NONCOMPACT RIEMANNIAN MANIFOLDS WITH
PURELY CONTINUOUS SPECTRUM

Leon Karp

1. Introduction. Let (M", ds?) be an n-dimensional Riemannian manifold
with Laplacian A, where

1 d o d
Au= Tg Eij(ﬁ\/gguwto
in local coordinates. Here ds? = 2 &ij dx'dx’, g= det(g;;), and (g = (gif) -1
It is well-known that if A" is compact then the spectrum of A is discrete ([5]).
On the other hand, if M " is noncompact the spectrum may be purely continuous,
as it is for Euclidean space (and hyperbolic space, see [9]), purely discrete (see
[4], [11], [16]), or a mixture of the two types, possibly with eigenvalues embedded
in the continuous spectrum (cf. [10]).

It was first shown by Pinsky [20] (for rotation invariant metrics) and then by
Donnelly [10] (for general metrics) that if M is simply-connected and has curva-
ture K(r, 0) = —k? with K - —k? <0 and angular derivatives K, and K, — 0 (all
with sufficient speed) as r — oo, then the Laplacian has no eigenvalues (i.e.,
the spectrum is purely continuous as it is for the constant curvature case K =
—k?<0). In this paper we prove an analogous result for manifolds with K — 0,
involving only conditions on K and K,. Our method is related to Rellich’s original
work on this problem for Euclidean space [23], while Donnelly uses a modi-
fication of Kato’s extension [17] of Rellich’s work to operators with variable
coefficients. The general Rellich-Kato procedure, which involves estimating
the growth of integrals of solutions of the eigenvalue equation (in this case
Af+M\f=0) has already proved itself useful in mathematical physics (cf. [1],
[25]).

It is a pleasure to thank M. Pinsky and H. Donnelly for sending us preprints of
their work. As in [10] and [20], we write out the proofs only for two-dimensional
surfaces for simplicity of exposition. There is a known technique for translating
these results to manifolds of dimension =3 which has already been sketched
in [10].

In discussing eigenvalues (as opposed to the continuous spectrum) it is impor-
tant to fix a specific self-adjoint extension of a given symmetric operator. For this
reason we give, in Section 2, a quick proof of Gaffney’s result [12] concerning the
essential self-adjointness of A.
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2. Preliminaries: essential self-adjointness and Gaffney’s theorem. We take
[22] as a basic reference for results on self-adjoint operators.

Let 7 be a densely defined symmetric operator on a Hilbert space H, with
adjoint operator 7*: T < T*. Recall that T is essentially self-adjoint if and only if
its closure T is self-adjoint, and this occurs if and only if T has a unique self-
adjoint extension A. In fact, A=T.

Now the existence of isolated eigenvalues of finite multiplicity in the spectrum
of a self-adjoint extension of 7" depends, in general, on the extension chosen.
Thus a discussion of the non-existence of eigenvalues in the spectrum of (a self-
adjoint extension of) T'=A, where say A: C¥ — L? initially, takes on a well-
defined (i.e., only metric dependent) meaning only if A is essentially self-adjoint.
This motivates our discussion of

GAFFNEY’S THEOREM [12]. If (M", ds?) is complete then A, defined on C{
initially, is essentially self-adjoint.

Gafiney’s original proof of this result used some functional analysis together
with a special representation of A. A second proof of this result was given by
P. Chernoff [7] as a corollary of some results concerning hyperbolic equations.
We give a third proof which uses elliptic theory. We use the following standard
fact (cf. [22]): A densely defined symmetric operator 7 is essentially self-adjoint
if and only if Ker(7T*+i)=0. Here T: D(T) € H - H and H is a complex Hilbert
space. Using this fact, the proof of Gaffney’s theorem is very simple. We take
A=Ton CF(M") c complex L>(M", dvol). Then:

(i) It is easy to check that fe D(T*) if and only if fe L? and Af(defined as a
distribution) € L?, and then 7*f=Af. Thus if fe Ker(T*+i) then fe L>’NC*
(by “elliptic regularity”, cf. [19]), T*f= A f in the classical sense, and A f+if=0.

(ii) LEMMA. If (M",ds?) is complete, fe C°NL? and Afe L?, then Vfe L?
and

—SMfAfdvolz SM IV £]2 dvol.

It follows immediately from the lemma and (i) that Ker(7*+ i) =0. To prove the
lemma we choose an exhaustion {K;} of M" (i.e., K;CM, K,;Cint(K;,,) and
M = UK;) and functions y; € C5 (M) withy,;=1on K}, y;=0onM—-K;,,, 0<
y; =<1, and sup, ;|V{;(x)| < oo (cf. [24] p. 187). Then, with ¢ =,
SM div(y2F V) dvol =0

and so

2 2 2 7 _ =
2.1) SMq, V£ dvol+SM¢ FAf dvol = 2SM WYY, VY dvol.

Now

=

SM V2| V|2 dvol +2 SM |V, [2|f12 dvol,

t\.)|»—-ﬂ

'2S YRVY;, VFy dvol
M
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since 2ab <ja*+2b%. Putting this into (2.1) and noting that fAfe L', ¥, -1,
and sup|Vy;| < oo we find that |V/f] € L>. But then

'2 SM ¥ KV, Af)’ < SAj |V¥;]?| f]* dvol + SAj Y| Vf|*dvol,

where A; =K, — K (since Vi; =0 off A;), and so the right side of (2.1) tends to
zero as j — oo (since f and V fare in L?). This completes the proof of the lemma,
and thus also of Gaffney’s theorem. Ll

REMARKS. (a) This proof extends immediately to the Hodge Laplacian on
forms and certain other geometric differential operators.

(b) The proof of Gaffney’s theorem given above was described in the course of
lectures on elliptic equations given by the author during the Special Year in Dif-
ferential Geometry at the University of Maryland, College Park, 1981-1982. A
similar proof has recently been given by Strichartz [26] who uses results of Yau
[27] which are closely related to the lemma above.

We conclude this introductory section with the following consequence of
essential self-adjointness of A. For convenience, we write A for the unique self-
adjoint extension of A (which is initially defined on Cy°).

PROPOSITION. Let (M", ds?) be complete. Then the self-adjoint operator A
has domain D(A) = {u e L*: Au, defined in the sense of distributions, is in L*}.

Proof. The operator A coincides with the Friedrich’s extension of A on Cg°
(since A on Cy° has a unique self-adjoint extension). The characterization of
D(A) now follows from a general result for Friedrich’s extensions (cf. [28,

p. 318]).

3. The main theorem. Let M" be a simply-connected manifold of non-
positive curvature. Then given pe M", exp, is a difftomorphism and we can
introduce geodesic polar coordinates (r,0’,...,0") e R* xS"~! so that ds*=
dr2+ 3 y,;;(r, 0) do’ d6/, (cf. [14]). If G = +/det v;; then the Riemannian measure
is given by dvol = GdrAdf where df=d0'A--- AdO" is the standard volume
form on S"~!. Let S(r) = {x:dist(x, p)=r} and B(r) = {x:dist(x, p) <r}. Then

SmR)jE=S:dWSSU)fdJUﬁ

where o(r) = Gdf = the induced measure on S(r). Note that when n=2, ds?=
dr?+ G?(r, ) d6?, and the Jacobi equation

3.1) G, +KG=0,

where K (r, 0) is the Gaussian curvature, relates G and K. Regularity of ds? at p
leads to the conditions

G0+,60)=0,

(3.2)
G,(0+,0) =1.
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If n> 2 then G is related to the sectional curvature via the Jacobi system of equa-
tions [6].

It is known (cf., [6, p. 353] and [13, Chapter 2]) that if M " has nonpositive
sectional curvature then

(3.3) (GY"=D) >1 and G=z=r""L

If n=2 this follows easily from (3.1) and (3.2) by comparison techniques. For
n>2 the method is similar.

The Laplacian A can be written in terms of (r, #). We mention explicitly only
the formula for n=2:

_1 1w
(3.4) Au= = (Gu,),+ G<G)0.

For the general case see, for example, [14, p. 445].

Using the coordinates (r, ) we can state our main result. As in [10] and [20],
we restrict ourselves to a complete discussion in the case n = 2. This considerably
simplifies the exposition. The translation to dimension greater than two is essen-
tially standard and has already been described briefly in [10].

THEOREM A. If (M?,ds?) is a complete simply-connected surface of non-
positive curvature K that satisfies

. 1 2e
) K=- (r+e)210g(r+e) '<l+ r )

and

3.5) ()" sup S: K,|rlog?(r+e) dr=2,
0

then A has no eigenvalues (i.e., the spectrum of A is purely continuous).

COROLLARY. If (M, ds?) is a simply-connected surface of nonpositive curva-
ture K with ds? radially symmetric about some point pe M and K = —1/(r*logr)
for all r=distance to p =some fixed ry, then the spectrum of A is purely
continuous.

REMARKS. (a) It has been shown by Pinsky [20] that even if K <0, m M =0,
and ds? is radially symmetric there still may exist eigenvalues in the spectrum of
A. See also the remarks in [9]. Moreover, there are known examples of radially
symmetric metrics on R? with K < 0 for which the spectrum of A is discrete (i.e.,
consists entirely of isolated eigenvalues of finite multiplicity). For example, if
ds?=dr2+ G(r)? d6? (where G satisfies G"+KG=0, G(0)=0, and G'(0)=1)
and K = K(r) is any function with K(r) —» —oo as r - oo (cf. [11] and generaliza-
tions in [16]), then the spectrum is discrete.

(b) It may be remarked that the condition K= —1/(r?log r) implies that
(M?, ds?) is conformally equivalent to the plane C (cf. [2] and the discussions in
[13] and [18]). This result is generalized in [15].
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(c) Kato’s procedure [17], which is used by Donnelly [10], may also be used to
prove the nonexistence of eigenvalues when K — 0 as r — oo, if K, Kj, and Ky all
tend to zero rapidly enough. We leave this result to the reader and emphasize that
the theorem above only imposes conditions on K and Kj.

Theorem A follows from the more general Theorem B.

THEOREM B. If the metric of a complete simply-connected surface of non-
positive curvature has the representation ds? = dr*+ G(r, 0)* d6?,

(3.6) " [max Gir, 0)] L gr= too
6
and
|G|
31A14p G <2,

then the spectrum of A is purely continuous.

COROLLARY. If the simply-connected surface of nonpositive curvature has a
complete radially symmetric metric about some point, ds*=dr*+ G(r)* do?, and
{7 dr/G(r)= +oo, then the spectrum of A is purely continuous.

REMARKS. (a) Theorem B and its corollary are rather sharp. The example in
[20, p. 615] with G ~ e*" shows that even when K <0 and G = G(r) the condition
{171/G = +o is necessary. The example in [10] with G(r) =e ™" shows that even
when exp is a difftomorphism about some point pe M, and G =G(r) with
{7 dr/G(r) = + oo, the hypothesis K <0 is still necessary. Similarly, the examples
of (even rotation invariant) metrics with discrete spectrum (cf. [4], [11], [16])
either violate (on a compact set) the conditions K <0 or violate the condition
[1°ds/G = oo.

(b) A condition similar to supy(|Gy|/G) <2 appears in [21].

(c) The condition {;° ds/G = « is important also in [8].

We first prove Theorem B and then show how Theorem A follows from
Theorem B.

Proof of Theorem B. Let fe L? be real and satisfy A f+\f=0, where Af is
defined as in the proposition at the end of Section 2. It follows from standard
elliptic theory (see [19], for example) that we can take fe C® and Af has its
classical meaning. If A\=0 then f is an L2 harmonic function and hence a con-
stant. (See [26] or use the lemma in Section 2.) Since vol M = +o, as a conse-
quence of the fact that G=r, it follows that f=0 if A\=0. Assume then that
A\ > 0 (again, by results of [26] or from the lemma, it follows, as just above, that
we cannot have A <0 unless f=0). Set

F(t)= Ssl G(t, 0)2£(t, 9)2 do.
We have
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F(t)=2 Ssl dOG2f, f+2 §Sl d9 f2G, G.

Integrating and using the equation A f+ X\ f=0 we obtain

3.7) F(r)=—)\—§0rdt Ll d0G*f, Af+2§;dtSS] do f2G, G.

Using (3.4) and integration by parts we have

S;dt Ss, diG*f,Af= S;dtg WG ft[(Gft)’ <{§)6]

3.8)

1 2_ |\’ R N.)
5 Lo d0Gn={ e[ an| S b E s 4,

and, since |ab| =< 1/2(a2+ b?),

SrdtS do gyl = Lsup| G2 5 X [f, nyy. ]Gdtd()
0 2 B(r) G
(3.9) 1
o 2
== \% 1.
2;1(1,[; G gB(r)I JI dvo
Combining (3.7)-(3.9) we find
(3.10) xg f2G, dvol < E(r)+ — sup’ Gl S |Vf|2dvol,
B(r) 2pn G B0

where
1

)N 1 1
E(r)=—F(r)+— >do—— 7 — =G db.
(r) > (r)+ > SS(r) Gffdo 5 L(r) Jé G do, and do do

From the lemma of Section 2 we see that Vfe L? and {,, |Vf|*dvol = \ [, f2 dvol.
We claim that lim inf, _, o, £(r) =<0 Assuming this for a moment, we can choose
an appropriate sequence r = ry — oo in (3.10) and obtain

1 |Gol \ ,2
xS(ct—z sup =2+ )f dvol <0,
thus completing the proof. In fact G, =1 [(3.3)] and if G,=1then K =0 and the
theorem is trivial. If G,>1 somewhere then f vanishes on the open set where

G, >3 sup(|Gg|/G) and, consequently, everywhere [1]. To prove the claim we
note that

14+ \- , 2 1
E(n=-—2= (mglx G)[Lm V£ do+SS(r) f a’o]—H(r)

and lim inf, , , H(r)=0. In fact, if H(r)=c> 0 for some constant ¢ > 0 and all
r greater than some r,, then

14+ 2 5 oo -1 B
2¢ <SM |V£] +5Mf >Z Sro [m(?x G(¢, 6)] dt = + oo,

contradicting Vfe L2, This completes the proof. ]
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In order to prove Theorem A we will require some preliminary results.

PROPOSITION. Let (M, ds?) be a complete Riemannian 2-manifold.
() If the Gaussian curvature K satisfies

- —1
~ r2(x)log r(x)

Sor all r(x) > some ry and r(x) = dist(x, p), p fixed, then in geodesic polar coor-
dinates (r, 0) centered at p, G(r,0) < Arlogr for some A>0 and all r = ry.
(b) If the Gaussian curvature K satisfies

—1 2e
K> 1+— = dist(x, p),
= (r+e)’log(r+e) ( + r )’ r=dist(x, p)

then for all r=0, G(r,0)<rlog(r+e).

Proof. Let Gy(r,0) =rlog(r+e). Then
__G/r =KZ _G(J)/ ,
G Gy

It follows that G < G, (cf. [18]). This proves (b). The proof of (a) is similar. [

G(0,0)=Gy(0,0)=0, and G,(0,0)=G,,(0,0)=1.

As an immediate consequence we have the following.

COROLLARY. If (M?,ds?) is complete and the Gaussian curvature satisfies
the conditions in (a) or (b) of the Proposition, then

- -1
Sl [max G(r, 0)] dr = +oo.
0

REMARK. Since, for e¢> 0, the function G,(r)qer=r(logr)'** for r=2 (and
smooth on R* with G,(0) =0, G/(0) = 1) satisfies

-G/ —(1+2¢)
—Y =K,z F =2,
G, ““ r’(logr)'* orr
the conditions of the proposition are the weakest possible that still yield {7°1/G =
+oo (cf. [18]). 0

We can now give the

Proof of Theorem A. On the basis of the Corollary to the Proposition,
Theorem A will follow from Theorem B if it is shown that sup,(|Gy|/G) <2
follows from hypotheses (i) and (ii) of Theorem A. Now G”+ KG =0 so that
Gi+KGy= —K,G. Since Gy=(Gy),=0atr=0, Gy(r,0)={o R(r,t)(—K, G) dt
where R(r,¢) is the Green’s function (for the initial value problem) for the
operator L =d?/dr*+K. Since G and H =4.;—G || ds/G 2 are linearly indepen-
dent solutions of Lu =0 on (0, ©) and the Wronskian HG'—GH’ =1, we have

R(r,1)=G(r,0) H(1,0)— H(r,0)G(1,0) = G(r,0) G(1,0) | %Si

r
t
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for O<t<r. Thus

and

- ds

t szt

Gg _ r
o n0=| Kt 0607 |

=} 00 ds
2
SSl;p So <|K9|G(t, 0) S: 2>dt

sup
M

<sup X: |Ko(t, 0)|tlog?(t+e) dt,
9

since {7 ds/G? <1/t (recall that G(s, 8) = s if K <0) and G(¢, 0) < tlog(¢+e) (as
in the Proposition). This completes the proof of the Theorem. The corollary
follows in the same way (from Theorem B and the Proposition) even though it
only assumes that K = K(r) = —1/(r2 log r) outside a compact set.
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