ON THE RADIAL LIMITS OF FUNCTIONS WITH
HADAMARD GAPS

D. Gnuschke and Ch. Pommerenke

To George Piranian, on the occasion of his retirement

1. Introduction and results. We consider functions f with Hadamard gaps, i.e.

.1y @)= az™ Elons1 (k=0,1,...),
k=0 Nk
that are analytic in the unit disk D. Let
(1.2) M(r)y=max|f(z)] (0=r<l1)
|z]=r

and let dim E denote the Hausdorff dimension, i.e.
dim E = inf{6: £ has §-dimensional Hausdorff measure 0}.

It is clear that 0 < dim E <1 for EC aD.

If (a;) is bounded then f is a normal function. Hence angular limits, radial
limits and asymptotic values are the same by the Lehto-Virtanen theorem [14,
p. 268]. On the other hand, if (a;) is unbounded then f is not a normal function
[15], and Murai [13] (see also [6]) has proved that f has the asymptotic value oo
at every point of dD.

We shall consider the radial behaviour at points § of dD. If ¥ |a;|=co then

(1.3) Re f(r¢) > 4+ as r—-1-0

holds on a set E with dim £ >0 if A >3 and with dim E =1 if n;;/n; — o; see
MacLane [11] and Hawkes [7, p. 28].

On the other hand, Csordas, Lohwater and Ramsey [5] have shown that, for
any A>1,

(1.4) > |lak| =, (ax) bounded
k
implies that (1.3) holds on a set E of positive capacity which also has positive

Hausdorff dimension. Their proof is based on results of Kahane, Weiss and
Weiss [9], and the same is true of the following generalization.

THEOREM 1. For \> 1, there are positive numbers «, 3,y with the following
property: If f has the form (1.1) and if

|ak1
la(),'l‘ sor o Iak

then there is a closed set EC oD with dim E = (3 such that

(1.5) S |ax| =, Fsa (k=D
k
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(1.6) Re f(r&)=yM(r) for ro<r<li, {€E.
Note that, by Sidon’s theorem [16, p. 247],
1.7 Y |ax| =0 M(ry > (r—-1-0).
k

We shall also prove the following result which shows, in particular, that Re f(z)
has the angular limit +o on E under the assumption (1.4).

THEOREM 2. Let f satisfy (1.1) and let

|ay|

(1.8) ay| = o, -0 (k- ).
Flad=e T Tay 70 ™

Then there is a set EC dD with dim E = 3> 0 such that,

(1.9) Re f(z)=yM(|z]|) for ¢€E, zeA, ro<|z| <1

Sor any Stolz angle A at 1 and rqo=ro(A). The constants 3 and v depend only on \.
Hawkes [7, p. 32] has proved that, if n, =2* and

Ak +1 a,£+6
(1.10) a;, >0, -], ——— >0 as k-
ay ag+ - t+ag
for some 6 >0, then
(1.11) lim LY 0 exists for teE

ro1-0 M(r)

where E is a set with dim £ =1. The methods used to prove the above theorems
seem to yield only a set with dim £ > 0, but not with dim £ =1.

The next theorem shows, however, that either some condition on the expo-
nents (like A > 3) or some condition on the coefficients (like (1.5)) is necessary for
any of the above assertions to hold for any ¢.

THEOREM 3. There exists a function f of the form (1.1) with A\ =33/32 such
that, for every ¢{ € adD,
(1.12) liminf Re f(r¢)= —oo, limsup Re f(r¢) = +oo,

r—1 r—1

(1.13) liminf Im f(r¢)= —oo, limsupIm f(r¢)= +oo.
g r—1
Our last result is connected with the following conjecture of Anderson [1]: If g
is analytic and univalent in D then there exists { e dD such that

I
(1.14) SO 2”(r )| dr < oo.
THEOREM 4. Let g be analytic and univalent in D. If
(1.15) logg'(z)= Y @z 2 s\>1 (k=0,1,...),
k=0 3

then there is a set E C 0D with dim E = 3 > 0 such that (1.14) holds for all { e E.
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Univalent functions for which log g’ has Hadamard gaps are often useful as
counter-examples; see for example [10, p. 274] and [14, p. 304]. Hence Theorem
4 makes Anderson’s conjecture more plausible.

In the final section, we discuss some open problems about radial limits.

2. Some lemmas. The following lemmas will be used to prove Theorems 1 and
2. Let |J| denote the length of the arc JC dD.

LEMMA 1 (Kahane, Weiss, Weiss [9, p. 6]). For A\>1 there are positive con-
stants & and v with the following property: If

J'
@2.1) g(2)= 3 apz™, by,
k=j Ny

then every arc JCdD with |J|=6/n; contains a subarc J' with |J'|=2y/n;
such that

i
2.2) Reg(§)24'yk2_|ak| for ¢telJ'.
=j

The next lemma is also due to Kahane, Weiss and Weiss [9, p. 17]. Our formu-
lation is somewhat different and makes its structure perhaps clearer. We there-
fore present a proof.

LEMMA 2. Let s=1,2,... and m=3,4,... and let
(2.3) S,={keN:vsm—(m—-1)s<k=wvsm} (v=0,1,...).

Let k, denote an integer in S, for which the sum Ef;}c_ s |aj| assumes its minimal
value A} and write

kyp1—s=1
2.4) A= |aJ-| (r=0,1,...).
i=k,
Then
k,—1
(2.5) A= 3 g|=(4,o+A)/(m=2) (r=1,2,...).
Jj=k,—s

Proof. It follows from the definition that

k—1 vsm—1
(m—DsA;< ¥ Y lal=s X |al.
keS, j=k—s J=vsm—ms

Since k,_;<(v—1)sm and k,.;—s—1>vsm—1 by (2.3), we obtain, after divi-
sion by s, that

(m—NA; <A, +A:+A,
because of (2.4). This proves our assertion (2.5). O
LEMMA 3 (Beardon [4, p. 683]). For v=1,2,..., let
(2.6) E= U I

.~ Sy dy?
Jppeeesd, =12 ’
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where I, ...j, (J1,...,J, =1,2) are disjoint arcs on oD such that, for j=1,2,

2.7 L iCli.j» Wj..jil=allj..;
2.8) dist(Z; ..j 1 1j...; ) =cllj .. |,
where q and c are constants with 0<q <1 and ¢>0. Then
o log 2
2.9 dim( Ev) = —
Vol log(1/q)

The final lemma connects partial sums and radial limits.

LEMMA 4. Let f be of the form (1.1) and let

k
(2.10) Tk = ‘Eo la;l, |ak|<ary (k=h)
ji=
where 0<oa=<1/2. If fedD and 1 -1/ny<r<1-—1/n;,, then
k
2.11) S =2 a;ismp+aKye (k=h)
j=0
(2.12) M@r)=(1+aKy)r, (k=h)
where the constants K, K,, K3 depend only on \; furthermore,
(2.13) A=r)|f(r$)|<=aKsmy (k=h')

where h’ = h depends only on N\, a and h.

Proof. It follows from (2.10) that

o
lak+1| = = Tk <2aTk, Tre1=Ti+ || <274

for k= h and hence by induction that
(2.14) laj| <2/ *ar,, 1;=2/7%r (jzk=h).
Since n;/n, <N ¥ for j <k, we obtain from (2.10) that

k _ k n;
> la|l(=r")= ¥ laj|—
=0 j=0 Ry

(2.15) /= )

s Ty
<7mptar N K<+ ——.
h kj=%+] h 1_1/)\
Since n;/ng 41 >N "%~ for j > k, we see from (2.14) that, for k = h,
) . © 1 nj
3 = 3 al(1-—)
(2.16) I=EE SR *

<ary, S 27 Fexp(=NF*H=aK, 7k
j=k+1

where K, < oo depends only on A.
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It follows from (2.15) and (2.16) that

k . .
S oai(r/ =1+ Y ai )| =7 +ak 7
j=0 J=k+1

k
Sy — 2 a; s
j=0

which proves (2.11), and (2.12) follows from (2.16) because
k )
M(r)y= Y laj|lri+ Y |aj|r'i < +aK, 7.
ji=0 J=k+1
Finally we see from (1.1) that
A=-n)|f o)=Y mla;|A=ryrti~!,
i=0

and, for k= A, it follows from (2.14) that this is bounded by
k ] © . . 1 nj
%Th'*‘a’rk[ )y ‘n”j'+ )y ki 2*’_"(1— )j]

k Jj=h Nk j=k+1 k41 R 1

Hence we obtain (2.13) by an argument similar to the one used above; note that
ny/ni < a if k= h’ for suitable 4’ = h. O

3. Proofs of the positive results. Proof of Theorem 1 (compare [5]). Let
and y be the constants of Lemma 1; we may assume that y<1/2. We choose
integers s and m such that
3 _6

— <.

3.1 Sty — )
-1) X 2y m-—=2

Then m and s depend only on A. By adding exponents n; with a, = 0 if necessary,
we may assume that \ < n;, ;/n; < 2. We now choose k, according to Lemma 2,
define ky =0, and use the notation (2.4) and (2.5).
For »=1,2,... we choose systems of arcs I;...;, €D (ji,...,J,=1,2) recur-
sively such that
36

(3.2) i = =120,

14

In order to obtain the next system of arcs, we divide I ; into three equal sub-
arcs Jy, Jy, J,. By Lemma 1, there are arcs

I ..j,=JiCh, I ;,=J3CJ
of lengths =2+/ng, . ,_s—1 such that

kyy1—s—1
(3.3) Re kg]k ap{"*=4yA, for §el; ;;, j=12.
It follows from (3.2) that
3.4) dist(Z;,...j 1, 1j...; ») = [Jo| = 8/ny,

and (3.1) shows that
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2y >_2yxy“ S 36

'[. ..'>
Jreedy 1= =
g Pk, —s—1 Ry s

v+1 v+1

Hence (3.2) holds for »+1 if we shorten 7 ; ; somewhat. This completes our

construction.
We deduce from (2.3) that

3.5 kyy1i—k, <(v+1)sm—yvsm+(m—1)s <2ms.
Hence we obtain from (3.2) that, for j=1, 2,
|Ij1...j,,j| _ Ry, 2(_1_),(”1—/(”2)\—4”15
|IJ'1---J'y| Pk, 1 N?

Thus (2.7) is satisfied with g =\"*"S, and (2.8) is satisfied with c =1/3, by (3.2)
and (3.4). Hence we conclude from Lemma 3 that

(3.6) dim E =

B, E=NE,

and 3 depends only on A.
Let now {e E and k=!"=/+2ms. We choose p such that k, <k <k, .;; note
that k, =/ by (3.5). We write

k p=1 sk, p1=s=1 k4 1~=1 k
(3.7) sae=3 (5 4 S )e 3 am
j=0 v=0\ j=k, j=k,p-s/ j=k,
Since ¢ e E, for all », it follows from (2.6) and (3.3) that
k p—1 k
Re ¥ a;{"= 3 (4yA,—A5 )~ 2 ajl.
j=0 »=0 j=k,
Since 2y =1 we therefore see that, by (2.10) and (2.5),

k n—1 k
Re ¥ a;¢"—2yre= X (2vA, 245012 % |aj|
ji=0 i=k

v=0 P

‘u—l 6 n kﬂ+1—|
2E<hw~—yﬁEA%3z|m.
y=0 m_2 v=1 jzkﬂ,

Using (3.1) and (2.14), we see that this expression is bounded from below by

! & ko q—k

X YA+ X AJ=3- 20 Rary

v=0 v=1
and therefore by (7—3-22’"5a—a)rk# because of (2.4), (2.5), (2.10), and (3.5).
This is non-negative if « is chosen small enough depending only on A\. We have
thus proved that

k
(3.8) Re X a;{" =2y for ¢€E, k=1".
ji=0
Let {€ E and rg<r <1 where rg=1-—1/n;.. Then1—1/n, <r<1-—1/n; ., with
k=1’. Hence we obtain from (3.8) and from Lemma 4 that
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Re f(r§) > 2yr— 11— oK 74

3.9) N
- 2’Y C\!K]

B l—OdKz
if we choose a (depending only on \) sufficiently small. Since M(r)— o as

r—1-0 by (1.5) and (1.7), we conclude that (1.6) holds if rg is suitably chosen
with r{i=ro<1.

3
M(r)—1,= TTM(r)-—T/

Proof of Theorem 2. Let A be a Stolz angle at 1. Then

Jd ,
—1L|7$q<oo for re’’ e A.

Hence we deduce from (2.13) in Lemma 4 that, for re’’ e A, I£] =1,

frO)—frie’®)| = S:f’(ri‘e”)re”dt

(3.10) X
= %‘_3—:{(- |19| <akK;3;qry.

The assumptions of Theorem 1 are satisfied where now « can be made arbi-
trarily small and /’ depends on «. Let E be the set with dim £ = 8 constructed in
the proof of Theorem 1. It follows from (3.9) and (3.10) that, for {€ E and
re’’ e A, 1-1/np<r<1,

Re f(rie'’) > (2y—Kia—Ksqa)ry—1,
and this is > %'yrk —77if o = a(A) is chosen small enough. Hence it follows from
(2.12) that

Re f(rie’®)>yM(r) if ro(A)<r<]l. O

Proof of Theorem 4. By (1.15) the function

G3.11) fD)=logg' @)= T az™

has Hadamard gaps. We see that

(.12) S; & (r )| dr = S;eReﬂf“[f'(rm dr.

In the case that ¥ |ay| = M < it follows from (3.11) and (3.12) that, for every
ceaD,

1 1 o
So |g"(f§)|drseMSO > nglag|r*ldr < MeM < oo,
k=0

Let now X |a;| = . Since g is univalent by assumption, it follows [14, p. 21]
that

g"(z)

_ 2 ’ — _ 2
=z (=) =01—]z|*) ()

<6 for zeD.
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Hence (a;) is bounded, and we obtain from the result of Csordas, Lohwater and
Ramsey [5] (or from Theorem 2) that, with a constant ¢; >0,

Re f(r$)< —cM(r) for {e€E, ro<r<l1
where dim E = 3. Thus it follows from Sidon’s theorem [16, p. 247] applied to
f(rz) that
(3.13) Re f(re)<—cy Y, |ag|r™ for {e€E, ro=r<l,
k=0

with ¢, > 0. We therefore conclude from (3.12) that, for { e E,

1 ‘ 1 o
J,,lerodr=| exp(—CzEIakIr"k) S nelaglr = dr
ro ro k k=0

<S0 exp(—cy &) dE < oo,

4. Construction of the example. The proof of Theorem 3 is based on two ele-
mentary lemmas.

LEMMA 5. For every \>1, there exists £ >0 such that, if f is of the form
(1.1) and

4.1 lax| =nf, ri=e ™

for k=0,1,..., then
1
(4.2) [f(z) —axz™| < > |a|ri* Sor |z]=r.

Proof. It follows from (1.1) and (4.1) that, if |z] =r, then
—_ . £
lf(z) akznkl SeE 2 <L1J_e—nj/nk)

\ak|rik =k \ Nk

. k £
<3 ()\J“"e“)‘j )

j#k

(4.3)

because nj/nk_<_>\j‘k (j<k), and nj/nkz)\j"k (/> k) and because xe ™ in-
creases for 0 < x <1 and decreases for 1 <x < co. The last expression in (4.3) be-
comes <1/12 if we choose £ sufficiently large. O

LEMMA 6. Let g € N. For every ¢ € dD, there are infinitely many m e N such
that
T
18 °
Proof. Let ¢ =e'? with 0 < 9 <27 and k € N. We consider the binary expansion

4.4) max(Re[i£2"7], Re[£2739]) = sin

2kqd/n = integer+ ¥, d,27", d,=0,1

n=1
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where we allow, contrary to the usual convention, that d,, is eventually 1 but not
eventually 0. Let j be the first index such that d;=1 and let m = j+ k. Then

2"qd=2np+7n+7, pel, 0<r=<m,

hence
Re[{2"*B9) = cos 67= cosg for 0<7=< -17-;—,
Re[i {2"9] = sin 7 = sin — for — < < I
—UTETR 18 718
Re[{“ 79 = —cos37=cos— for —<r1=<m.
6 18
As k was arbitrary we see that (4.4) holds for infinitely many m. Ol

Proof of Theorem 3. We arrange the mutually distinct numbers
4.5) 2"q (m=0,1,2,...; g=1,3,5,7,11,15, 21, 33)

into an increasing sequence (r;) and write Ay = ng.1/ng. Then either N\, = g/(27q")
or \,=(2”q)/q’, where p is a nonnegative integer and g and g’ are integers from
the finite list in (4.5). In the first case, the inequality A\, > 1 implies that 2°g’ = 32
and therefore \; = 33/32. In the second case, N\, =40/33 (if ¢’ =33) or A\, =22/21
(if ¢’ =21). Therefore N\, = 33/32 for all k. ,

Let £ be determined as in Lemma 5 and let a, = ¢, n,f where

(i) ce=i for m=2", c,=1 for n,=2"3,
(ii) c,=—i for ny=2"5, c¢x=—1 for n=2"15,
(iii) c,=—1 for n;=2"7, c¢x=i for n=2"2l,
(iv) ce=1 for mp=2"11, c¢y=—i for n=2"33.

Let now ¢eD. It follows from (4.2) and (4.1) that

Re f(r¢ ) > |aklr""(Re 5'""-%) =e‘5n1§(Re[Ck s“"ﬂ—-é—)

for all k. We choose m such that (4.4) holds and consider the value £ for which
n,=2" or n;,;=2"3; from (i) it follows that

1 1
R —tptmf gin &~ \ > —_ p—tpkm
e f(rr$)>e (sm T 12)>12e 2
and the first of the assertions in (1.12) becomes obvious. To see that the first
assertion in (1.13) follows from (iii), we consider the exponents n; =2""7 or
n, =2"11. The second assertions in (1.12) and (1.13) follow similarly if we use
(ii) and (iv). O

5. Some open problems. There remain a number of interesting open problems
about the existence of radial limits. Let f be an unbounded function with Hada-
mard gaps and let
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(5.1 E,={¢€dD:|f(r¢)| » o asr—-1-0j}.

Anderson and Hornblower [3, p. 136] have asked whether E, is always non-
empty. If fis the function of Theorem 3 then Re fand Im f have no radial limit
at any point. But this does not exclude the possibility that E,# & because
Sf(r¢) might “spiral” to oo,

We could also ask whether it is always true that dim E. is > 0 or even =1. This
is motivated by Theorem 1 and the result (1.11) of Hawkes [7].

Finally, under what conditions is it true that mes £, = 27 ? This would mean that

(5.2) lim |f(r¢)|=c for almost all {eadD.

r—-1-0
By the Privalov uniqueness theorem [14, p. 325], this is impossible if (ay) is
bounded because then radial limits are also angular limits. Now let

k
=Y laj|* (k=0,1,...).
j=0

Anderson [2] has conjectured that (5.2) holds if

|ak|2

(5.3) -0 (k- ), zti<oo.

Ly k Lk
This was suggested by results on random power series; see for example [8] for
their connection to lacunary series.
The only known results seem to be for functions with stronger than Hadamard
gaps. Murai has proved (in a paper [12, p. 143] submitted in 1976) that (5.2)
holds if (|a,|) increases and if

log ny "

Hawkes [7, p. 27] has shown that (5.2) holds for a; > 0 if (5.3) is satisfied and if
furthermore

Ny e 1
2 ay <o, E —
Kk Miai k=1 j=1 Lj(tx— t)
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