PRIMES IN SHORT INTERVALS

Helmut Maier

1. Introduction. The distribution of primes in short intervals is an important
problem in the theory of prime numbers. The following question is suggested by
the prime number theorem: for which functions & is it true that

d(x)
log x

Heath-Brown [4] proved that one can choose <I>(x)=x7/ 12=€x) (e(x)—0, as
x — o), which is a slight improvement of Huxley’s result [5], <I>(x)=x7/ 2+
(e >0 fixed). The Riemann hypothesis implies that one can take ®(x) =x!/2*e,
There is a large gap between these upper bounds and the known lower bounds of
®(x). It follows from [9] that (1.1) is wrong if

(1.1) T(x+P(x))—7(x)~ (x — 0)?

®(x) =log x(log log x log log log log x/(log log log x)?).

A slight improvement is implicit in the author’s paper [7].

On assumption of the Riemann hypothesis this gap can be narrowed consider-
ably if an exceptional set of x-values is admitted. In 1943, A. Selberg [10] proved
that, on assumption of the Riemann hypothesis, (1.1) is true for almost all x if
P(x)/(log x)? > o (x - ). By “for almost all values of x” is meant that x - «
through any sequence lying outside a certain exceptional set & of x-values, for
which the Lebesgue measure of EN(0, u#] is o(u) for u — oo, It is known uncon-
ditionally that (1.1) is true for almost all x if ®(x) =xY6*¢. This is implicit in the
work of Huxley [5].

A natural question is whether Selberg’s result is true without exceptions. The
purpose of this paper is to show that exceptions do exist even for functions ®(x)
growing considerably faster than (log x)>

We prove the following.

THEOREM. Let ®(x) = (log x)*°, \g> 1. Then

. 7(x+®(x)) —7w(x) L w(x+d(x)—7(x)
hrfff ®(x)/log x >1 and h?_.lff ®(x)/log x

For the range 1 <Ay < e we have even

lim su T(xX+P(x))—7(x) - _el
ol ®()/logx Ao’

where v denotes Euler’s constant.

Most of the principles of the proof already appear in [7]. At some places how-
ever we need sharper estimates.
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2. Basic lemmas. Following [7] we call an integer g >1 a “good” modulus if
L(s, x| #0 for all characters x mod g and all s with

o>1—C/log|q(|¢|+1)|.

This definition depends on C > 0. However, if C is sufficiently small, then we
have: For all g > 1, either ¢ is good or there is an exceptional real zero of some
quadratic character mod q. In the latter case the exceptional zero and character
are unique (Page’s theorem, cf. [8, Satz 6.9b]).

We define P(z)=1l,<. p.

LEMMA 1. There is a constant C > 0 such that, in terms of C, there exist arbi-
trarily large values of z for which the modulus P(z) is good.

Proof. This is Lemma 1 of [7]. ]

The constant C will be fixed throughout the rest of the paper such that the con-
clusion of Lemma 1 is true.

LEMMA 2 (Gallagher). Let g be a good modulus. Then

(li(x+h)=lix)(1+O(e—P+e—Vioex)),

w(x+h,q,a)—7n(x,q,a)=
0(q)

provided (a,q)=1, x=qP, and x/2 <h=<x, where log q=D=D,. (Here the
constant Dy > 0 and the constant implied in O( ) depend only on C in Lemmal,
c>0 is an absolute constant.)

Proof. This follows if we combine the proof of Lemma 2 in [7] with the prime

number theorem in the form = (x) =i x(1+ O(e ~Vioex)), O
We set
1
B(x,y)=|in=x: (P =1}, W) =1l (1--—).
pP<z p

LEMMA 3 (Buchstab). Let \>1. Then
lim z MV (z) '@ (2h, 2) =e"w(N),

Z— 0
where w(u) is defined by

w(u):u_', Il<su<?2,

2.1 d
E(uw(u)) =w(u—1), u=2,
and where the right-hand derivative has to be taken at u=2.

Proof. This follows from [2] and from Mertens’ formula

1 -Y
11 (1———)~ < _.
pP<z p log z

A uniform result has been proven in [1]. 1
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LEMMA 4. The function w(u)—e™" changes sign in any interval [a—1,a],
a=2.

Proof. This has been established in [6] for the general sieve of Eratosthenes.
For the convenience of the reader, however, we give a more specific argument
which in [1] is already applied to the problem of the convergence of w(u),
(u — o).

We set
-1

h(u):S:exp(—ux—HSZ ¢ dt) dx.

Then one easily checks that
h is analytic for u> —1,

(2.2) uh'(u—1)+h(u) =0,
h(u)~i as u— .
u

Let f(a)={y—; w(u)h(u) du+aw(a)h(a—1). From (2.1) and (2.2) it is easily
verified that

(2.3) f(a)=0 forall a=2.

By [1] we have that lim, _, -, w(u#) =e~". Therefore f(a) »>e~" as a — o« which
together with (2.3) implies that

2.4) S”_l w(u)h(u) du+aw(@)h(a—1)=e".
Now let
e(a) = S:_] h(u) du+ah(a—1).

From (2.2) it is easily seen that g’(a) =0 for all ¢ >0. Since g(a)—>1 as a - «,
we have:

|" hw) du+anta—1)=1.
This together with (2.4) gives:
|" (@) —e ) h(w) du+ate(@)—e ) h(a—1)=0.
Since A > 0 it follows that either w(#)=e Y in [a—1, a] or there is a sign-change
of w(u)—e ™7 in [@a—1, a]. But the first alternative would imply that w(u)=e™7

in [1, o). This concludes the proof of Lemma 4. ]

3. Proof of the theorem. We now fix an integer D = D, depending at most on
e >0 to be introduced later. In the sequel we assume that 7 — oo through a set
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of z for which P(z) is a good modulus in the sense of Lemma 1 and that z = 2,
where ¢ is the constant in Lemma 2. We also choose an integer U = U(z), such
that U< P(z).

We consider the matrix

M =(a,s), where
a,,=s+rP(z), l=ss<U, PP '<r=<2pP@z)?.

We want to estimate the number of primes in M which we denote by 7 (9IU).
The rows of 9N are intervals of U consecutive integers, whereas the columns
of I are arithmetic progressions with common difference P(z). Only those col-
umns for which (s, P(z)) =1 contain primes. We call such columns admissible.
The number of primes in an admissible column is, by Lemma 2:

T(2P(2)P +5,P(z),s) -7 (P(z)°+5, P(2),5)
_ P(z)?
¢(P(z)) log(P(z)
= (P(z)P~/1og(P(2)?))W(z) "' (1+ O(e~P)).
Let the number of admissible columns be UW(z)c(U, z). Then we have
~ P(z)P!
~ log(P(z)?)

Now we can conclude the proof of the theorem. To prove the first part we fix
A1 > \o such that w(\;) >e ™7, which is possible by Lemma 4. We choose U=
[zM]. By (3.1) and Lemma 3 there is at least one row of 9 with at least

y (1+0(e™Py)

3.1 (M) Uc(U, z)(1+O0(e~<P)).

We’w()\l)(l + O(e~P)) primes.

We now set /o = {log(P(z)?)}*0 and divide this row into Ky = [U/ly]+1 subinter-
vals of equal length /y(14+0(1)). At least one of these subintervals, say (a;, b;],
contains at least
. U
Ko(log(P(z)"))
We set x =a; and obtain (a;, b;] € (x,x+ ®(x)]. Thus the interval (x,x-+ ®(x)]
contains at least

eYw(\)(1+ O(e ~P)) primes.

r=(®(x)/logx)e"w(\)(14+0O(e —<Dy) primes.

For any given ¢ >0 we can fix D such that r=(®(x)/log x) (e"w(\;) —e€), which
concludes the proof of the first part of the theorem.

The third part immediately follows by observing that w(u) =u “forl<su<2.
The proof of the second part is completely analogous to the proof of the first
part. We choose A\, > N\g such that w(\;) <e ™Y and set U= [z™2]. There is at least
one row of M with at most
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——————e"w(\) (1+O0(e~P)) primes.
e @ ¢ ON1+0E ) p

We set /;={log(2P(z)P)}* and divide this row into K;=[U/l;] subintervals
of equal length. An easy computation similar to the one above shows that at
least one of these subintervals contains an interval (x,x+ ®(x)] with at most
(®(x)/log x)(e"w(N2)+¢) primes. This concludes the proof. U
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