ON CERTAIN ANALYTIC (NEVANLINNA) FUNCTIONS

Maxwell O. Reade and Pavel G. Todorov

1. Introduction. We study the classes NV; and N, of all analytic functions hav-
ing the representations

zdu(t)

du(?)
—t 1 1—¢tz°

1 1
M f@=|_ T and g()=|
where p is a probability measure. These classes have been the subject of some
interesting research during the recent past. Thale [5] showed that the maximal
domain of univalence of N;(N,) is the open set |z] >1(]z| <1). In two recent
notes ([3], [4]) we found the radii of starlikeness and convexity, of order alpha,
of N;and N,. We also proved that for each ¢ € N,, ¢(z) and z¢’(z) are typically-
real for |z| <1. On the other hand, Goluzin [2] found sharp bounds on the mod-
ulus and on the argument of the set TR of all functions g(z)=z+ --- that are
typically-real for |z| <1. But Goluzin’s extremal functions do not belong to our
class N,. Hence it is reasonable for us to try to obtain sharp bounds on Goluzin’s
functionals |¢(z)|, arg ¢(z) for ¢ € N,. We do just that plus more. We also find
sharp bounds on |Im ¢(z)|, |¢’(z)| and arg ¢’(z), for € N5, 0=<|z| < 1.

2. Bounds on |¢(z)| and |¢’(z)|. The kernels

1
@ ="~ k@n=——

play a leading role, as we shall see.

THEOREM 1. For each z, |z| <1, and for each ¢ € N,, the following inequal-
ities hold.:

4
© 9ls|1E;] Jxdish,
_r 151
4 |o(z)| =< (/2] lz+3|=3,

where for z #0, equality in (3) holds only for the appropriate function ¢(z) =
l(z, £1) and equality in (4) holds only for ¢(z)=1(z,t), with t = Re(1/z).

Proof. We suppose z # 0. The integral (1) yields
1
|¢(2)] < 5_1 |1(z, )| du(t).

Hence we study |/(z,t)|, —1=t=<1. Let
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! where 7(z,¢)=1>—2t¢ Re 1
, (2, 1) =1"~— )
7(Z, 1) | |2
Since 7(z, t) decreases for —co < ¢ < Re(1/z) and increases for Re(1/z) <t < oo, it
is clear that 7(z,t) achieves its minimum (i) at = —1, if Re(1/z) < —1, (ii) at
t =1, if Re(1/z) =1, (iii) at # = Re(1/z), if —1 < Re(1/z) <1. The inequalities (3)
and (4), and the assertions concerning the sharpness now follow. O

(2, t)|*=

REMARK 1. For ¢ € N,, Dunducenko [1] obtained the inequality |¢(z)|=<
|z]/(1—1z|) which is less precise than (3) and (4).

THEOREM 2. For fixed z, 0< |z| <1, and for each ¢ € N, the inequalities

[SIE

) |¢'(z)| =<
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©) |9(2)| =
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hold, where equality holds in (5) only for the appropriate function ¢(z) =1(z, +1)
and equality holds in (6) only for ¢(z)=1(z,t) with t = Re(1/z).

Proof. From (1) and (2) we obtain

’ I ’ _ 1 ! 2
@I o 0l duy =1 | _ 1 0 duto),

and this last allows us to use the reasoning in the proof of Theorem 1 to obtain
our result. O

REMARK 2. Our result is a better one than Dundugenko’s |¢’(z)| < 1/(1—|z|?)
[1].

3. Bounds on |Im ¢(z)| and sup|;|—|Im ¢(z)|.

THEOREM 3. For fixed z, 0 < |z| <1, and for each ¢ € N,, the following hold:

Im
22 i 1
t)) |1m¢(z)|5'lmz NS CIEST

with equality in (7) only for the appropriate $(z)=1(z, £1), and equality in (8)
only for ¢(z)=1(z,t), t =Re(1/z), if Im z0.

Proof. Again, from (1) and (2) we find
mz

1 1
) IIm ¢(z)]ss_] Im (2, )| dp = 5_1 1) 2.

Once again the reasoning in the proof of Theorem 1 yields the desired results.
O
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THEOREM 4. Let r be fixed, 0 <r <1; then for each ¢ € N,, the inequality

r
|Im ¢(z)| =< 1—2° |z| =r,

holds, with equality only for the functions ¢(z) =[(z, +1), for the appropriate

= tr 2r 11— r2
- 1+r2— 1472

Proof. As z varies on the circle |z| =r, 0<r<1, subject to |z+ 5| =1, we see
that the right-hand side of (8) increases as |Im z] decreases so that the maximum
of |Im ¢(z)| occurs where |z|=r meets |z+3|=1, that is, at the points z=
+rexp(xiarccosr), 0< arc cos r < w/2. This yields the maximum of |Im ¢(z)|
on |z| =r, subject to |z+ 5| =1, is r/A/1—r2. But if we use (7), then elementary
calculatlons show that the max1mum of |Im z|/|1%z|?, subject to the constraints
|z+3| =<1, is r/(1—r?), and this occurs only at the points

z*:,( Z”Ziil"2> for ¢(z)=1I(z, +1)

1+r 1+r
and at the points —z* for /(z, —1). Our theorem now follows from the inequality
r/\[1—r2<r/(1—-r?). O

4. Bounds on arg ¢(z) and arg ¢’(z). In this section, if z#0, then argz
satisfies —wr < argz <.

THEOREM 5. For each z, 0<|z| <1, and for each ¢ € N,, we have

(10) arg 2 0.

z
=< < I
122 arg ¢(z) < arg 2" mzz

Equality holds only for the appropriate choice among the functions ¢(z)=
l(z, £1).

Proof. The inequalities certainly hold for Im z =0. Hence we assume Im z > 0.
It follows from (1) and (2) that each ¢ € N, is the limit of a weighted sum of com-
plex numbers, with positive weights, each of which lies in the upper half plane,
i.e., 0<argz/(1—tz) <= for —1<¢=<1. Moreover, it is geometrically clear that

arg(l—z) =[arg(l1—¢£2)],=1 < arg(1—¢z) < [arg(1—{z)],= 1 = arg(1 +2)

holds for —1 <7 =<1 and that

min argl(z,t)<arg ¢(z)< max argl(z,?)

-l1=t=1 -1=r=<1

also holds. Hence we have

Z
arg - —=arg Hz,—1)=<arg¢(z)<arg/(z,1)=arg lf

which we have established for all 0 < |z] <1, Im z> 0. A similar reasoning yields
the analogous result for 0 <|z| <1 with Im z <0. This completes our proof. {J
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COROLLARY 5.1. With the hypotheses of Theorem 5, we obtain

1 $(z) 1 >
<ar <arg——, Imz=0,
+z 72 17z <

arg 1

where, for Im z # 0, equality holds only for one of the functions ¢(z) =1(z, £1).

REMARK 3. Dunduc¢enko established the less precise inequality [1]

arg i(zz—)‘ <arcsin|z|, 0=<|z|<1, pEN;.

THEOREM 6. For each z, |z| <1, and for each ¢ € N,, we have the inequalities

1 , 1 >
arg (1x2)? <arg ¢’'(z)<arg 1727 ImzZO,
where, for Im z#0, equality holds only for the proper choice among ¢(z)=
I(z, +1).

(1

Proof. From (1) and (2) we obtain

I(z,1)
z

1 1 2
v@={" taod=]" (F22) ao.

Once again, the same reasoning as in the proof of Theorem 5 yields (11). [

COROLLARY 6.1. For ¢ €N, for |z| <1, we have |arg ¢’(z)| <2 arcsin|z|,
with equality only for the functions ¢(z)=1(z, 1) if z#0.

REMARK 4. For ¢ € N,, Dunducenko [1] showed that
larg ¢'(z)| < arc cos(1—2|z|?)

holds for |z|<1/V2. If one chooses the range 0 < arc cos(1—2|z|?) <, then
Dunducenko’s result (which is the same as ours in Corollary 6.1) holds for all z,
|z| <1.

COROLLARY 6.2. Each ¢ € N, maps each chord

1 1 1
Z|lmz=c¢, ——=<c<—F7=, [Z|=—
onto curves each of which intersects the lines Re w = constant at most once.

5. Bounds on the mean values of |$¢(z)|” and |¢’(z)|” on the circle |z| =r.

THEOREM 7. For € N,, 0<r<1, for p>1, we have
27 0 27T 0
So o (re’ )|”d05S0 |I(re'®, +£1)|P do.

Proof. From (1) and (2) and the Holder inequality we obtain
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27 . 2w 1 .
SO l¢(re;0)|1’d0550 [54 |l(ret6’ t)lpdu] do

(12) sgl_l [S;” |1(re"9,t)|»"d0] dp

IA

27 .
max So |i(re®, t)|? do.

~l=<t=1

But

[[(re®, 1)|? = rP(1—tre®)y=P*(1—~tre=")=#/2

— P § § (__l)k+n< _i/2)<—p/z)(tr)k+nei(k—n)9’
n

k=0 n=0
which, with (12), yields

T . ) _ 2
S; |op(re®®)|Pdf< max 2wr? E( p/2> (1r)%

—-l=r=1 k=0 k

k

This completes our proof of Theorem 7. O

o0 —_— 2 iy .
<2wr?}; ( p/2> r2k = S; |{(re’, £1)|7 do.
0

COROLLARY 7.1. For ¢ € N,, 0<r<1, and p a positive integer, we have

2 - r2 NPl p—1N\/p+k—1\/ r* \F
(13) SO |p(re )|Pd0527r<1_r2) k§=;0( A )( X )(“1—:»2)’

with equality only for ¢(z)=1(z, £1).

Proof. For 0<r<1, ¢ N, we have

27 . 2 r 2p
14 i9y|2P g < < ) do.
(14) So |#(re™)] So \1—2rcos 6+r2

If we set ¢ =e’ in (14) and if we use the theory of residues, we obtain

er do _ 27a(—1)? / dP~! It

o (1=2rcos0+r3)?  rP(p—D!\deP~ ' | 6=/ ) =)

which with (14) yields (13). ]
THEOREM 8. If ¢ € N,, and if p=1, then for each r, 0 <r <1 we have

2T i p 2T i0 p
SO " (re'®)| stSO |15(re®, +1)|? d.

Proof. A proof can be given that uses the same technique that was used in the
proof of Theorem 7. L]
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COROLLARY 8.1. If peN,, 0<r<1, and p a positive integer, then we have

2 e 20 Pl /p—1\/p+k—1 r? \K
So |#7(re™)|"db < (1-r?)? EO k k 1-r )’

with equality only for ¢(z)=1(z, +1).
Proof. We use the fact that

2
lé(z,t)E(l(zz;t)),

and then use Corollary 7.1. Ol

7. The class N;. Since the transformation z — 1/z yields a (1-1) correspon-
dence between N, and N,, it follows that results analogous to those above can be
obtained quite easily.
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