UNIVALENT MULTIPLIERS OF THE DIRICHLET SPACE
Sheldon Axler and Allen L. Shields

To George Piranian with fondness and respect

Let G be a connected open set in the complex plane and fix a distinguished
point zg€ G. The Dirichlet space D(G) is the Hilbert space of analytic functions
g on G such that g(zp) =0 and

lelbo = le'Pda <,
!
where dA denotes the usual area measure. The Dirichlet norm squared of g is just
the area of the image of G under g, counting multiplicity. The condition g(z¢)=0
insures that no nonzero function has norm zero. Changing the point z, gives a
space which is obtained from the original by subtracting a suitable constant from
each function. An analytic function ¢ on G is called a multiplier of D(G) if
o D(G) C D(G).

The Bergman space B(G) is the Hilbert space of analytic functions g on G
such that

lelhior=| _lel?da <.

For the special case of the open unit disk, which we denote by U, the Dirichlet
space (with the distinguished point equal to zero) and the Bergman space can be
described in terms of Taylor coefficients; namely,

lglbwy =7 3 nla,|%,

lglBwy=7Z |a.|/(n+1),

where g(z) =X a,z".

From the Taylor coefficient formulas for the norms in D(U) and B(U), it is
clear that D(U) is contained in B(U). In this paper we consider the question of
when the Dirichlet space D(G) is contained in the Bergman space B(G). Our
results deal primarily with the case where G is bounded and simply connected.
We show that if G is bounded and starlike, then D(G) is contained in B(G)
(Theorem 3). Theorem 1 shows that a Riemann map ¢ of the unit disk U onto G
is a multiplier of D(U) precisely when D(G) C B(G). Corollary 7 shows that if
¢’ is in H? for some p > 1, then D(G) C B(G). We show that this conclusion may
fail when p =1. In Theorem 10 we construct a Jordan region G with a rectifiable
boundary such that D(G) is not contained in B(G). For this region G, the func-
tion z is not a multiplier of D(G). Theorem 11 identifies the essential spectrum of
multipliers on D(G).

Received July 5, 1984. Revision received November 19, 1984.
Both authors were supported in part by the National Science Foundation.
Michigan Math. J. 32 (1985).

65



66 SHELDON AXLER AND ALLEN L. SHIELDS

Stegenga [16] has given a necessary and sufficient condition for a function ¢ to
be a multiplier of D(U). However, it seems that Stegenga’s condition cannot be
used to derive the results of this paper.

For a simply connected region G and a Riemann map ¢ of U onto G, where
$(0) equals the distinguished point z,, we let Cy denote the composition opera-
tor defined by C4(g) = go¢. It is easy to verify that C, is an isometry from D(G)
onto D(U).

For G simply connected, we define the integral operator V by the formula

z
V)@= gw)dw.
0
The following theorem establishes basic equivalences that will be used through-
out the paper.

THEOREM 1. Let G be a bounded simply connected domain and let ¢ be a
Riemann map of the unit disk U onto G. The following are equivalent.

(1) D(G)C B(G).

Q) zD(G)C D(G).

(3) ¢D(U)C D(U).

@) o'D(U)CB(U).

(5) V maps B(G) into B(G).

Proof. For gin D(G), (zg) =zg'+g. Since g’ is in B(G) and z is bounded on
G, the function zg’is in B(G). Thus the equation above shows that zg is in D(G)
if and only if g is in B(G). Hence (1) and (2) are equivalent.

Choose the distinguished point z, to be ¢(0). Note that the validity of (1) and
(2) are independent of the choice of zj.

Now suppose that (2) holds. To verify (3), let f be in D(U). Since ¢f =
Cy(zCy'f), we see that ¢f is in D(U), as required.

Conversely, suppose (3) holds. Let g be in D(G). Since zg=C; (¢C,(g)),
we see that zg is in D(G), and (2) holds.

To see the equivalence of (3) and (4), let f bein D(U). Then (¢f)' =¢'f+of".
Since ¢ is bounded and f’ is in B(U), we see that ¢ fis in D(U) if and only if ¢'f
is in B(U), so (3) and (4) are equivalent. (For later use, note that the univalence
of ¢ is not used in proving that (3) and (4) are equivalent, although the bounded-
ness of ¢ is required.)

Thus (1) through (4) are all equivalent. Finally, since V maps B(G) onto
D(G), (1) is equivalent to (5), completing the proof of Theorem 1. O

Even if G is unbounded, it is not hard to verify that conditions (1), (4), and (5)
of Theorem 1 are equivalent.

It is easy to see that for each compact set K C G there is a constant ¢ such
that | f(z)| = c|fl ) for every z in K. To see that point evaluations are contin-
uous on the Dirichlet space, let z € G and let T be a rectifiable path in G from the
distinguished point zg to z. Then

< (length of T') sup |g’(w)| =c|g’| sy =clglp)-

wel

lg(z)| =

S; g'(w)dw
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Using the continuity of point evaluations and the Closed Graph Theorem, we
see that if condition (1) of Theorem 1 holds, then the inclusion map from D(G)
into B(G) is continuous. Similarly, the multiplication operators in (2), (3), and
(4) of Theorem 1 (and the integral operator V in condition (5)) are continuous.

We now consider the question of when these maps are compact. First note that
the operators in (2) and (3) of Theorem 1 can never be compact because the spec-
trum of these operators is uncountable; see the remarks preceding Theorem 11.
The following theorem shows that if any one of the remaining three maps is com-
pact, then all three are compact. Sufficient conditions for this to hold are given in
Theorems 5 and 6 and Corollary 7. Consequences of compactness are given in
Theorems 8 and 9.

THEOREM 2. Let G be a simply connected domain and let ¢ be a Riemann
map of the unit disk U onto G. Suppose that (1) of Theorem 1 holds. Then the
Jollowing are equivalent.

(1) The inclusion map of D(G) into B(G) is compact.

(2) Multiplication by ¢’ is a compact operator from D(U) into B(U).

(3) Vs a compact operator from B(G) into B(G).

Proof. Let M be the operator of multiplication by ¢’ from D(U) into B(U);
by the Closed Graph Theorem and condition (4) of Theorem 1, M, is a bounded
operator. Let I denote the inclusion map from D(G) into B(G), and let W be
the unitary map from B(G) onto B(U) defined by W(g) = ¢'C,(g). We see that
M, Cy=WI. Since Cy and W are both unitary, (1) is equivalent to (2).

Let V] be the unitary map from B(G) onto D(G) defined by V,g = Vg (we are
thinking of V as mapping B(G) into B(G), so V; and V differ only in the norms
on the range space). Then V= IV}, which shows that (1) and (3) are equivalent.

U

A region G is called starlike if there is a point wyin G such that for each point
w in G, the line segment connecting wy and w lies in G. The following theorem
shows that the conditions of Theorem 1 hold for bounded starlike regions. For
unbounded starlike regions, it is not necessarily true that D(G) C B(G). For
example, let G be the right half plane. Then the function 1/(z+1) is in D(G) but
not in B(G).

THEOREM 3. Let G be a bounded starlike domain and let ¢ be a Riemann map
of the unit disk U onto G. Then ¢ multiplies D(U) into itself.

Proof. We can assume without loss of generality that G is starlike with respect
to the origin and that the distinguished point z, of G is also the origin. We will
prove the theorem by showing that condition (1) of Theorem 1 holds.

Let g be a function in D(G). Then

g(z)= S(z) gw)ydw=z S:) g'(tz) dt.

Thus, by Cauchy’s inequality,
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1 1
g@ = |22 lga)Pde e |gea) P,

where c is a constant such that |z|?<c for all z in G. Hence
2 1 ’ 2
| le@Paa@=c| | lgwa)Pda)ar
()
=c{ 2] [gronPdaow) ar.
0 (G

Since the origin is an interior point of G and G is bounded, there is a positive
number s <1 such that the closure of sG is contained in G. Thus there is a con-
stant k such that |g’|> <k on sG. Hence for 0< ¢ <s, we have

(72| g’ w)2dAw) <k|Gl,
(G
where |G| denotes the area of G. So
s
2) S t—ZS Ig'(W)|?dA(w) dt < co.
0 1G
Also,

1 1
S t'ZS lg'(w)lsz(w)dtsS t‘zg lg’(w)|? dA(w) dt
(3) N tG s G
="'~ Dglb) < .
Now (1), (2), and (3) show that g is in B(G), which completes the proof. [

Let M(D(U)) denote the set of multipliers of D(U), so M(D(U)) consists
of the analytic functions ¢ on U such that ¢.D(U)C D(U). As noted before
Theorem 2, each ¢ in M(D(U)) induces a bounded multiplication operator on
D(U). Giving each function in M(D(U)) the operator norm of the correspond-
ing multiplication operator makes M(D(U)) into a normed space. It is known
that if ¢ is a multiplier of D(U), then ¢ is bounded on U and the supremum of
|#| is less than or equal to the corresponding operator norm; see [6, Lemma 11].

The set of multipliers of B(U) into B(U) is just H*, and the operator norm
coincides with the supremum norm. Thus the set of multipliers of B(U) into
B(U) is nonseparable. Even though M(D(U)) is strictly smaller than H*, the
following corollary shows that D(U) also has enough multipliers to be non-
separable.

COROLLARY 4. M(D(U)) is nonseparable.

Proof. For w a boundary point of the unit disk U, let R(w) be the radial seg-
ment defined by

R(w):{rw:%5r<1}.

Let w, be any sequence of distinct points of dU converging to 1. Let
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G=U~[R(1)UR(W)UR(W)U---].

Since G is the unit disk with countably many radial slits removed, G is starlike
with respect to the origin. Let ¢ be a Riemann map of the unit disk U onto G. By
Theorem 3, ¢ is a multiplier of D(U). For we dU, let ¢,, be the rotation of ¢
defined by ¢,,(z) = ¢(wz). Since D(U) is rotation invariant, it is clear that ¢,, is
also a multiplier of D(U).

Note that ¢ cannot be extended to be continuous on the closed unit disk.
Indeed, if there were such an extension, then ¢ would map the unit circle onto
the boundary of G; but no continuous function can do this. (The theory of prime
ends can be used to show that ¢ has precisely one discontinuity on dU; see for
example [9, Chapter 9].) Thus the collection {¢,,: we dU} is not separable in the
H*® norm; for example, see [10, Theorem 1]. But as noted earlier, the operator
norm of a multiplier dominates the H* norm, and so the result follows. U]

Theorem 3 showed that if G is a bounded starlike domain, then D(G) C B(G).
The following theorem (in conjunction with Theorem 1) shows that if a slightly
stronger geometric condition is satisfied by G, then the inclusion map is compact.
Note that this condition is satisfied by every bounded convex region.

THEOREM 3. Let G be a bounded domain such that the closure of tG is con-
tained in G for 0<t<1. Let ¢ be a Riemann map of the unit disk U onto G.
Then multiplication by ¢’ is a compact operator from D(U) into B(U).

Proof. We will prove the theorem by proving that condition (1) of Theorem 2
holds. Let {g,} be a sequence in D(G) such that g, goes to 0 weakly in D(G). To
show that the inclusion map of D(G) into B(G) is compact, it is enough to show
that g, goes to 0 in norm in B(G).

For 0<r<1, let

I(t)=12 SIG g (w)|2dA(w).

From inequality (1) in the proof of Theorem 3, we see that

S |8(2)|2dA(z) <c Sl I,(t) dt.
G 0

We will show that first, 7,,(¢) — 0 as n— oo for all # < 1, and second, there is a con-
stant K such that 7,(¢) <K for all n and ¢. The result will then follow from the
bounded convergence theorem.

Since g, tends to 0 weakly in D(G), we know that g, tends to zero uniformly
on each compact subset of G (for example, see [2, Corollary to Proposition 1]).
Since the closure of ¢G is contained in G, this implies that 7,(¢) - 0 as n — o for
all r<1.

Since g;, tends to zero uniformly on 5 G, there is a constant k such that |g;|> <k
on 3G for all n. Thus I,,(t) < k|G| for t<1.

For 3 <t =1, we have
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L(t)=4 SG |g;|?> dA < constant,

since every weakly convergent sequence is norm bounded. We are done. ]

An infinite matrix is called Hilbert-Schmidt if the entries are square summable.
Every Hilbert-Schmidt matrix represents a compact (hence bounded) linear map
on Hilbert space, and this is often the easiest way to verify that an operator is
compact. The following proof exploits this idea. The first part of the following
theorem is Proposition 18(b) of [2]; the proof in [2] uses different ideas. The
second conclusion holds even if ¢ is unbounded.

THEOREM 6. Let ¢ = a,z" be a bounded analytic function defined on the
unit disk U such that

D n(logn)|an|2< 0o,

Then ¢ is a multiplier of D(U) into itself. Furthermore, multiplication by ¢’ is a
Hilbert-Schmidt operator from D(UY) into B(U).

Proof. In what follows, all summations run from 1 to oo. Since z7¢’'=
S na,z"*"™"!, we have
3 m~2zm! |y = 2 T n|ay|X/[(n+m)m]
m n

m

=Y n?|a,)* > 1/[(n+m)m]
=Y nla,* X m™'—(n+m) 1]

=Y nla,)?(A+3+---+n7")
< Y nla,|*(1+logn) < .’

Since {m "2z} is an orthonormal basis for D(U), the inequality above shows

that multiplication by ¢’ is a Hilbert-Schmidt operator from D(U) into B(U).
The proof that conditions (4) and (3) of Theorem 1 are equivalent now shows

that ¢ is a multiplier of D(U) into itself, completing the proof. ]

For the case where p=2, the following corollary was noted in [2, Remark 5
following Proposition 3]. The following corollary is sharp in the sense that we
will see later (Theorem 10) that there is a bounded univalent function ¢ such that
¢’ € H! but ¢ is not a multiplier of D(U).

COROLLARY 7. Let ¢ be an analytic function on the unit disk U such that ¢' is
in HP for some p > 1. Then ¢ multiplies D(U) into itself. Furthermore, multipli-
cation by ¢’ is a Hilbert-Schmidt operator from D(U) into B(U).

Proof. Without loss of generality, assume that 1 < p<2. Let ¢(z) = ¥ @,2" be
the Taylor series of ¢. Let p’ be the index conjugate to p, so (1/p)+(1/p')=1,
and p’>2. Let ¢ be the index conjugate to p’/2, so t>1. Applying Holder’s
inequality with indices ¢ and p’/2 we have:
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3 n(logn)|a,)*=3 n~'(logn) lna,,l2
<[ (n"'logn)'17' (X |na,|”" )" < e,

where the last term is finite by the Hausdorff-Young Inequality ([19, Chapter
XII, Theorem 2.3]).

Finally, ¢’ is in H' so an inequality of Fejér, Hardy, and Littlewood (some-
times called “Hardy’s inequality”) shows that ¢ is bounded (see [5, Sec. 3.6,
p. 49]; for the history of this inequality see [15, p. 476]). Theorem 6 now gives us
the desired result. U

Let By(G) denote the subspace of B(G) of codimension one consisting of all
functions in B(G) which vanish at the distinguished point z,. Theorems 5 and 6,
and Corollary 7, give conditions under which the inclusion map of D(G) into
B(G) is compact (this holds, for example, if G is convex). Ideas similar to those
used in the proof of the following theorem appear in [13].

THEOREM 8. Let G be a simply connected region with finite area such that
D(G) C B(G) and the inclusion map of D(G) into B(G) is compact. Then there
is an orthonormal basis of D(G) which is also an orthogonal basis for By(G).

Proof. Let I denote the inclusion map of D(G) into By(G). Thus I*I is a com-
pact self-adjoint operator on D(G). By the spectral theorem for compact self-
adjoint operators on Hilbert space ([11, Theorem VI1.16]), there is an ortho-
normal basis {g,} for D(G) consisting of eigenvectors of I*I. The following
computation with inner products in B(G) and D(G) shows that {g,} is also an
orthogonal sequence in B(G):

(Sos SdBioy = Ufns L) By = UL s i) Do)
= (tnfnhf;n)D(G) =0 if n#m.

To show that {g,} is a basis for By(G), we will verify that D(G) is dense in
By(G). Let M be the operator of multiplication by ¢’ from D(U) into By(U).
Let W be the unitary map from By(G) onto By(U) defined by W(g) = ¢'Cy(g).
Since M. Cy, = W1, to show that D(G) is dense in By(G), it suffices to show that
¢’D(U) is dense in By(U). However, it follows from [14, Proposition 41], that
the linear span of {¢'z":n=1,2,...} is dense in By(U), and so we are done.

O

As noted before Theorem 2, point evaluations are continuous linear func-
tionals on the Hilbert spaces D(U) and B(U), and hence are represented by inner
products with suitable elements of these spaces. To be specific, for z e U, let

k,(z)=log(1/(1—wz)) and K, (z)=1/(1—wz)>.
Then
fR)=(f,k)p forall feD(),
h(z)=(h,K;)p forall he B(U).
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The functions k, and K are called the reproducing kernels for their respective
spaces. We have
[k b= (ke, ko) p= k- (2) =log(1/(1~|z|*)),
"Kz”%? = (K3 K=K (z) = 1/(1— IZIZ)Z'

The normalized kernels k,/| k.| p tend weakly to 0 in D(U) as |z| — 1. This can
be proved by taking inner products with bounded functions, which are dense
in D(U).

The first part of the following theorem was proved in Theorem 1 of [17] in a

more general context. For a stronger conclusion which applies to univalent map-
pings onto starlike regions, see [18, Theorem 1].

THEOREM 9. Let ¢ be an analytic function on the unit disk U such that ¢ is a
multiplier of D(U). Then there exists a constant c¢ such that

1¢'(z)| < c(1—r) " log 1/(1—r)]~ V2
Jor all z in U, where r =|z|. Furthermore, if multiplication by ¢’ is a compact
operator from D(U) into B(U), then
¢'(z)(1=r)[log1/(1=r)]"> -0
as |z|-1in U.
Proof. Condition (4) of Theorem 1 and the Closed Graph Theorem imply that

the multiplication operator M, is a bounded operator from D(U) to B(U). For
each z in U we have

|6"(2) |1k |b = |9(2)| (ky, k) p=|d"(2) k(2)| = | (M4 k;, K7) 5]
< |Mgy|lk;|p|K,|p>

and the first part of the theorem follows.

Now suppose that M, is a compact operator from D(U) to B(U) and that
|z] = 1in U. As noted above, k,/|k,|p tends weakly to 0. The compactness of
My thus implies that My (k;/|k;|p) tends to 0 in norm in B(U). Hence

(My k. /| k:|p, K. /|K|8) >0 as [z] -1
Since
&' (2) |k p/IK: |8 = (Mg k /| k;| s Ko /1K )

we obtain the desired result. O

Corollary 7 implies that if G is a bounded simply connected region with
smooth boundary, then a Riemann map of U onto G is a multiplier of D(U). If
G is any bounded simply connected region and ¢ is a Riemann map of U onto G,
then the condition that ¢’ be in H' is equivalent to the condition that G have a
rectifiable boundary; see [5, Theorem 3.12]. Thus the following theorem implies
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that there is a bounded univalent function ¢ such that ¢’e H' but ¢ is not a mul-
tiplier of D(U). By Theorem 1, the function z is not a multiplier of the Dirichlet
space of the region constructed in the following theorem.

For an arbitrary region G, one can define H*(G) by means of harmonic major-
ants; see [12]. If G is simply connected, then D(G) C H?*(G) because this state-
ment holds for the disk and both spaces are conformally invariant. Hence the
following theorem also gives an example of a rectifiable Jordan region G such
that H?(G) is not contained in B(G).

THEOREM 10. There exists a bounded domain G whose boundary is a rectifi-
able Jordan curve, such that if ¢ is a Riemann map of the unit disk U onto G,
then ¢ is not a multiplier of D(U).

Proof. We will prove the theorem by constructing a domain G which fails to
satisfy condition (1) of Theorem 1. We will choose sequences {a,} and {¢,} such
that

“4) a>l>a>a>a3> -,
&) a,— 0,
(6) 0<tys1=<3 and t,,=7 forall n=0;

further conditions on {a,} and {z,} will be specified later. Let
G,={re'':a,,1<r=<a, and t<t,},

and let G be the interior of the union (for »=0) of the G, (see Figure 1). We
choose for our distinguished point zo=1.

Go

G,
ﬂ G,
“L}. . a3 . az . al

Figure 1
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Let g,,(z) = (1—2%)"™. Note that gn(z0) =0, so each g, is in D(G). If D(G)
were contained in B(G), then the Closed Graph Theorem would show that the
inclusion map from D(G) into B(G) is bounded. We will show that this is not the
case by showing that
@) sup|gulaG)/1&ml ) = -

m

The image of G, under the map z —z?2 is the annular slice
Gi={re":a}, ,<r=afand t <2t}.

Thus for j >0, the function |g,,| attains its minimum on G, at a;. Hence

®) | lenl?={  lenl*=0-ap™|G)l,
J

where all integrations are with respect to the area measure dA4, and |G;| denotes
the area of Gj.

The {a,} and {¢,} will be chosen inductively. We begin by letting ao=1.1 and
a;=.9. Then |G| <1and for each z in Gy we have |z| <2and |1—z?%| <.7. Thus

® S Igr'n|2516m2(.7)2m—2-
Go

Note that af < cos % Hence by (4) and (6), for j =1, we will have ajz =cos2¢;,
and so the furthest point from 1 in sz is the point aj2+1 exp(i2t;); see Figure 2.
The distance from 1 to aj‘?‘H exp(i2¢;) is less than or equal to the distance from 1
to asz plus the arc length along the circle; see Figure 2. Thus

|1 —afﬂ exp(i2t;)| < l—aﬁr] +af+12tj

1.2
Sl'—iaj+p

Hence for j =1, we have

(10) | lgnl? <ama}(1-4a}, )" "2|G)).
J

We now proceed with the inductive construction of {a,} and {#,}. Suppose that
ap, ay, ..., dzp—1 and tg, ¢y, ..., 2,2 have been chosen (recall from (6) that ¢, :%
for all even j). First we estimate the Dirichlet integral over the regions already
determined (except for Gy). For j=1, we have |G| <% and a;<1. From (10)
we have

2n—1 2n—1
S| lenl= 3 mPa—iaf )
(11) j=17G; j=1
= (2n-2)m*(1—3a3,-1)*" >

We will fix an integer m (which depends upon #) that will satisfy certain condi-
tions to be specified later. Let a,, = l/mz, where as a first condition on m we re-
quire that 1/m? < a,,_;. Now choose t2j—1s0 that |G,,_| is small enough so that
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Figure 2

(12) | lenl=1/mS;
Gan-1

see (10) and recall that m, a,,,_;, and a,, have now been fixed.
Regardless of how a,, . is chosen, we have

|GZH| 4aZn zllm_4’

and so from (10) we get

(3) | lenl*<am?a3,| Gyl < a,/m*=1/m".

2n
Let a,,,,=1/m*. Regardless of how a; and ¢;_; are chosen for j>2n+1, for
these values of j we will have

G;Clre":0<r=ay,4;and |t| < i)
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where the latter set has area %azan = -}m —8_ Since the interiors of the G; are dis-
joint, we have

oc

> [G=gm~®
Jj=2n+1
Hence from (10) we get
(14) > | lenlP=am® 3 |Gl <ymS.
j=2n+1"G; j=2n+1

We now specify the conditions that m must satisfy (# is still fixed and m will
depend upon n). Choose m large enough so that:

(a) the right-hand side of (9) is less than 1/mS$;

(b) the right-hand side of (11) is less than 1/m®;

(¢) (1—m~*)?m+1ig greater than 1; and

(d)y m>n.
Adding equations (9), (11), (12), (13), and (14), we get

(15) | lgnl?=s/m°.
From (8) we have

SG 'gmlzzgc lgm'lzZ (1 "‘a22n)2m|G2n|

2n

I

(16)

i(1—a3) " (ad,~ad, ) =3(1=m~H*" (m ™ —m %)

L= m )2+l
>m~Y8.

Dividing (16) by (15), we see that

|&mlB(Gy/18ml D(Gy = (M?*/40)/* > /7.

Thus (7) holds and hence D(G) is not contained in B(G).
It only remains to show that G has a rectifiable boundary. From Figure 1 it
clearly suffices to show that X a, < . However,

Ya,<2Y a,<231/n*< .
This completes the proof. ]

If G is a bounded region and ¢ is a multiplier of D(U), then the spectrum of
the multiplication operator induced by ¢ is the closure of ¢(G); see the adden-
dum concerning question 6 in [14]. Recall that an operator 7 on a Hilbert space
H is called Fredholm if the kernel of Tand H/TH are both finite dimensional vec-
tor spaces. (These conditions imply that 7 has closed range; see [3, Cor. 3.2.5].)
The essential spectrum of 7 is defined to be the set of complex numbers w such
that 7—w is not Fredholm.
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The following theorem determines the essential spectrum of a multiplication
operator on the Dirichlet space. We require the notion of cluster set. If ¢ is an
analytic function on G, then the cluster set of ¢ on dG, denoted cl(¢; dG), is the
set of complex numbers w such that there exists a sequence {z,} in G such that z,
tends to the boundary of G and ¢(z,) — w.

THEOREM 11. Let G be a bounded simply connected region, and let ¢ be an
analytic function on G such that ¢ is a multiplier of D(G). Then the essential
spectrum of the multiplication operator

M, : D(G) - D(G)
equals cl(¢; dG).

Proof. A Riemann map from the unit disk U onto G establishes (by composi-
tion) a unitary correspondence between multipliers of D(G) and multipliers of
D(U). Since essential spectra and cluster sets are preserved under this corre-
spondence, we can assume that G=U and z,=0.

Thus assume that ¢ is a multiplier of D(U). We first will show that sp,(M,) C
cl(¢; dU). It suffices to show that if 0 is not in cl(¢; dU), then M, is Fredholm.
So suppose that ¢ is bounded away from O near oU. Let z3, ..., 2, be the zeroes of
¢ in U, repeated according to multiplicity. Let S denote the subspace of D(U)
consisting of all functions f in D(U) such that f vanishes on {0, z, ..., Z,} with
appropriate multiplicities. Let f be a function in S. Then f/¢ is analytic on U and
(f/¢)(0)=0. To see that f/¢ is in D(U), observe that

(f/0) =(f"d—Sd')/>.

Since ¢ is a multiplier of D(U), we know that ¢ is bounded and that ¢’ multi-
plies D(U) into B(U). Thus the numerator above is square integrable. We need
only check that (f/¢)’ is square integrable near dU. This follows from the equa-
tion above, since ¢ is bounded away from 0 near dU. Now that we know that f/¢
is in D(U), it follows that f=My(f/¢), so fis in the range of M. Thus S is
contained in the range of M,. But S is the intersection of the kernels of finitely
many linear functionals, so § has finite codimension. Hence the range of M has
finite codimension. Since the kernel of M, is zero, we can conclude that M, is
Fredholm. Thus sp.(M,) Ccl(¢; oU).

To prove the converse inclusion, suppose that 0 is in cl(¢; dU). Let {z,} be a
sequence in U such that ¢(z,) -0 and |z,| — 1. Let &, denote the reproducing
kernel for the point z,, and let f,, be the normalized reproducing kernel: f,, =
kn/|kn|pw)y- Recall from the discussion preceding Theorem 9 that f, tends
weakly to 0 in D(U). Suppose that My were Fredholm. Then there would be a
bounded operator T such that 1—-M,T is compact. Thus |(1-M,T)f,| -0, so

1=z (TS, f) = (A =M T) [, f2) =0,

but 1—e(z,)(Tf,, f») — 1, a contradiction. Thus M, is not Fredholm and we are
done. L
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We end the paper by raising a few questions. For which regions G is D(G) C
B(G)? When is the inclusion map compact? Which Schatten p-classes contain
the inclusion map? (For the disk U, the inclusion map is in the Schatten p-class
precisely when p>1.)

Let ¢ be a multiplier of D(U). What is the relation between ¢ being con-
tinuous on the closure of U and multiplication by ¢’ being a compact operator
from D(U) to B(U)?

Is there a bounded region G such that M(D(G)) is separable? (By Corollary 4,
such a region could not be simply connected.)

For nonsimply connected regions, identify the essential spectrum of multipli-
cation operators on the Dirichlet space; see Theorem 11.

If ¢ is a univalent condition on U that satisfies a Lipschitz condition of order
less thar or equal to -;-, then must ¢ be a multiplier of D(U)? If the Lipschitz
order is greater than %, then this is true even if ¢ is not univalent; see [2, Proposi-
tion 12(b)].

If ¢ is a multiplier of D(U) and M denotes the corresponding multiplication
operator on D(U), then must the self-commutator MgM,— M, M} be compact?
trace class?

NOTE. Since this paper was written we have learned of several additional ref-
erences that are relevant to the problems discussed here. As pointed out in the
discussion following the proof of Theorem 1, if G is a region for which D(G) C
B(G), then the inclusion map is a bounded linear transformation. Thus there is a
constant ¢ = c(G; z,) such that

(17) SG |f|2dAscSG 1|2 dA

for all f holomorphic in G such that f(zy) =0.

This inequality may be viewed as an analogue for analytic functions of the
Poincaré inequalities in the theory of elliptic partial differential equations. One
form of these inequalities (see [7, (7.45), p. 157]) states that if G is a bounded
convex open set in the plane, then there is a constant ¢ such that

S|u|2dAscS |Du|* dA

for all ue CY(G) with fudA=0, and uy,u, in L?*(G), where Du denotes the
gradient vector.

In [4, Chap. VII, §8.1] Courant and Hilbert establish this inequality for a
broader class of bounded domains, including those that are finite unions of con-
vex subdomains. They also give an example of a Jordan region with rectifiable
boundary for which the inequality fails [4, §8.2, p. 521].

The analytic inequality (17) seems to have been considered first by Hummel
[8], who showed that it fails when G is a ribbon inside the unit disc spiralling out
to the boundary. The problem of describing the regions G for which (17) is valid



UNIVALENT MULTIPLIERS OF THE DIRICHLET SPACE 79

was posed by David Hamilton at a conference in Durham in 1983 (see [1, Prob-
lem 8.18]). He has informed us that he has obtained several results on this prob-
lem. In particular, Theorem 6 of the present paper was known to him. Also, if
¢’e LP(dA) for some p > 2, then (17) is valid (here ¢ denotes the conformal map
of the unit disc onto G). This last result is also a consequence of Proposition 19
of [2], together with Theorem 1 of the present paper.

Added in proof. We mention one further result (compare Corollary 7). Here
M, (¢’, r) denotes the mean of order p of ¢’ on the circle |z|=r.

THEOREM 12 ([2, Proposition 19b]). If ¢ is holomorphic in U and if
M,(¢p',r)e L*(dr) for some p>2,
then ¢ e M(D(U)).
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