again the case n =1 is merely 3.4. Dickson’s
original classification theorem [6] implies the maximal polynomial subalgebra of
H*(T,, ,)C"("2/P) is precisely the maximal polynomial subalgebra of U,. As

(I1XAY*(®(u+0v)) =1 XA)*(®(u)+ & (v))
and
(IXAY*(®(u)-®(v)) =(1XxXA)*(F(uv)),

it suffices to show that the elements M;,, ... s L 3"? for k>1 are not in
image 3, ,. Note the expansion of i*(1 X A)*(®(u«)) has the same number of
exterior classes e;, ... ¢;, in each monomial as ¢;_, ,_(«) does. Thus the lemma
follows from the observation, for n > 1, that

dimension(Ms,, ...,s, L\ ~>"?) < dimension((M,,, n_ L2 .. My, o LES?))
for k> 1. O

This concludes the proof of 1.9. The proofs of the remaining results in Section 1
are now routine applications of 1.9 and results from Section 2 and [10], and
hence are left to the reader.
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