ON THE SINGULARITIES OF SIMPLE PLANE CURVES

Tibor Bisztriczky

Let I'" be a differentiable curve in a real projective plane P? met by any line in
P? at a finite number of points. The singular points of I' are inflections, cusps
(cusps of the first kind), and beaks (cusps of the second kind). Let #;, n,, and
n3 be the number of these points in I' respectively. I' is non-singular if n(I') =
n+ny+ny=0. We are interested in the following questions: Under what condi-
tions is I' non-singular? What is then the minimum value of #(I") and how is this
minimum value related to n;, n,, and #;? We assume that every line in P? meets I’
and thus exclude all non-singular conics.

It is known that either every line in P2 meets I" with an odd multiplicity or
every line in P2 meets I" with an even multiplicity. The curves of the former type
have been studied by Mébius [3], Kneser [2], and Scherk [6], among others. In
[1], we began an investigation of curves of the latter type. Though there exist
such non-singular curves with as few as one multiple point, it was shown that the
existence of singularities is dependent not only on the number, but also the type,
of multiple points in the curve. More precisely, if a curve I' is almost-simple
(any closed subarc of I" with coincident end-points is met by every line in P?)
then n(I") =2 and n;+2n,+ n3 = 4. This investigation is continued in the present
paper under the assumption that I" possesses no multiple points. We claim that
n(I’)=3 and if n, >0, then n;+2n,+n;=6.

We assume that P2 has the usual topology. Let p,q, ... and L, M, ... denote
the points and lines of P? respectively. We denote by (p, L, ...), the flat of P?
spanned by p, L, ....

Differentiable curves. Let TC P? be an oriented line. For to#Zt;in T, let [tg, 1]
denote the oriented closed segment of 7 with the initial point 7y and the termi-
nal point ¢. We set (¢, 1) = [¢0, 1]\ {Z0, 11}, [t0, t1) = (t0, 1)U {10}, and (fo, 4] =
(20, 11)U{t1}. Then T =[¢g, 11U(#y, to) = [10, 1)Ul 14, tp). By a (two-sided) neigh-
borhood of ¢ in 7 we mean a segment U(¢) = (¢, ¢;) containing ¢. Then U " (¢) =
(to,t), UT(t)=(t,11), and U’(¢) = (t9,1) U (¢, 1) are left, right, and deleted
neighborhoods of ¢ in T respectively.

A curveT in P?is a continuous map from T'into P2. A line M is the tangent of
I'at ¢ if M=1lim(I"(¢), " (¢')) as ¢’ tends to ¢ in T\ {¢}; in which case we set M =
I'|(¢). A curve I' is (directly) differentiable if I'|(¢t) exists for each f € T and any
line in P? meets I'(T) at a finite number of points. Henceforth I is differentiable,
and for convenience we identify I'(7T") with T".

Let N =T be a segment. We call I' | oy a subarc of I" and again identify I'(917)
with I' |gr. As |[LNT(IM)| < oo for any L, we say that M has finite order. If in
addition n =sup;  p2|LNT(M)] is finite, we say that M is of order n. The order
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of a point t € T, ord(t), is the minimum order which an U(¢) can possess. Clearly
ord(t)=2. A point ¢ is ordinary if ord(¢) =2; otherwise, ¢ is singular. A point ¢
is elementary if there exist U ~(¢) and U *(¢), both of order two. A subarc of T’
is ordinary [elementary] if each of its points is ordinary [elementary].

Let I'(¢) e L C P2. We say that L supports T at ¢ if there is an L’ L with
I'(¢)¢ L’ and an U’(¢) such that I'(U’(¢)) is contained in one of the open half-
spaces of P? determined by L’ and L. When L does not support I" at #, we say
that L cuts I" at ¢. Let

S(t)={LCP?|T'(t)e L=T(1)}.

Then either all L € S(¢) support I'at £ or all L e S(¢) cut I" at ¢; cf. [S]. There are
then four types of points 7 in 7 with respect to I': ¢ is regularif L e S(t) [T'1(¢)]
cuts [supports] I' at ¢; ¢ is an inflection if L€ S(t) and I'j/(¢) bothcutT"at ¢; fisa
beak if L € S(¢) and I'j(¢) both support I" at #; ris a cusp if L e S(¢) [T'y(¢)] sup-
ports [cuts] I" at . We note that an ordinary point is regular and that inflections,
cusps, and beaks are singular ([4, 3.2.2]).

Since I' is met by any line at a finite number of points, either every line of P?
cuts I" at an odd number of points or every line of P2 cuts I" at an even number of
points ([4, 7.3.1]). In the case of the former [latter], we say that I' has odd
[even] order. The index of I', ind(I"), is the minimum number of points of I
which can lie on a line of P2. Thus ind(I') > 0 if " has odd order. Finally T is
simple if I'(¢) #T'(¢’) for t #t"in T.

From here on, we assume that I' is a simple curve of even order and positive
index. We wish to determine the minimum value of n(I') and hence we may
assume that n(I") < co. This final restriction then implies that I" is elementary ([4,
9.2.3]). We refer to [4] for the following properties of T".

1. The tangent I'|(¢) depends continuously on fe T.

2. A regular point is ordinary. Hence inflections, cusps, and beaks are the only
singular points of I.

3. If I" has even [odd] order, then n;+2n,+ n; is even [odd].

Furthermore, since I' is simple, no subarc of I' has coincident end-points.
Thus I' is almost-simple and, as mentioned above n(I') =2 and n;+2n, +n; = 4.
We formally state our main theorem.

4. THEOREM. Let T be a simple elementary curve of even order and positive
index. Then

(i) n(")=3; and

(ii) if ny >0, then ni+2ny+n;=6.

By way of preparation, we list some properties of ordinary subarcs and present
a characterization of singular points based upon the orientation of 7"and the con-
tinuity of tangents. All results without a reference are well-known or immediate.

Let (57, 5;) be of order two.
5. Then I'y(s)NT[s1, s2] ={I'(s)} for se (sy,s,) and there is a line L*C P? such
that L*NI'[s1,s5,]=@. Let H(I'[sy,52]) be the convex hull of I'[s;,s;] (in
P?\L*). Then ® = H(I'[sy, 5»]) is the closed region in P? bounded by I'[sy, 55]
and <I'(s;), '(s2)) such that [T'/(s)N®R|=1 for s (s1,52).



ON THE SINGULARITIES OF SIMPLE PLANE CURVES 143

6. Let N be an oriented line such that NNI' (s, s) = . Let I'/(s) meet N at the
point ¢(s), s (s, 53). If ¢ is not onto, then ¢ is strictly monotone ([4, 3.3.1]).

We rephrase 6 by stating that I'y(s), s € (s;, 52), meets N in a strictly monotone
manner. We generalize this monotone intersection property.

Let 9T and N’ be disjoint segments of 7 such that each tangent of I' () (T" at
me M) meets T'(M’). If |Ty(m)NT(M’)| =1 for each m € M, then I';(m) cuts
I’'(9’) at the point of contact and we write O — M. If for each m’ € I’ there
is exactly one m € O such that I'(m’) e I'j(m) and if moreover I'j(m) cuts I' at
m’, then we write 9 « N’. If both M - M’ and IM « M’, then clearly I'|(m),
me M, meets I'(IN’) in a strictly monotone manner and we write M N’.

7. Let'i(s) cut I at £ #ss.
(i) There exist U(s) and U(¢) such that either Ut (s) U (¢) or Ut (s)oU (1)
and either U ~(s)U*(¢) or U (s)U " (¢).
(ii) There exist U(s) and U(¢) such that U(s)< U(¢) if and only if s is an ordi-
nary or a cusp point ([1, 3.4]).

Let I'(¢) e I';y(s) and assume ¢ # s when I'j(s) supports I" at . Then ¢ is s-nega-
tive [s-positive] if there exist U *(s) and U ~(¢) [U T(¢)] such that U *(s) U ~(¢)
[Ut(s)eUt(2)]. If Ty(s) cuts T at ¢#s, then ¢ is s-positive or s-negative but
not both. If I';(s) supports I" at ¢ then ¢ is either both s-positive and s-negative or
neither.

8. If se Tis an inflection or a cusp then sis s-negative. If s is an ordinary [beak ]
point then s is neither s-positive nor s-negative [s-negative or nelther s-positive
nor s-negative] ([1, 3.7]).

9. Let ¢ be s-negative [s-positive]. Then there exist U *(s) and U (¢) [U ()]
such that U (s)e U (¢) [U*(s)U™(¢)] and each t'e U (¢) [U(¢)] is s’-
negative [s’-positive]; I'(#’) e I'i(s’) and s”e U *(s) ([1, 3.5]).

Let (¢, t;) be ordinary in 10 through 15.

10. There exist s; < s, (s preceding s,) in [, £;] such that (s;, s;) is of order two
and I'[#, 6,1 C H(L'[s1, 52]). We call I'[sy, s2] the convex cover of T'[#, 2] ([1,
3.15)).

11. If (), T(HL)NT (¢, 1) = D, then (4, £5) is of order two.

12. If () NI (¢, £2]1 = (T'(£,)}, then ¢, is not ¢;-negative ([1, 3.10]).

13. Forany te(t,ty), TW()NT[4,) =D or V)N T (L, t,1= D ({1, 3.12]).
14. Let Ty(s)NT'[¢, 1,1 =I'(#H), I'(#)}, Ti(s) cut I" at ¢y and £,, and s € [£, 15].
Then ¢, and ¢, are both s-negative or both s-positive if and only if I'(s) e
H(I'[t, 1;]).

15. If L is a limit of lines, none of which meet I'[#,, #;], then L cuts I" in at most
two points and these points lie in [#, 5] ({1, 3.17]).

16. If a line L supports I" at a point, then |LNT'|=3.

17. LEMMA. Let (1,t;) be ordinary. Let s € (1, t;) such that

(i) T'(s)=T'(t)=L for somete(s,t;), or

(ii) I'i(s) cutsT atexactly t’ and t”, t'<t" in [t;, 2], and T'(s) & H('[¢',t"]).
Then I'i(s) cuts T'[¢,, 1] in at least two distinct points.

Proof. We note that ind(I') >0 and 10 imply that there is an r e (#,, #;) such
that '(r)g ®R=H{T'[4, 12]).
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If (i) then LN (T [#;,s)UT(¢,6,]) =D by 13. If LNT'(s,¢) = O then (s, t) is of
order two by 11. As L supports I" at both s and ¢, it is clear that

I'(#,s)UT(¢, ] Cint H(I'[s, t]) Sint(®R).

Since I' is simple and bd(H(I'[s, 1)) =T'(s, t ) U(LNH(I'[s, t])), we obtain that
L cuts T at (f,,r) and (r, ;). If LNT'(s,#)# @ then |LNT'| <o yields that
LNT(s, f]1={I'(H)} and LNT5, ¢t)={I'(5)} for some 5 and ¢ in (s,¢). Then
I'[#,s)Cint H([s, 1), T'(¢, ] Cint H(I'[S,¢]), and L still cuts T" at (£,,r)
and (r, £;).

If (ii) then either {¢’,¢"}C(#,s) or {t/,t"} C(s, ;) by 13. With the proper
orientation, we may assume that {¢’,¢”} C (s, f;) and that by 14, ¢’ is s-positive
and ¢” is s-negative. Since I'(s)e H(I'[¢/,t”]), it now follows that I'[#,s]C
H(I'[s, t’']) and that I" again enters H(I'[s, ¢']) at ¢”. Thus I'[¢”, t,L]C H(I'[s, t'])
and T'(#”)e LNH(I'[s,¢’]). The result now follows by arguments similar to
those in (i).

The main theorem.

PROOF OF THEOREM 4(i). Suppose that n(I') =n+n,+n3=2. Then n;+
2n,+ ny =4 implies n =n3; =0, n, =2; that is, I" possesses exactly two cusps, say
t; and f,, as singular points. Then (¢, f;) and (¢5, #;) are ordinary. There exist
51<s3in [#, t;] such that I'[#;, 1,]C R = H(I'[s;, s21) by 10.

Asind(I’) >0, I' ¢ ® and there exist v, < vy in [#,, #;] such that (TI'(v;), I'(v2)) =
L =((s7),T'(s2)) and I'[v;, v,] is the largest subarc of I" contained in ®. Then 5
readily yields that each of L and I'|(s), s€[s,s2], is a limit of lines, none of
which meets I'[v;, v5]. As (v, v;) is ordinary, 15 implies that each of these lines
cuts I' in at most two points and these points lie in [v,, v;].

Let s € (51, 53). Then T'y(s) meets, and supports, I" at exactly s € [v;, s5,], cuts I
in at most two points of (v, v;), and by 16 meets I in at least two points (say v
and v’) in (v, v;). If T(s) does not cut I' at any point of (v,, v;) then I'j(s) =
I'i(v) =Ty (v’), and by 17(i) I';(s) cuts I" in at least two points of (v, v,), a con-
tradiction. Hence I'j(s) cuts I' at least once and this point lies in (v, v;). As
" is of even order, we may assume that I'j(s) cuts I" at v and v’. Suppose that
I'y(s) supports I at e (v,, v;). Let U(¥), U(v), and U(v’) be mutually disjoint
in (v2, v;). Then 1 and 7(i) readily yield that there is an s’, arbitrarily close to s
in (s;,s3), such that I'|(s’) cuts T" at a point in both U(v) and U(v’) and at two
points in U(D), a contradiction. Hence

(1) the tangents of I'(s;, s») meet, and cut, T' in exactly two points of (v;, v3)

and in a strictly monotone manner at each point.

Let T'i(sy) [Ty(s2)] cut ' at u<u’ [w<w’] in [v,, v1]. Let s € (51, 52) be close
to sy. If I'y(sy) cuts I' at v(s) [v’(s)] close to u [u’] then v(s) <v’(s). Let s range
between s; and s,. Then v(s) <v’(s) for all s by (1) and so v(s) [v’(s)] ranges
between u# and w [u’ and w’]. By 9 and 7(ii), we have

(2) u is sy-positive if and only if w is s,-positive, and u’ is sy-positive if and

only if w’ is s,-positive.

Case 1: s, # t; and s, # t,; cf. Figure 1(a).
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(b)

(a)

Figure 1.
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Figure 2.

Then L supports I' at s;, L=T"(s;), I'(¢;) eint(R), ¢; # v;, and L cuts T" at v;;
i=1,2.

Since I'y(s;) cuts I' at vy, there exist U7 (s;) C (s}, 52) and U(v;) C (v,, #;) such
that either U T(s)) U *(v;) or Ut (s;) U (v;) by 7(i). As

LU ™ (v1)) CT(v1, 41) Cint(R),

no tangent of I'(U *(s;)) meets I'(U *(v,)) by 5. Hence U *(s;)< U ~(v,) and v,
is s1-negative. Similarly we obtain that v, is s;-positive, v, is sp,-negative, and v is
sy-positive. Then u = v, =w and u’ = v; = w’ contradicts (2). Thus s;=¢ or s, =1,.

Case 2: s1# t1 and s = t,; cf. Figure 1(b).

Then L =T'(s,) supports I at sy, #; # vy, I'1(s;) cuts I" at v; and as in Case 1, v,
is s;-negative. Since £, is a cusp, 7, =s, readily yields that ¢, = v,. We note that
I'i(¢#;) cuts I' at £, and by 8, ¢, is #,-negative.

Since T" is of even order, I'|(s;) cuts I' at exactly one point v; e [v,, vy) and
I'y(#;) cuts I" at exactly one point v{ € (v,, v1]. As (£, v{) is ordinary, I';(#,) does
not support I' at any point of (#,, v{) by 13. Hence I'j|(,)NI'(¢,, v{) = and
by 12, v{ is t,-positive. Then u=vj3, u’'=v,, w=1,, and w’ = v contradicts (2).

The preceding is symmetric in sy, ¢; and s,, #;. Thus s;=1¢; and s, =1,.

Case 3: s;=1, and s, =1,.

Then L does not support I' at any point of (¢, #;)U(#3,7) by 13 and LNI' =
{I'(#;), I'(¢2)}. By 16, L cuts I" at ¢y and #,. As ¢; is a cusp, L =T'(¢;), t;=v; and
t; is t;-negative; i =1,2. By 12, ¢, is f;-positive and ¢, is #,-positive. Hence u =
ty=wand u’=t; =w’ contradicts (2).

Thus n(I') > 2. In Figure 2, we present a simple I" with positive index, even
order and n(I') =n, =3.
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We note that each cusp in Figure 2 can be replaced by a combination of two
non-cusp singularities in such a manner that the resultant curve is still simple
with positive index and even order. Thus there exist such curves with exactly 4, 5,
or 6 singular points.

It is also easy to check that a beak of a simple curve with positive index and
even order can be replaced by an inflection in such a manner that the resultant
curve is still simple with positive index, even order, and an unchanged number of
singularities. Hence to simplify the following arguments, we assume that a singu-
lar point is either a cusp or an inflection.

PROOF OF THEOREM 4(ii). Since n(I')=3 and n;+2n,+n; is even, n;+
2ny+n3 =6 if either ny=2 or n(I') >3 and n, =1. Suppose that n(I") =3 and
n,=1. Let ¢, #; and ¢, to be the singular points of I'; ¢y a cusp and ¢, and ¢, in-
flections. We assume that ¢y ¢ (4, £;). Hence (¢g, t;), (¢, t2), and (£, tp) are all
ordinary. We assume that

(3) nonme of I'[#g, 111, T'[#, t2], or I'{#5, £,] is contained in the convex hull of

another.
Otherwise we can consider I' as a curve with at most two singular points. Then
arguing as in the proof of 4(i) or [1, 3.1], we obtain a contradiction.

Since (¢, ;) is ordinary, there exist s; <s, in [#, #2] such that I'[#, £, ]C R =
H(I'[s1,5,]) and v, <v; in [£;, #;] such that {I'(vy), T'(,))=L =(T(s)), '(572))
and I'[v;, v;] is the largest subarc of I' contained in ®. We note that (s;,s;) is
of order two by 10 and 7 € (v, v1) by (3). As ¢ and ¢, are both inflections, it is
immediate that L cuts I" at v; and v,. We also note that if L # I';(v;), then I'y(v;)
meets, and cuts, I' at exactly one point of (s1,5); i=1, 2.

Case I: T\(t)NR = D for any ¢ € (v,, v;); cf. Figure 3.

We show that (v,, #9) and (¢, v;) are both of order two, there is an s* € (sy, 53)
such that I'(¢o) e I'j(s*) # I'i(#o) and any line through I'(s*) meets I" in at most
one point of, say, [v,, #g]. Then I'|(s*) meets, and supports, I" at exactly s* and
to in [vy, £p] by 5. Since (¢g, v;) is of order two, &ny line through I’(#,) meets,
and cuts, I" in at most one point of (¢, v;). As I is of even order, this implies that
Iy(s*)NI'(¢g, v1) = D and |T'y(s*)NT| =2. This is a contradiction by 16.

We first note that [T'j(¢)N® |1 for any f € (v5, v;) and LNT(vy, v,) = D. If
IT1(¢)N® | =1 for some ¢ € (v;, v;) then there is a ¢’ € (v, v;), arbitrarily close to
t, such that I'| (¢ ) NAR = by 1. If LNT'(v;, v;) # D then L meets T at (v, #o]
or [t9, 1), say (vs, to], and there is a t € (v, o] such that LNT (v, t]={T'(¢)].
Then I' simple and 11 imply respectively that ® NI (v,, t) = @ and (v, t) is of
order two. As ® is bounded, it is immediate that there is a ¢’ € (v, #y) such that
M) NR=9.

We next claim that for ¢ e (£, vy), T''(¢)NI(s,s;) # D, and Ty (¢) cuts I" at
each point of contact in (sy, s,). Since I'(#5, v;) Cint(®), the claim is immediate
ifte(fr,v) ort=v,#t,. Let t € (v, vy). Since (51, s7) is of order two, I'j(¢) = L
and |T'(£)N®R|#1; the claim follows by 5. Suppose I'(s) e I'/(¢) for s e (51, 55)
and ¢ € (s3, v1). Since s is s,-positive and [s;, £,) is ordinary, 9, 7(ii), and 14 ap-
plied to I'[sy, s,] yield that s is ¢-positive for ¢ € (s5, £2). Since I'(#,) is an inflec-
tion, I')(¢) changes direction at ¢ =¢,. Thus now the preceding argument yields
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[y(s*)

(1)

Figure 3.

that s is #-negative for ¢ € (¢,, v,]. As (v,, v;) contains neither breaks nor cusps, s
is #-negative for fe€(vy, v1). By ®RNI'(vy, 1) = and 14 applied to I'[sy, s3],
each tangent of I'(v,, v;) meets, and cuts, I" at exactly one point of (sy, s,). Since
® is bounded, the hypothesis clearly yields that

(4) the tangents of I'(v,, v1) meet I'(sy, 5,) in a strictly monotone manner and

each point of I'(sy, 5,) lies on at most one tangent of I'(v,, v;).

Let L be oriented. Then LNT'(v,, v;) = @ and (4) readily imply that the tan-
gents of I'(v,, v;) meet L in a strictly monotone manner. In particular, each tan-
gent of I'(v,, v;) meets the open segment (LN R)\{'(vy), I'(v,)}. It is now easy
to check that {I'(v,), I'(¢o))NT' (v, t5) = D and (T'(vy), T'(t))NT (g, 0)) = D.
Hence by 11, (v,, t9) and (¢y, v1) are both of order two.

Let I'(to) NT'(sy, 52) = {I'(5)]. As §is fyp-negative; 1, 9 and (4) imply that

(5) no point of I'(sy, 5) [I'(5, 52)] lies on a tangent of I'[v,, £o] [I'[#g, v11].
Let se (s1,53). Since LNI'(vy, v1) =< and L =<I"(v,), I'(v,)), there is a line L,
such that L;NT'[v,, v;] = D and L, separates ® into two disjoint regions, one of
which contains I'(s) and the other I'(v;) and I'(v,). As RNT'(v,, 1)) = D, this
implies that T'(s) ¢ H(I'[v,, t0]) UH(T'[ g, v1]). Now (5) readily yields that

(6) any line through a point of I'(sy, 5) [I'(5, s3)] meets I'[v,, to] [T'[#o, v1]] in

at most one point.

As T'(ty) ¢ ® and (v,, fy) is of order two, there is an s*€ (s1,5;) such that
I'(tp) €T'i(s*). Since I'j(#yp) meets, and cuts, I at exactly 5 € (s1,52) and I'j(s*)
supports I' at s*, we obtain that I"y(s*) # I'i(#g), s*#5 and thus s*e (51, 5), say.
Then by (6), any line through I' (s*) meets I'[v,, to] in at most one point.
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Figure 4.

Case 2: T1(t)N®R = D for some f € (v,, vy).

By 1, there exist r,<r; in (v, vy) such that to¢ (r,r) and I(r)NKR =J
for re(r,, r;). Without loss of generality, we may assume that v,<r,<r <t
in [#,¢]) and I'(#)NR =« D for each te(vy, ;). As in Case 1, we obtain
LNT (v, r]1= 9 and (v,, r;) is of order two. Then I'j(r;)NI'[v,, ;)= and
from 1, |T'y(r;) N®| =1. We now show (cf. Figure 4) that (r,, ry) is of order two
and there exist w; <w, in [y, ;] such that each tangent of I'(r,, r;) meets, and
cuts, I at exactly two points of (w;, w;), and w is r-negative if I'j(r) cuts I" at
w,we{w;,w;] and re€[ry, r;]. This will then imply that I';(#¢) cuts I' at a point
wo in (g, t1] such that T'j(¢o) NT'(¢9, wo) = & and wy is fp-negative. Since (7o, wp)
is ordinary, this is a contradiction by 12.

Suppose that I'j(r;) meets I' at a point r'#r, in [f,, {y]. Then I'[#;, v1,]C
int(R) and I'j(r))NAnt(R)UT vy, 1)) = D imply r' €[r;y, top]. We may assume
that I'i(r)NI'(rp, r’'Y= and hence (r,,r’) is of order two by 11. Then
ITi(r))N®| =1 and T'(r)N R = D for r arbitrarily close to r, in (r, r’) imply
that R € H(I'[r,, r']) € H(I'[1,, t9]); a contradiction by (3).
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Suppose that I'1(r;) meets I' at a point 7’ # ryin [£,, £9]. Then I')(r;) Nint(R) =
& implies that r’ e [v,, to]. If r' € (ry, to), then r; # tg and I'y(r;) supports I' at r;.
We assume that I'y(r;))NT'(ry, r’) = & and hence (r, r’) is of order two. As I' is
simple and I'j(r;) supports I" at ry, 13 implies that I'|(r;)NI'[£,, ) =< and
I'(ry) e[ty, 1) Cint(H(I'[ry, r’]). But then I'y(r2)NT' [ry, r’] # D, a contradic-
tion by the preceding. If r’e[ry, r,), we assume that (r’, r;) is of order two. As
every point p¢ H(I'[r’, r;]) lies on a tangent of I’[r’,ry], RS H(I'[r’, r;]) by
definition, a contradiction by (3). Finally, though less obvious, it is easy to check
that r’ e [v,, ry) also implies that ® C H(I'[r’, r]).

Since I'y(r;) NT'[#5, to] =[T'(r;)} for i =1, 2, neither I'(r;) nor I'(r,) is contained
in int(H(I'[#5, t0]). Hence I'(r;) and I'(r,) are contained in the convex cover of
I'[t;, to) and by 5, (ry, r1) is of order two.

As I'y(r)) #T'1(ry), let @, and @, be the open half-spaces of P? determined by
I'i(r2) and T'y(ry); T'(ry, r;) C ®;. As each point of @, lies on a tangent of I'(r,, ry),
® C @;. Then |y (r;)NT[£2, to]| =1 for i =1, 2 implies that T'[#,, r,) UT'(ry, £0) C
®;. We also note that I'(r,, r,) separates @, into two disjoint regions ®; and @,
such that each point of say ®,; [®;;] lies on two tangents [on no tangent] of
['(ry, ). Therefore I'[#, o] C ®y,, the closure of @, in P2,

Since @y, is a closed bounded region in P2, ind(I") > 0 implies that there exist
wy; < W, in [£g, #;] such that I'[w,, w,] is the longest subarc of I" contained in @;,.
Let r € (ro, ). Then I'[wy, w;] C ®y, implies that T';j(r) meets, and supports, I" at
exactly r e [w,, w]. Clearly by 1, I'|/(r) is a limit of lines, none of which meet
I'[w,, wi]. Since (w;, w,) [(rz, r1)] is ordinary, 15 [16] implies that I'jy(r) cuts
[meets] I'" in at most [least] two points of (w;, w,). We now argue as in the proof
of 4(i) and obtain that each tangent of 1I'(r,, r\) meets, and cuts, I" at exactly two
points of (wy, wp).

As I'[wy, w1 C @12, r,<ryin [ft,, tg] implies that I'[w,, r]UT' [r;, w;]1C 6)12.
Since I' is simple, it is easy to check that I'y(r;) cuts I'at w;, i =1,2. Then w, #r,
and 7(i) imply that there exist U *(ry) C (r2, r;) and U(w,) C (g, ;) such that
either U (ry) Ut (wy) or Ut (ry) U~ (w,). As T'(U *(w,)) C ®},, no tangent
of T'(U ¥ (r,)) meets I'(U *(w,)). Hence U (r,)«>U ~(w,) and w;, is r,-negative.
Similarly, w, # r; implies that w; is ri-negative. If w,=r;, then w,e[#, ;] and
r e[t to] imply that ri=t¢,. As tyis a cusp, wy is rj-negative by 8. Since each
tangent of I'(r,, r;) cuts I' in exactly two points of (w;, w,), 1 and 7(i) imply that
I'i(r;) cuts I" at exactly two points of [wy, w,]; i=1,2. Let I'y(ry) [T'1(r2)] cut I" at
wie (w, wa] [w3e[w;, wp)]. Then arguing as in the proof of 4(i), w; <w{ and
ws<wyin [wy, wa]; 9, 7(ii), and the preceding imply that w is r-negative if I'y/(r)
cutsT" at wywe[w;,wy] and re[r, njl.

Since I'yj(r) cuts I at exactly w; and wy{ in [¢g, #;], we observe that

Li(r)NIT(wy, wi)=D.

If ry=w,, then w; =1t and we set w{ = wy.
Let r; # w;. If there is a we (r{, w;) such that I'(w) e I'|(r,), then

Di(r)NT[#, te)={I'(r;)} implies that we (29, w;) C (o, 11).
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Hence I'y(r;) supports I" at w, I'y(r;) =T'y(w) and by 13, I'j(r) )N (r;, wy) =
{I"(w)]. Since I'j(r;) cuts T' at only w; and w{; I'i(r;) =T1(w), w<w;<wjf in
(to, t;]1, and 16 imply that I'(w) € H(I'[w;, w{]). Then w; and wy{ are either both
w-negative or both w-positive by 14. As w; and w{ are both r-negative, and I is
simple, I'i(r)) NI (ry, wy) ={I'(w)} clearly implies that w; and w{ are also both
w-negative. Then I'y(w)NT'(w, w;) = D and 12 imply that (w, wy) is not ordinary,
a contradiction.

As T'i(r)N(T (r;, ) U (wy, wi)) = and w; and w{ are both ri-negative, 1
and 9 imply that for r arbitrarily close to ryin (ry, tg),

(7) Ti(r)cutsT'at w<w’in (¢, #;) such that w and w’ are both r-negative and

rir)yN@Tr,w)urw,w))=970.

Arguing as in the preceding, we obtain that (7) is true for all r € (ry, £y). Since
to is a cusp, 8 and 9 imply that there exist U ~(¢9) C (ry, to) and U *(#9) C (to, 1)
such that U ~(¢0) U *(¢#y). Let r € (ry, to) tend to ¢y. Then 1implies that w tends
to fo and w’ tends to some wo# fg in (Zg, £;). Then wy is #y-negative by 9 and
I'i(to)NT (2o, wo) = & by 13. L1

Finally, it should be noted that it is not known if there exists a curve of even
order and positive index which does not possess cusps and possesses less than six
beaks and inflection points. We conjecture that such a curve does not exist and
thus the condition n, > 0 is not necessary in 4(ii).
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