A CLASS OF WASSERSTEIN METRICS
FOR PROBABILITY DISTRIBUTIONS

Clark R. Givens and Rae Michael Shortt

0. Introduction. There are several natural metrics that one can place on spaces
of probability distributions (or ‘‘laws’’). These include total variation, Prohorov’s
p metric, dual norms induced by spaces of Lipschitz functions, and the so-called
Wasserstein distance. A discussion of these is to be found in Dudley [4], espe-
cially in Lectures 8, 18, and 20. See also [3].

The Wasserstein metric seems to have arisen first in connexion with the trans-
port of mass problem. In a certain form, this dates back to 18th-Century work of
Monge, but perhaps the first significant modern research was due to Kantoro-
vich [8]. The realisation that the Wasserstein metric can be taken as a reasonable
distance on spaces of random variables or probability distributions was first
expressed in a paper of Kantorovich and Rubinstein [9], where the problem is put
in the context of infinite-dimensional linear programming, and a duality theorem
is proposed. This line of thought continues in Kemperman [10]. A general, ab-
stract context for the metric is to be found in Szulga [16].

Although natural and far-reaching as a theoretical tool, the Wasserstein metric
has a definite drawback: explicit calculation is difficult for most concrete
examples. For distributions on the line, the problem is not severe, and there is a
result of Vallander [17] to cover this case. In some unpublished work of Neveu
and Dudley, the suggestion was made that a somewhat altered (L”) version of
the Wasserstein be considered. The present paper contains a calculation of the L?
Wasserstein distance between arbitrary n-dimensional Gaussian distributions.
The problem can be reduced to a Lagrange multiplier optimisation: this calcula-
tion forms §2 of the paper. Section 1 presents some general results concerning
the family of L” Wassersteins for 1< p < o, whereas §3 concludes with a few
open questions and speculations.

1. The L? Wasserstein metrics. Throughout this section, (S, d) represents a
complete, separable metric (Polish) space and 0 a fixed but arbitrarily chosen
point in S. For each p with 1 < p <o, define 9, =M, (S) to be the collection of
all probability measures (i.e. laws) P on (the Borel sets of) S for which

SS d”(X,0) dP(X)

is finite. Let M (S) be the set of all laws on S with bounded support. It is easy
to show that the spaces 91T, do not depend on the choice of the point 0.

Let P, and P, be members of 9, (1<p<o). The L” Wasserstein distance
between P; and P, is defined by
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1/p
0 W, Py, Py =(inf [, ) du(x, 1))

the infimum being taken over all x in D(P;, P,), the set of all laws p on §X S
with marginals P, and P,. The case p=1 gives the usual Wasserstein. A simple
triangle inequality shows that W, is finite for laws in 9,. The L* distance is
defined as

) Weo (P, Py) = infl|d(X, V)| &,

where the superscription indicates that the usual L™ norm is taken with respect
to u. Again, the infimum is over all u in D(P;, P,) and is clearly finite for laws
in M.

The lemma and proposition that follow will prove quite handy in our analysis
of W,.

LEMMA 1. Let pg, p1, 12, ... be a sequence of laws on SXS, each of whose
marginals is a member of M ,(S), 1< p<eo. If p, = po (weakly) as n = o, then

3) lim indep(X, Y)du,(X,Y)> S dP(X,Y) duo(X, Y).

n—> 0

Proof. We write
) [ a7, Yy dun= | il (X, ¥): d?(X, ) > 1) dr.
An application of Fatou’s lemma and the usual Portmanteau theorem for weak

convergence yields the result. a

PROPOSITION 1. Given laws P, and P, in M, (1< p <), the infimum in (1)
is attained for some law p in D(Py, P;).

Demonstration. We take first the case where p<oo. Let p;,u,... be a
sequence of laws in D(P;, P,) such that

®) [ a7(x, ) duy < WE (P, Py +1/m.

Noting that D(P,, P,) is compact for weak convergence, we may produce a sub-
sequence u, ) converging as kK —> oo to a law u in D(P,, P;). Using Lemma 1 and
(5), one sees that

1/p
(larceryan) " <w, i, P
The infimum is thus attained at u.
For the case p =, again choose u;, u3,... in D(Py, P,) with
|d(X, Y)| % < W (P, Py)+1/n.

Put B,={(X,Y)ESXS:d(X,Y)< W (P,P;)+1/n}. Then p,(B,)=1 for
all n>m. As before, let p, ), —p as k — oo. Since each By, is closed, u(B,,) =1,
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and so u(BNB,N ---)=1, proving that
ld(X, V)| &) < Wea (P1, Py).
Hence they are equal. O

PROPOSITION 2. The Wasserstein functions W, are metrics on the sets I, for
1<p<oo.,

Demonstration. The only point requiring a certain subtlety is the verification
of the triangle inequality. We check the case p < co; the situation for p = oo is sim-
ilar. For notational ease, put §;=S5,=383=3S. Given ¢>0 and Py, P,, P; in O,
let u;; and u,; be laws on S, X S, and S, X S3 with marginals P;, P,, P; for which

1/p
Wp(Pl,P2)=<Sdp(X, Y) dﬂ-lZ) and

1/p
Wp(Pz,P3)=(Sdp(Y,Z) d,u23> ;

we have used Proposition 1. Then let u be a law on S; X S, X S; with bivariate
marginals p;, and u,3. For a discussion of the existence of such a law (mathe-
matical folklore), see Theorem 5 in Shortt [13]. Let u;3 be the marginal of x on
S, X 83. Then, applying Minkowski’s Inequality in L?(u),

R 1/p
W,(P1, P3) < (S d*(X,Z) dun)

1/p
< (S (d(X, Y)+d(Y, Z) du(X, Y, Z))

l/p

I/p
<((erex vy dms) o+ (a0, 2) doos)
=W, (P, )+ Wy (P, P). 0

As was mentioned in the introduction, a fair number of metrics have been
placed on spaces of probability measures. We recall two such presently. For any
real function f on S, define

[f ||« = sup|f(x)| (supremum norm)
X€ES

|VﬂLzﬂm|fu3—fUH
x=y  d(x,))
[ =1 oo + LA -
If v is a finite signed measure on S, then we define its dual Lipschitz norm as
[v(|z=sup{|{ fav|: | fll.<1}.

THEOREM (Kantorovich-Rubinstein). For any laws P, and P, in 9,(S), one
has Wy (P, Py)=|P,—P,|f.

(Lipschitz semi-norm)
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Proof. See Fernique [5]. For related results, extensions, and partial proofs,
consult [4], [9], and [10].
For any two laws P; and P, on S, the 3 distance is defined by

,3(P1,P2)=5up{§fd(P,—P2): ”fHBL<1}-

See Dudley ([4, Lecture 8] or [2, Theorem 9]) for a proof that 8 is a complete
metric inducing the topology of weak convergence.

PROPOSITION 3. For any two laws P, and P, on S, the following inequalities
obtain:

(1) B(Py, Po) W\ (P, P,); and

(2) Wy (P, P)<W, (P, Py) for ISp<p’< o,
In addition,

() lim, o W, (P, Py) =W (P, P,).

Demonstration. (1) follows immediately from the Kantorovich-Rubinstein
theorem and the definition of 3.

For (2), note that the case p’= o is trivial, whereas Jensen’s Inequality applied
to f(X,Y)=dP(X,Y) and the convex function ¢ (x)=x”"? yields the result for
p’'<oo,

For (3), put L=lim,- o W,(P;, P,). From (2), L <W4 (P, P,). To prove
equality, we exhibit the case W, (P, P,) <o; the other case invites a similar
argument. Given ¢ >0, let u, be a law in D(P,, P,) with

1/n
(CECR T MES A RELALRA)

As in previous arguments, let p, ) — n weakly as k — oo,

Case 1: M=|d(X,Y)||{ is finite. Then put U={(X,Y):d(X,Y)>M —¢}
and note that u(U)>0. Since U is open, one has p,),(U)>p(U) for all large k.
Then

Wiy (P1y P2) 2 ey (U (M =€) 2 p(U) " P (M —e).

Letting k — o gives L 2 M —e¢. Let € evaporate: L =M as desired.

Case 2: ||d(X, Y)||# is infinite. Then replace M in Case 1 with an arbitrary posi-
tive integer and set U={(X, Y): d(X, Y)>M}. The same reasoning applies. O

Proposition 3 implies that on their common domain, the topologies induced
by the metrics W, are ordered in strength. For example, convergence of laws
P, — P for any W), implies the usual weak convergence. In general, the W, give
rise to distinct topologies, as the following shows.

EXAMPLE. Let S=R, the real line under its usual metric. For each x € R, let 6,
be the point mass at x. If £ is a real-valued random variable with law £(&) =P,
then W, (P, 6y) =| |, the usual L? norm of ¢. By choosing &, =0 in mean of
order p but not order p’> p, one sees that the topologies induced by the W), are
indeed distinct.
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The analogy between the spaces (9, W,) and the Banach spaces L” is ex-
tensive. An explicit link is made in the case where S=R. Then the map send-
ing an L? element £ to its law £(£) is contractive from L” to I, that is,
W,(£(&), £(n)) <||§ —n||,. Using this idea, one proves the following.

PROPOSITION 4. If (S,d) is bounded, then the spaces I, coincide for
1< p< o and the metrics W, induce the topology of weak convergence for
I<p<co,

Demonstration. Suppose that P, — P as n— o for the usual weak topology.
Then by the Skorohod Embedding Theorem (Skorohod [14] or Dudley [4]),
there is a probability space (Q, Q) and S-valued random variables ¢ and £,,
n=1,2,...,on Qwith{,—= ¢ QO—a.s.and £L(¢)=P, £L(¢,)=P,. Then d(&,,£),
n=1,2,..., are uniformly bounded real functions converging to 0 Q—a.s. It
follows from Vitali’s Convergence Theorem (Hewitt and Stromberg (7, 13.38])
that d(¢,,£)—0in L?(Q, Q) for 1< p<oo. Since W, (P,, P)<|d(&,,§)|,, the
proposition follows. O

However, note that the topology induced by W, will, in general, be rather
stronger than that of weak convergence. There is a convenient description of W,
which bears comparison with another oft-used metric. Given laws P, and P, on
S, define Prohorov’s metric p(P;, P,) by

p(Pl,P2)=inf{e>0:P1(A) ng(Af)‘i‘E all A},

where A€ represents the e-neighbourhood of the Borel set A4, that is, A‘=
{(x€S:d(x,a)<e for some a€ A}. As is well known, p metrises convergence of
laws: see Dudley [4, Lecture 8]. By comparison, one has the following.

PROPOSITION 5. If Py and P, are laws in M (S), then
Ww(Pl,P2)=inf[e>O:P1(A)SPz(A‘) allA].

Demonstration. Note that W, (P, P,) <e if and only if there is some p in
D(P,, P,) with u(B,)=1, where B,={(X,Y):d(X, Y)<e] is a closed subset of
S x S. As a consequence of Strassen [15, Theorem 11] or Shortt [13, Theorem 1],
such a u exists if and only if (A X S)NB,C(SXB)NB, implies P;(A) <P,(B)
for all Borel subsets A, B of S. But whenever (AXS)NB,C(SxB)NB,, then
also A°CB. Thus W, (P, P,) <eif and only if P,;(A) < P,(A") for all Borel sets
A. The proposition follows. O

As an aside, we note that although W, induces a strong topology, it is not in
general comparable with the topology of convergence in total variation.

We conclude this section with a result parallel to the classical Riesz-Fischer
Theorem.

PROPOSITION 6. For each p (1<p< ), the metric spaces (M,, W,) are
complete.

Demonstration. We take first the case p<oo. Let P;, P,,... be a sequence of
laws in O, Cauchy for W,. Then from Proposition 3, the sequence Py, P, ...
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is also Cauchy for the 8 metric and so converges weakly to some law P on S. Let
6¢ be the point mass at 0. Then the inequality

|Wp(})n, 60) - I/Vp(})ma 5())| < I’V,,(P,,,P,,,)

implies that the sequence
1/p
7, By, 0) = ([ a70%, 00 ap, ()

is Cauchy and therefore bounded. Proceeding as in Lemma 1, we find that
Wy, (P, 60) <lim inf W),(P,, 6o)

is finite, so that P is in M, (S).

Claim: W,(P,,P)—0 as n—co. Using Proposition 1, we select laws pu,,, in
D(P,, P,) for which

1/p
WP(Pum) = (S dp(X, Y) dﬂnm) .

Given €>0, choose N large so that for all m,n2N, W,(P,,P,) <e. For each
n 2N, consider the sequence u,,, for m=n,n+1,n+2,.... It is uniformly tight
and so contains a subsequence p,,,x) converging weakly to a law p, with mar-
ginals P, and P. Applying Lemma 1 to this subsequence, we find that
521211 inf Wp(Pn’Rn{k))>VV})(PmP)

for all n > N. The claim is established.

The case p =90 proceeds analogously, and the proof is both straightforward
and omitted. O

2. The L* Wasserstein for Gaussian measures. Let P, and P, be Gaussian
measures on R” with means 77, and /7, and non-singular covariance matrices M,
and M, respectively. This notation will remain fixed for the rest of the present
section, which is devoted to a proof of the the following.

PROPOSITION 7. The L? Wasserstein distance W, (P, P,) is given by
(6) V|77 — i ||+ tr (M) + tr (M) — 2 tr [(VM, Mo ~/M) V2.

To begin the calculation, we first reduce to the case where 7;=m,=0. Let X
and Y be R"-valued random variables with £(X)=P, and £(Y)=P,. Then
W, (Py, Py) is the infimum of ~E|X—Y||? taken over all possible joint distri-
butions of X and Y. Put £=X—71,and n=Y —7,; also set Q;=L£(£) and O, =
£(n). Simply note that E|| X — Y||?=E||£ —n||*+| /1, — /f1,||?; it follows that

W, (P, P,) =\/||'751—f752”2+ W>(Q, Q).

Thus we can and do assume that /71, =71, =0. Note that this reduction does not
require P; and P, to be Gaussian.

The next step is to show that in calculating the infimum in (1), we may restrict
ourselves entirely to Gaussian measures.




WASSERSTEIN METRICS FOR PROBABILITY DISTRIBUTIONS 237

LEMMA 2. The infimum in (1) is attained for a Gaussian law v in D(Py, P,).

Proof. 1t follows from Proposition 1 that the infimum in (1) is attained for
some law p in D(P;, P,). Simply let » be a Gaussian measure on R*' with the
same covariance matrix as u. Then also v€ D(P,, P,), and

7 Sdz(X, Y) du=Sd2(X, Y) du=W2(P,, P,). 0

Thus, in the search for optimal p in (1), it suffices to consider only mean 0
Gaussians on R"xR", or what is the same, their corresponding covariance
matrices A. The condition that u have marginals P; and P, is equivalent to the
requirement that 4 have the block form
8) A= [fﬂ ]{; ]

2

where K is some n X n matrix. Then
©) Sa’z(X, Y) du(X, Y)=tr(M,) +tr(My) —2 tr(K).

The problem thus reduces to the finding of a matrix K that minimises (9) sub-
ject to the constraint that (8) be non-negative definite. For each m, let D(m) and
Dy (m) denote the classes of positive definite and non-negative definite m X m
matrices, respectively. The covariance matrix A4 from (8) admits a factorisation

A_ I1/2 0 [ O M]l/Z Ml—l/ZK
VK™Y 1o S|o I ’

where S is the Schur complement S=M,—K "M 'K. Note that since M,, M, €
D(n), the square root M;’? and its inverse are well-defined members of D(n).
From the factorisation, one sees that A € Dy(2n) if and only if S€ Dy(n). This
condition on S defines the set @ of possible K over which the infimum is to be
taken in (9).

Define ¢ on @ by the rule ¢(K) =M2—KTM|"’K and let

S(K)Y=tr(M;)+tr(M,)—2tr(K).

By comparing the minima of frestricted to the fibres ¢ ~'(S), S€$(®), we shall
show that the infimum in (9) occurs for some K in ¢ ~'(0).

For SE¢(®), the fibre over S is the set of K for which KM 'K=M,—S.
Since M '€ D(n), we note that M,—S € Dy(n). Thus, if rank(M,—S)=r, we
have the spectral decomposition

(10) M,—S=UNU"=U AU/,

where A’=diag(\],..., \3,0,...,0)=AZ®0 and U=[U,, U,_,] is a matrix of
corresponding orthonormal eigenvectors.

Let A, denote any of the invertible matrices diag(+A;,..., £A,), held fixed
for the moment. From (10), we conclude that

(M""2KU A (MT'PKU A ) =1 (rXr identity),
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and so
KU, =~/M;0, A,

with O, an arbitrary n X r matrix satisfying 970, =1 (an ‘‘r-frame’’). Moreover,
KU,_,=0, since M;"' € D(n). Thus

K=KUU"=KU, U’ =M, 0,A, U/,

and the fibre ¢ ~'(S) is parametrized by the r-frames O,. On this fibre, the func-
tion f now assumes the form

(11) F(O)=tr (M) +tr(M,) —2tr (0] M, U, A,).

Consider now the problem of minimizing a function f(0O)=constant —

2 tr(O7B) subject to the constraint 7O =1, where O, B are n X r, and B is of full
rank. If O=[v,,...,v,], then in a Lagrange multiplier approach to the minimisa-
tion, the equivalent set of constraints v,-ij =6;j, i <J, would be incorporated into
an auxiliary function as

Y (vlvj=8;), cj=cji.

4
Thus, the appropriate form at the matrix level is tr[C(O7TO —I)], with C a sym-
metric r X r Lagrange multiplier matrix. The auxiliary function is now defined by

F(O, C)=constant —2 tr(O'B) + tr[C(OTO —1T)).
At the critical points of F, defined by Fo=F~=0, we have OC=B and ofo=lI.
Since © and B are of rank r, C~! exists, and O©=BC ™. Thus, C is some square

root of BTB. At the critical points, f = constant — 2 tr (~/B’B), and it is clear that
f is minimised by taking the positive definite square root of B’B. We note also

that tr(~vB'B) =tr(~/BBT).
If we now apply the results of this Lagrange multiplier analysis to the case at
hand in (11), where B=+/M; U, A,, then

(f]6-1(5))min = tr (M) + tr (My) — 2 tr VWM, U, A2 UM,
=tr(M,) + tr (M,) — 2 tr \\M, (M, — S)M;,

using (10) for the second equality.
And now a comparison of the minima of f over the various fibres is accom-
plished by appeal to the following min-max result.

THEOREM (Courant-Fischer). Let M be a symmetric n X n matrix with eigen-
values p, 2 - - - 2 u, and Rayleigh quotient

T
M
R(é)=%=fe(s/lsl).

Given an arbitrary k-dimensional subspace Vi in R", let S,_;_, be the unit
sphere in the orthocomplement Vi-. Then

i+1=min max R(§).
Vi §€5,_4

Proof. See Lancaster [11, 3.6.1, p. 116].
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For a given Schur complement S, let pf(S)=--- >u2(S) denote the eigen-
values of /M, (M, — S)~/M,. Since SE€Dy(n), we have

ETNM, (M — S)NM & <&M MyNM, .

Because this inequality persists when £ is constrained to various subspaces of R”,
we conclude from the Courant-Fischer Theorem that

w(S)<pi(0) j=1,...,n
and consequently that
(12)  fain= Flo=1(0)) min = tr (M) + tr (My) =2 tr [(v'M; My /M) 2],
which establishes Proposition 7. O

We conclude with a few remarks concerning Proposition 7. As expected of a
metric, the right-hand side of (12) is symmetric in M, and M, (by the earlier
observation that tr(~/B’B)=tr(~BB")) and vanishes when M,=M,. Also,
since the metric property of W, has been independently established in Propo-
sition 2, it is possible to obtain a matrix inequality on three positive definite
matrices M;, M,, M; by appealing to the triangle inequality for W,. Note also
that f,,;, reduces to f%, = tr[(~vM; —~M,)*] when M, and M, commute. Lastly,
we compute the special cases n=1and n=2.

COROLLARY. Let P, and P, be mean 0 Gaussian measures on R" with covari-
ance matrices M| and M,. Proposition 7 implies that (1) for n=2,

Wy (Py, P,) = \tr (M) + tr(M,) — 2[tr (M, M) + 2~/det (M, M)]"/?;
and (2) for n=1,

Wi (P, Py) =|\M—/M,|.

Proof. (2) is clear, whereas (1) fdllows from the formula (tr( \/E))2=tr(B) +
2+/det B for B in D(2): this is obtained by taking traces in the characteristic
polynomial for \/E O

To conclude, we note that (6) in Proposition 7 is also valid in the case where
M, and M, are singular. Similar arguments apply, but require some tedious
checking of cases.

3. Questions and conjectures. A deeper analysis of the set of optimal p occur-
ring in (1) is probably warranted. Are the optimal p always singular with respect
to the product measure P& P, when P, and P, are continuous? Several such
questions could be asked. A matter of great interest to probabilists is the a.s.
convergence of empirical measures P, to their underlying law P. Results of
Fortet and Mourier [6] combined with the Kantorovich-Rubinstein Theorem en-
sure that for Pin 9, (S), the associated empirical measures P, converge a.s. to P
for the metric W,. Convergence in W, for 1 <p <o may also be proved, and will
be treated in a later paper.

Finally, we pose the problem of explicit calculation of the L?> Wasserstein in
the case of Gaussian measures on infinite-dimensional linear spaces, in particular
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Hilbert space. A corresponding infinite-dimensional Lagrange multiplier analy-
sis would no doubt yield the same formulae.

The authors would like to thank the referee for some helpful comments. He
has also pointed out an earlier attempt (cf. D. C. Dowson and B. V. Landau,
The Frechet distance between multivariate normal distributions, J. Multivariate
Analysis 12 (1982), 450-455) to calculate the L? Wasserstein distance between
two multivariate Gaussian probabilities. He notes that their result is valid only
when the corresponding covariance matrices commute.
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