STABILITY PROPERTIES OF THE YANG-MILLS
FUNCTIONAL NEAR THE CANONICAL CONNECTION

H. Turner Laquer

Introduction. Connections and curvature were introduced in the early part of
this century by Cartan and Weyl, and by the 1950’s these ideas were a well-
established part of differential geometry ([9], [14]). In the past few years, this
area of mathematics has again received widespread attention by both mathema-
ticians and physicists in the form of Yang-Mills theory.

The Yang-Mills functional gives a measure of the total curvature of a con-
nection in a principal bundle. The critical points of this functional, the so-called
Yang-Mills connections, appear to play a fundamental role in physics. In §1, we
define the functional and derive the corresponding variational equations for its
critical points.

Because of the physical applications, much of the work in Yang-Mills theory
has dealt with the case of principal bundles over four-dimensional manifolds
(121, [41, [7], [17]). The functional for bundles over Riemann surfaces has also
been studied in some detail ([3]). In this paper, we are primarily concerned with
the Yang-Mills functional for bundles of the form P:G — G/H and for asso-
ciated principal bundles, P, =G xy U — G/H, where \: H— U is a Lie group
homomorphism. These bundles have a canonical G-invariant connection, wy,
and we are especially interested in the behavior of the functional near wy.

The key to doing explicit calculations on these homogeneous spaces is that
geometric objects on G/H are given by sections of bundles which are associated
to P by representations of H. The space of such sections becomes a G-module,
called the induced representation, whose structure is given by Frobenius reci-
procity (Theorem 2.1). In §2, we also develop the notation of equivariant func-
tions which is used for subsequent calculations.

In §3, we study the Yang-Mills functional near the canonical connection. In
particular, we show that wg is Yang-Mills (Theorem 3.1) and we derive methods
for computing the index and nullity at wy (Theorems 3.3 and 3.4). These form-
ulas involve Laplacians and Casimir operators and, in §4, these operators are
related to representation theory. The index of a representation, originally intro-
duced by Dynkin ([8]), plays an important role.

Finally, in §5 we consider some examples using Theorems 3.3 and 3.4. In par-
ticular, we determine the index and nullity of the Yang-Mills functional at the
canonical connection for the bundles G - G/H when G/H is a compact irreduc-
ible Riemannian symmetric space. These results are given by Theorem 5.1 and
Table I1. The canonical connection gives a stable critical point in all cases except
for spheres S” when n =5, compact simple Lie groups, quaternionic projective
spaces SP(p+1)/SP(p)xSP(1), and the exceptional symmetric spaces E¢/F,4
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and F,;/Spin(9). The index is nonzero in all these cases except for the quaterni-
onic projective spaces (which include the sphere S*) where the nullity is nonzero.
This positive nullity is an indication that the Yang-Mills functional is invariant
under the action of a larger group than the gauge group. It seems analogous to
the case of S* where the conformal invariance of the functional in four dimen-
sions contributes to the nullity.

1. Yang-Mills theory. Suppose P -5 M is a principal H-bundle, where M is a
compact oriented Riemannian manifold and A is a compact Lie group. A con-
nection for the principal bundle P is an H-invariant splitting, w4, of the exact
sequence

(1.1) O—»TFP,%;TP—»W*TM—»O
A

of vector bundles over P. Here T¢ P is the tangent space to the fibers of P and the
kernel of w,4 gives the horizontal subspaces of the connection. Alternatively, the
connection can be viewed as a splitting of an exact sequence of bundles over M.
Proceeding as in [3], we let E(P) be the bundle over M with fibers

(1.2) E(P),, =T{TP| 7 'm}*

and we let ad(P) be the bundle associated to P by the adjoint action of H on its
Lie algebra §. Then

(1.3) I'E(P) = H-invariant vector fields on P
and
(1.4) I' ad(P) = H-invariant vertical vector fields on P.

A connection for P can now be viewed as a splitting of the exact sequence

(1.5) 0-ad(P) 2 E(P)—>TM - 0.
@q
This sequence goes into (1.1) under pullback to P.

The spaces of sections of £(P) and ad(P) have natural Lie algebra structures
induced by the isomorphisms (1.3) and (1.4). The curvature measures to what
extent w, fails to be a Lie algebra homomorphism. More precisely, if X and Y
are vector fields on M, then the connection gives horizontal lifts

(1.6) XA, Y4eTEWP)
and the curvature F, € Q*(M; ad(P)) is defined by
1.7 FA(X,Y)=w4[ X4, Y4 el ad(P).

The Lie algebra structure of I" ad(P) can be extended to all of Q*(M;ad(P))
by using exterior multiplication of forms together with the bracket of I" ad (P).
In particular, if ne Q'(M;ad(P)) then

(1.8) [7,7]1(X, Y) =2[9(X),n(Y)] e " ad(P).
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We clearly have

(1.9) [0”, 0] = (=1)""" [0, u]

and the corresponding Jacobi identity

(1.10)  [”[0% 0] = [[0”, 0, 0]+ (~1)"[ef [o”, o]].

The Riemannian metric on M together with an Ad-invariant metric on fj can be
used to define a natural Riemannian structure on Q*(M; ad(P)). The metric on |
along with exterior multiplication of forms gives a pairing

(1.11) QP (M;ad(P)) ®QY(M;ad(P)) 2 Q" Y9(M;R).
The identity
(1.12) W’ A[w?, 0] =[w’, v A’

comes from the infinitesimal version of Ad-invariance of the metric on ). We let
vol(M) € Q*(M; R) be the unique form of length one in the orientation of M.
There is a natural *-operator

(1.13) QP (M;ad(P)) 5 QUmM=P(M; ad(P))
which is characterized by

(1.14) wA*w = {w, w) vVOl(M).

We obtain a natural inner product in Q*(M;ad(P)) by letting

(1.15) 8= one.

The Yang-Mills functional on the space €(P) of connections is now defined by
(1.16) YM(A) = |[F4|? = (F4, Fy).

Thus, the Yang-Mills functional gives a measure of the total curvature of the
connection. Critical points of the functional, the so-called Yang-Mills connec-
tions, appear to play an important role in mathematics and physics. For
example, when H = U(1) the curvature of a critical connection corresponds to a
solution of Maxwell’s equations in vacuo ([2]).

The choice of a connection in P induces a covariant derivative of sections of
all associated vector bundles. A section ¢ of an associated vector bundle,
P(V) =P xy V, corresponds to an H-equivariant function, ¢: P — V, by letting
é(w(p)) = (p, ¢(p)). The covariant derivative is given by

(1.17) (Vo) =X14.
In particular, if P(V)=ad(P) then
(1.18) Vidp=ws[X*, ¢) el ad(P).

Note that [)?A, ¢], viewed as a vector field on P, is automatically vertical. The
covariant derivative gives a natural differential operator
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(1.19) QOM; P(V)) -2 Q\(M; P(V))
by letting
(1.20) (ds$)(X) =V5o.

This operator extends uniquely to all of Q*(M; P(V)) if we require compatibility
with the natural pairing

(1.21) QY (M; R)RQUM; P(V)) > QP+4(M; P(V))
given by multiplication of forms. In particular, if 5 € Q'(M; P(V)) then
(1.22) (dan)(X,Y)=VEn(Y) = Vin(X) —q[X, Y].

In the case of ad(P)-valued forms on M, the operator d, behaves like a deriva-
tion with respect to both the bracket and the wedge operations.

The exact sequence (1.5) shows that the space of connections is an affine space
and the difference of two connections is given by a 1-form on M with values in
ad(P). If wg—wy =neQ'(M;ad(P)), then the horizontal lifts of the two con-
nections are related by

(1.23) XB=X"—y(X)eTE(P)

and the corresponding operators satisfy

(1.24) dpt=dast—I[n,E] vEeQ*(M;ad(P)).

It follows that the curvatures of the two connections are related by
(1.25) Fg=F4—dan+3[n,7].

Since the space of connections is an affine space, we can study the critical
points of the Yang-Mills functional by considering the variation of the func-
tional along lines

(1.26) W =wq+1n,
where n e Q'(M;ad(P)). By (1.25) we have

|F |2 = |Fal?> = 2t(Fa, dan) +t*{|dan|*+ (Fa, [n, 7]}
(1.27) /4
—t3dan, (9,7]) + 7 I, 91]%

So a connection A4 gives a critical point if and only if (F4,d45) =0 for all
7€ QYM;ad(P)), or equivalently, if and only if
(1.28) diF,=0,

where d} is the adjoint to the operator d 4 relative to the inner product. Equation
(1.28) along with Bianchi’s identity,

(1.29) dsF,=0,

which is true for any connection, are called the Yang-Mills equations.
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The variational equation (1.27) also gives the second variation of the Yang-
Mills functional at a critical connection A. The Hessian at the critical connection
is the quadratic form

Q(n, n) = |dan|*+ (Fa, [9,1])
=(didan+*[*Fa,nl, 7).

Now, the Yang-Mills functional is invariant under the action of a large group
([3]). The gauge group G(P) for the bundle P — M consists of all bundle auto-
morphisms of P which cover the identity map of M. The group acts on the
space of connections by pullback of horizontal spaces. The tangent space to the
orbit of G(P) at a critical connection A is given by the image of d, mapping
Q°(M;ad(P)) into Q'(M;ad(P)); so if =d, ¢ then O(n, n) =0. Thus, when we
consider the index and nullity of Q, we really want to study Q on the orthogonal
complement to the image of d, in Q'(M;ad(P)). This is precisely the kernel of
d}. We let the operators A, and 4 be defined by

(1.30)

(1.31) Ag=dida+dad}
and

(1.32) Fa="["F4, 1.
Then the quadratic form

(1.33) O, 1) =(Aan+Fan, )

agrees with Q on the kernel of d and is strictly positive definite on the image of
d4. So to determine the index and nullity of Q, it suffices to consider the index
and nullity of Q on all of Q'(M;ad(P)).

2. Homogeneous spaces. In this paper, we are primarily concerned with the
Yang-Mills functional for bundles of the form P: G — G/H and for associated
principal bundles

(2.1) Py=GxyU=GxU/(gh,u) ~ (g, N\(h)u)

where \: H - U is a Lie group homomorphism. We assume G, H, and U are
compact Lie groups with G semisimple so that the Killing form, B,, is negative
definite. This Killing form gives a splitting of the Lie algebra g into h@®m where
m is the orthogonal complement to §) in g. The Ad-invariance of B, implies
Ad(H)m € m. The Killing form is also used to define the Riemannian metric on
G/H, i.e.,

2.2) {dL,dmx,dL;dwy)er; = —By(x,y) Vx,yem.
Given a representation p: H — Aut V, we can form the associated vector bundle
(2.3) G(V)=GxyV=GxV/(gh,v)~ (g p(h)v).

Sections of this bundle are given by H-equivariant functions on G with values in
V, i.e.,
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(2.4) o(gH) =(g,6(8))eGXuV,
where the H-equivariance condition is
2.5) 6(gh) =p(h "é(g) vheH.

The space of such functions becomes a G-module —called the induced repre-
sentation, i, V' —by letting

(2.6) g-6=6°L,_,.

Conversely, given a G-module W, we define an H-module /*W by restricting the
action from G to H. The structure of the induced representation is given by the
following Frobenius Reciprocity Theorem ([5]).

THEOREM 2.1. If W is a G-module and V is an H-module then
Homg(W, i, V) =Homgy(i*W, V).

This theorem is of important computational value because it connects finite
dimensional representation theory with the geometry of homogeneous spaces. In
particular, we have

2.7 I'TW(G/H) =i(m),

(2.8) 0(G/H;ad(P)) =i (AN"m*®)),
and

2.9 Q°(G/H;ad(P))) =i.(A"m*®u).

Note that in (2.9) the Lie algebra u is the H-representation Ad-A and that, in
general, the bundles associated to P, are also associated to the bundle G —» G/H.
For computational purposes, we fix an orthonormal basis {u,} for g, relative
to the metric — B, so that the initial «’s span fy and the remaining #’s span m. We
will use subscripts i, /, k, ... for #’s in §, subscripts «, 83, v, ... for #’s in m and sub-
scripts p, q, r, ... for u’s in g. In particular, we use this for the summation con-
vention. We let {p”] be the dual basis of ¢* and we let {U,] be the corresponding
left invariant vector fields on G. The structure constants for g are defined by

(2.10) [uy, ugl =By, u,.

Similarly, when we are dealing with the bundle P,, we let [v,} be an orthonormal
basis for u relative to some positive definite Ad-invariant metric, and we let the
corresponding structure constants be defined by

.11 . [Vp, Vgl = Cpq vy

The Ad-invariance of the metrics on g and u gives a cyclic symmetry to the struc-
ture constants B and C along with the usual skew symmetries. We define con-
stants A\ by

(2.12) Nui) = NPy,
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In terms of these bases, a vector field on G/H is given by
(2.13) X(g)=x%(g)u,
and a form ¢ e Q°(G/H;ad(P,)) is given by

~ 1
(2.14) 68) = b (O AT@ Y.

The metric and *-operator on Q*(G/H;ad(P))) are determined by letting the
elements

(2.15) 'u,al/\--'/\”"‘P@Vq < <ap

form an orthonormal basis of A’m*®u. The H-equivariance of the functions
£ei. (A’m*®@u) shows that this gives a well defined Riemannian metric. The
integral of a highest dimensional real-valued form v on G/H can also be defined
by the integral over G of the corresponding function &:G — A" m* =R. This
differs from the integral of the form on G/H by a constant factor (the volume of
H), and thus defines an equivalent inner product on Q*(G/H;ad(P,)). We will
use the inner product defined by the integral of & whenever our base manifold is
G/H. The Lie algebra structure on I"ad(P)) = i.(u) is given by

(2.16) [01, 02]°(8) = —[61(8), 62(8)]

where we get the minus sign because the bracket in u is the bracket of left in-
variant vector fields, whereas the sections of ad(P,) give vector fields which are
invariant under right translations by U.

The bundle G — G/H has a canonical connection, wg, whose horizontal sub-
spaces are given by the left translates of m by G. Since connections move forward
to associated bundles ([14]), we also obtain a canonical G-invariant connection
in P,. Connections in P or in Py which are invariant under the left action of G
are called homogeneous connections. The following theorem describing the
space of homogeneous connections is due to Wang ([19]).

THEOREM 2.2. The homogeneous connections in P\ are in one-to-one cor-
respondence with linear maps ¢:q— u such that

d(x) =Nx) Vxel
and
o(Ad(h)x) =Ad(A(h))d(x) VheH, xeqg.

The map ¢ is completely determined by its restriction to m and, in the case of
the canonical connection, ¢ is trivial on m. This theorem shows that the space
of homogeneous connections corresponds to the set of trivial H-representations
in m*®u. By Frobenius reciprocity, this is equivalent to the set of constant H-
equivariant functions with values in m* ®u. The correspondence between ¢ and
wo+ 7 is given by

(2.17) 1=p"®d(uU,) €i(mM*@u).
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The symmetric spaces are an especially important class of homogeneous spaces.
In this case, the Lie group G has an involutive automorphism ¢ and H is the fixed
point set of o. At the level of Lie algebras we have h={x|o(x) =x} and m=
fx | o(x) = —x}. Infinitesimally, the condition that G/H is a symmetric space is
equivalent to the condition [m, m] €h. Any compact symmetric space splits into
a product of compact irreducible symmetric spaces of types I and II ([12]).

The type Il symmetric spaces are precisely the simple Lie groups viewed as
G X G/A where A is the diagonal subgroup. In this case = {(x, x) e ¢®g} and
m={(x, —x) € g@ g}, so both ) and m are isomorphic to g as A-representations.
Since G is simple, § and m are irreducible and m*® 1) includes exactly one trivial
representation. This one-dimensional family of homogeneous connections is
described by the maps ¢,: ¢®g— §), where

i siwn=(()er (5 (e (52))

The canonical connection is given by ¢ =0 while the connections with /=1 and
t = —1 are called the (+) and the (—) connections. The (+) and (—) connec-
tions are flat and they are gauge equivalent. The map 6: G X G — G X G which is
defined by

(2.19) 0(g1,82) = (2187 81, &1)
is an element of the gauge group, and we have
(2.20) w_=w,.

LEMMA 2.3. If G/H is a symmetric space with G simple, then m is an irre-
ducible H-module.

Proof. Let m; be an H-invariant subspace of m and let m, = mj relative to the
restriction of By to m. Then m; is also an H-module and [m,, m,] =0. This is
clear because if x e m; and y € m,, then [y, [x, y]] € m, and we have

(2.21) By(Ix, ], [x, ¥]) = By(x, [y, [x, y]]) =0.
It follows that m;® [m;, m,] is an ideal in g and the assumption that G is simple
gives the desired result. ]

If G/H is a type I symmetric space, then by the classification of the irreducible
symmetric spaces ([1]) it follows that G is simple. By the lemma, the decomposi-
tion of g into irreducible H-modules is given by

(2.22) g= (D ;) Dm.
Here the §); are the ideals in fj and we have
(2.23) (b, b1 =10} Vi)

Now for any / we have

(2'24) [bi’ m] # {0}’
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or else f); would be an ideal in g. A homogeneous connection in G — G/H is given
by an H-module map ¢: m — §. By irreducibility, ¢ =0 or ¢ is an isomorphism of
m onto one of the f);’s. But this clearly contradicts (2.23) and (2.24) if there are at
least two §;’s. The possibility that m =1 is also eliminated by the classification of
the type I symmetric spaces. Thus we have the following theorem.

THEOREM 2.4. The bundle G — G/H has a unique homogeneous connection
if G/H is a type I symmetric space. It has a one-dimensional family of homo-
geneous connections if G/H is a type II symmetric space.

3. The canonical connection. In this section, we are interested in the behavior
of the Yang-Mills functional near the canonical connection, wy. The canonical
connection is a critical point of the Yang-Mills functional and, by using the bases
and equivariant functions described in the previous section, we derive formulas
for the second variation at wy.

If X is a vector field on G/H with corresponding equivariant function X =
x%u,:G—m, then the horizontal lift of X for the canomcal connection in
G — G/H is given by

(3.1 X=xU,.
Now the curvature Fye Q*(G/H;ad(P)) satisfies
Fo(X, Y) =wol X%, Y]

3.2

=X y Baﬁllf\,
SO
3.3) Fo=(1/2)Bisp* N p’ @ uy.

Since the canonical connection in P, is induced by the canonical connection
in G- G/H, it follows that the curvature of the canonical connection in P, is
given by

o= (1/2)Bls p* Ak’ @ Nu)
= (1/2)BE Ny A P @ v,

The dy and d§ operators can be expressed in terms of equivariant functions.
In particular, if

(3.4)

(3.5) ¢ =¢"v,ei (1) =Q%G/H;ad(Py)),
then

(3.6) (do®)" = Un($”)p*® v, € ix(m* @)
and if

(3.7 =51 @vp,

then by (1.22) we have
(3.8) (dom)” = (1/2) (Ugnf— Upnf— Bl n) ) p* A p @,
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The adjoint operator now satisfies

3.9) di(n8p*Q@v,) = —Uy(n8)v,
and
(3.10) dy(GEL AP ®vy) = —(Up&f, + 385, BE I ® .

It is easily verified that both these expressions are H-equivariant. So to prove
these equations, it suffices to show

(3.11) (1, dod) = (d§n, ¢)
and
(3.12) (&,don) =(d§&,m)

whenever ¢ € Q%(G/H;ad(Py)), ne !, and £e Q% This follows directly from
(3.6), (3.8), and integration by parts.

THEOREM 3.1. If G is a compact semisimple Lie group and if the metric on g
which is used to define the Riemannian structure on G/H is the negative of the
Killing form, then the canonical connections in G — G/H and in Py are Yang-
Mills connections.

Proof. We need to show d§F,=0. By (3.4) and (3.10) it follows that
(3.13) d§Fo = —(1/2)Bg, Bf, p* @ Mutx).
Now for u, € m and u; € ) we have

By (u,, uy) = trace ad (u,,) ad (1)

(3.14) = ([Ue, [ttis upll, up)
=B});BE,.
Thus
(3.15) dgFo= (1/2) By(uy, i) p* & Nuy)
which is zero by the orthogonality of ) and m. 0

In order to compute the index and nullity of the Yang-Mills functional at the
canonical connection, it is necessary to express the operator Ag+ o in terms of
our bases. Given an H-representation p: H — Aut V, we let I}, be the Casimir
operator of the representation relative to the basis {u;} of b, i.e.,

(3.16) Ty =3 (p(u;)*.

If V is irreducible, then I'}, is a negative or zero scalar. When dealing with a space
W of functions on G with values in some vector space, we let A be the Laplacian
with positive eigenvalues computed relative to the basis {u,} of g, i.e.,

3.17) Af==-YUsf=-3SX3f
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where the U, (respectively X)) are the left (respectively right) invariant vector
fields on G which agree with the u, at the identity. On an irreducible G-
representation in W, A is a nonnegative scalar and is equal to the Casimir opera-
tor of the representation relative to the orthonormal basis {u,} of g.

The space of ad(Py)-valued-forms splits up into a direct sum of induced repre-
sentations. We have
(3.18) Q'(G/H;ad(Py)) = @b f(mE@up),

a,

where m= @ m, and u= @ u, are decompositions of m and u into irreducible
H-representations. The proof of the following proposition is given in the
appendix.

PROPOSITION 3.2. If e i,(mi@uy), then
(Qo+Fo) ()" = (A+Ty, +3+T0,) () +BLUy(nf)n @ v,.

If G/H is a symmetric space, then all structure constants of the form B,

are zero and by equation (A.15) in the appendix, we have I, = —1. Thus for
n€ i (mi®u,) we have
(3.19) (Ao+Fo) ()" = (A+T,,) (#).

Similarly, if  gives a variation in the space of homogeneous connections, then
m, =11, and 7 is a constant equivariant function, so

(3.20) (Ao+Fo) ()" = (4 +2T ) (#).

Finally, if G/H is a symmetric space and if » gives a variation in the space of
homogeneous connections, then

(3.21) (Ao+Fo) ()" = —129.
Thus we have the following two theorems.

THEOREM 3.3. Suppose G/H is a symmetric space with G compact and semi-
simple; P\=GXyU is an associated principal bundle; and u= P uy is a de-
composition of u into irreducible H-modules. Let A be the positive Laplacian
relative to the metric —By on g and let T", be the negative Casimir operator of vy
relative to the restriction of this metric to V). Then the index (respectively nullity)
of the Yang-Mills functional at the canonical connection in Py is given by the
sum over k of the number of negative (respectively null) eigendirections of the
operator A+T, oni.(m*®uy). In particular, the canonical connection is a local
maximum on the space of homogeneous connections in Pj.

THEOREM 3.4, If G/H is a homogeneous space with G compact and semi-
simple and if P, = G XxyU, then the behavior of the Yang-Mills functional near
the canonical connection on the space of homogeneous connections in P, is de-
termined as follows. We decompose m and u into irreducible H-representations,
m= @ m, and u= @ up. Each pair (a, b) with m,=u, gives a homogeneous
direction. If T, < —%, then the direction decreases the Yang-Mills action. If
Ly, = — 4 then, infinitesimally, the direction is a null direction for the functional.
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Otherwise the direction increases the Yang-Mills action. Here, T',, s the Casimir
operator of m, relative to the restriction to ) of the metric —B,.

4. Indices and Casimir operators. In order to use Theorems 3.3 and 3.4 to
compute the index and nullity of the Yang-Mills functional at the canonical con-
nection, it is necessary to compute Casimir operators of representations relative
to various metrics on g and §. In particular, the Laplacian A on an irreducible G-
representation in /,(m*®u) is, up to sign, the Casimir operator of that repre-
sentation relative to the Killing metric. In what follows, because of the equiva-
lence between the real and complex representation theories of semisimple Lie
groups ([1]), we can complexify the Lie algebras and representations whenever it
is necessary. Also, when we describe an irreducible representation of a simple Lie
group by means of its maximal weight, we will use the ordering of simple roots
which appears in [6], [12], and [13].

If p: G— Aut V is a representation of the Lie group G, then we let Cy be the
positive Casimir operator of the representation relative to the Killing metric. By
[13], if p is an irreducible representation with maximal weight A, then

@.1) Cy=BI(A+285, A).

Here, 6 is one-half the sum of the positive roots and B; is the metric on g* which
is dual to the Killing metric.

If G is a simple Lie group, then an Ad-invariant metric on g is unique up to a
scalar multiple. We let ( , ), be the metric on g which is normalized so that the
longest root has length squared equal to 2. If L(G) is the length squared of the
longest root relative to the Killing form, then

4.2) (x, )= (1/2)L(G)By(x,y) Vx,yegq.

Note that we obtain the factor L(G)/2 rather than 2/L(G) because the roots
lie in the dual to the Cartan subalgebra of g. In Table I, we list the L(G) con-
stants ([12]) along with the least nonzero Casimir operator C, for the simple
Lie groups.

Dynkin ([8]) defines the index k, of a possibly reducible representation
p: G — Aut V of a simple Lie group by

(4.3) tr(p(x)o(¥)) =ky-(x,¥)y VX,ye€gq.
If x lies in the Cartan subalgebra of g and if IT(V') is the set of weights of p, then
4.4) tr(p(¥)p(x) = % (\x)%

rell(V)

The index of a representation is an integer ([8]) and in the case of the adjoint
representation we have

4.5) By(x,y)=tr(adyad,) = k4(x, ),
SO

(4.6) k,=2/L(G).
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Lie Group L(G) C(A)MIN
4 1 n(n+2)
n n+1 2(n+1)*
1 5
B, n—1 (n=2) TZ- (n=2)
21
0 (n=13)
>4
2n—1 (nz4)
1 2n+1
C, eh+l
n+1 4(n+1)
D (n=3) an=l s g
n 2n—2 T dn—1) %
. L 13
6 12 18
e Bl 1
7 18 24
E ._1_ 1
8 30
v 1 2
4 9 3
o ! 1
2 4 2

Table I. Length squared of the longest root and least positive eigenvalue of the
Laplacian for the simple Lie Groups. (Metrics given by the Killing form.)

The index of an irreducible representation with maximal weight A is closely
related to the Casimir operator of the representation. If the trace form

4.7) t,(x,y) =tr(p(x)p(¥)) = (1/2)ky L(G)By(x, y)
is used to define orthonormal bases, then the Casimir operator is the scalar
dim g/dim V ([13]). So, relative to the Killing metric, we have
_dimg kyL(G) dimg Q
~ dimV 2 dimV k°

Suppose G and H are both simple Lie groups. Dynkin ([8]) defines the index j
of an embedding i: H —» G by

4.8) Cy
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(4.9) (ix,iy)g=J(x,»)y, Vx,yehb.

This index, which is an integer, has the following cohomological interpretation
([4]). Since G is simple, the 3-form w, defined by

4.10) we(dLgx,dLyy,dL,z) = ([x,¥],2),,

is a generator of H3(G;R). Because of the normalization, this form represents an
integral class and the index of the embedding is precisely the degree of the map

4.11) Z=H¥G;Z) S H H;Z)=1.

Tables of indices of embeddings along with indices of representations appear
in [8] and [15]. By (4.4) and consideration of weights, we have the following
theorem.

THEOREM 4.1.
(i) ky=01if Vis a trivial representation;
(i) ky=ky;
(i) kveow=kv+kw;
(lV) kV@W = dykw'l- dka, where dV = dim V;
(V) knpy=(dyv—2)ky;
(Vi) ks2p=(dy+2)ky;
(vil) k;y=j-ky, where i: H— G has index j and W is a G-representation.

By (4.8) and (4.9), the Casimir operator of a representation of H, computed
relative to the restriction to § of —B,, is given by
dim V 2j  dimV  kp,

4.12) ry,

In particular, if p is the adjoint representation then
_ —L(G) _ —ky,

YUUJLGH) T kg

The embeddings of a compact simple Lie group H in one of the classical groups
A,=8U(n+1), B,=S012n+1), C,=SP(n), or D,=SO(2n) correspond to
faithful, possibly reducible, representations of H of degrees n+1, 2n+1, 2n,
or 2n respectively. The representation can be arbitrary for embeddings in A,,
it must be orthogonal for embeddings in B, or D,, and it must be symplectic for
embeddings in C,. We let p: H — G be an embedding of H in one of the classical
groups, viewed as a representation of H. The Lie algebra g is the H-representation
Ad e p with weights

“4.14) I[I(Adgep) = [p*a| o is a root of GJ.

(4.13)

The following theorem shows how this representation can be expressed in terms
of the representation p, and also how the index of the embedding depends on k..

THEOREM 4.2. Let p: H— G be an embedding of H in one of the classical
groups, viewed as a representation of H. Then the following table expresses the
H-representation Adgep in terms of p.



STABILITY PROPERTIES OF THE YANG-MILLS FUNCTIONAL 153

G dim p dim g Adgep J
A, n+1 n*+2n p®p*—(0) k,
B, 2n+1 2n’+n Ao 1k,
C, 2n 2n*+n S?p k,
D, 2n 2n’—n Ao 3k,

Proof. Theorems of Dynkin ([8]), Gantmacher ([11]), or Navon and Patera
([16]) show that we can choose a Cartan subalgebra ), of § so that p(}o) < g0,
where g is a given Cartan subalgebra of g. For example, if G = A, then we can
assume p maps f into the set of diagonal matrices. For x € g let ¢;(x) be the ith
element of the diagonal of x. Then the weights of p are

4.15) II(p)={\i=p*e|lsi=n+1].
Since the roots of G are

4.16) fei—e;j|1=<i,j=n+1}—{0]

we have

4.17) I[I(Adgep) ={Ni—N\;j |1=i,j=n+1} - {0},

and thus Adgep=p&®p*— (0). The cases G=B,, C,, or D, are similar. Now

kadgep(X, )y = tr(ad p(x) ad p(y)) = By(p(x), p(»))

(4.18) _ 2 .
L(G)
So the index of the embedding H — G satisfies
4.19) J=1/2)L(G)-kpdgeps
and by Theorem 4.1 and Table I it follows that the index j is given by the above
table. U

5. Index and nullity computations. In this section, we consider some examples
using Theorems 3.3 and 3.4. In particular, we determine the index and nullity of
the Yang-Mills functional at the canonical connection on the space of all con-
nections in G — G/H whenever G/H is a compact irreducible symmetric space.

THEOREM 5.1. Let G be a simple Lie group. Then the bundle G X G - G X G/A
has a one-dimensional family of homogeneous connections. The index of the
Yang-Mills functional on the space of all connections is 1 at the canonical con-
nection and the nullity is 0.

Proof. By Theorems 2.4 and 3.3 we know that the canonical connection is
a local maximum on the one-dimensional space of homogeneous connections.
Since both m and ) are isomorphic to the adjoint representation of G, we have
I',,=Ty= —13. So the second variation at the canonical connection is given by

(.1) (Ao+Fo) () = (A—2)(n) nei(m*®D),
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and we need to determine which irreducible representations of G x G with
Casimir operator less than or equal to 3 occur in i, (m*®%). The irreducible rep-
resentations of G X G are given by tensor products of irreducible representations
of G. The corresponding Casimir operators satisfy

(5.2) C(p1®p2) =C(p;) +C(p2),

where all these operators are computed relative to the respective Killing forms.
Now the only Lie groups which have C(p) < 3 for any non-trivial p are 4,,, C,,,
and G,. In these cases, it is necessary to determine how often the representations

(5.3) (M) ®(0), (A)®(0), (0)X(N), (0)X(N)
of 4, X A,, or the representations
(5.4 (M) ®(0), (0)®(N\)

of C, x C, or G, X G,, appear in the induced representation /,(m*®}Y). By Fro-
benius reciprocity and Steinberg’s formula ([13]), none of these actually occur in
i,(m*®Nn). Thus, the only direction which decreases the Yang-Mills action is a
variation in the space of homogeneous connections. L]

In Table II, we list the index and nullity of the Yang-Mills functional at the
canonical connection in the case of the bundle G — G/H over a type I symmetric
space. To perform these calculations, we first decompose ¢ into a direct sum of
H-modules

(5.5) g= (a@ bk>@m

where 3 is the center of ) and the §), are the simple ideals in ). By Theorem 2.4, no
trivial G-modules occur in the induced representation

(5.6) QY(G/H; ad(P)) = in(m*®3) D e (m*®ha).

Since the action of H on 3 is trivial, directions in /,(m*®3) do not contribute
to the index or nullity at the canonical connection. An irreducible G-representa-
tion Vin i, (m*®h,) contributes to the index (respectively nullity) if and only if
Cy+Ty, <O (respectively =0). Since the by are ideals in b, the Casimir operator
of f, as an H-representation is the same as the Casimir operator of f; as an Hy-
representation, where in both cases we use the restriction of the metric on g to
define orthonormal bases. By (4.13) we have

—L(G)

G- " eL(Hy)

where J; is the index of the embedding H; — G. These indices, which are also
listed in Table II, can be determined from the tables of Dynkin ([8]) or McKay
and Patera ([15]) and by the methods of §4. A G-representation V in i, (m*®hy)
with Cy < —TI, will contribute dim(}’) directions to the index or nullity at the
canonical connection. Frobenius reciprocity can be used to determine if such
G-representations occur. Branching rules ([15], [16]) are used to decompose i*V
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Symmetric Space J(H}) Index  Nullity
Al SU(n)/SO(n) n=2 abelian H 0 0
n=3 4 0 0
n=4 2,2 0 0
n=$s 2 0 0
All SU((2n)/SP(n) n=2 1 6 0
n=3 1 0 0
Alll  SU(p+q)/S(Up,xU,) p=q=1 abelian H 0 0
p>q=1 1 0 0
p=q=2 1,1 0 0
BDI SO(p+q)/SO(p)xSO(q) p=3,qg=2 1 0 0
p=4,qg=2 1,1 0 0
p=5,qg=2 1 0 0
p=3,q=3 2,2 0 0
p=4,qg=3 1,1,2 0 0
p=5,qg=3 1,2 0 0
p=4,g=4 1,1,1,1 0 0
p=5,qg=4 11,1 0 0
p=q=5 1,1 0 0
BDII SO(p+1)/SO(p) p=2 abelian H 0 0
p=3 type 11 1 0
p=4 1,1 0 10
p=5 1 p+1 0
CI SP(n)/U(n) n=1 abelian H 0 0
n=2 2 0 0
CII SP(p+q)/SP(p)xXSP(q) p=qg=1 1,1 0 10
p>qg=1 1,1 0 p(2p+3)
p=qg=2 1,1 0 0
DIII  SO(2n)/U(n) n=3 1 0 0
El E¢/SP(4) 1 0 0
EIl Eq/SU2)-SU(6) >1,1 0 0
EIIl  E¢/SO(2)-Spin(10) 1 0 0
EIV  E¢/F, 1 54° 0
EV E;/SU(8) 1 0 0
EVI E;/SUQ2)-50(12) =>1,1 0 0
EVII E,/SO(2)-Eg 1 0 0
EVIII E3/SO(16) 1 0 0
EIX E3/SU(2)-E, >1,1 0 0
FI Fy/SU2)-SP(3) =>1,1 0 0
FII F,4/Spin(9) 1 26 0
GI G,/SUQ2) x SU(2) 1,3 0 0

Table II. Index and nullity of the Yang-Mills functional at the canonical connec-
tion for the type I symmetric spaces. The j(H;) are the indices of the embeddings
in G of the simple subgroups of H.
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into H-representations and the methods in [10] and [13] are useful for decompos-
ing the tensor products, m*®@1f,. The results of these computations are given in
Table 1I.

The Cayley plane, F;/Spin(9), is an example of an exceptional symmetric
space which exhibits interesting behavior at the canonical connection. As B,-
representations, we have )= (\,) (the adjoint representation) and m = (\4). By
the tables in [8], the index of the embedding B, — F; is one and thus the Casimir
operator I';= —3. So we need to determine which representations of F, with
Cy < 5 occur in the induced representation i,(m*®%}). Now the only nontrivial
representation of F,; which satisfies this is the degree 26 representation (\,) for
which C,=%. Frobenius reciprocity shows that this representation actually
occurs in i,(m*®H). The tables in [8] and [15] give i*(As) = N) D (A D(0).
By [10], we have m*@hH= A2+ Ag) D (M +Ns) D (Ng). Since (N\4) occurs once in
both i*(\4) and m*®¥, we conclude that the F,-representation (\4) occurs once
in i, (m*&®Y). Thus the index of the Yang-Mills functional at the canonical con-
nection is 26 in this case.

The Yang-Mills functional for bundles over the p-sphere has also been studied
by Bourguignon, Lawson and Simons ([7]). A direction in R”*! gives a natural
vector field on S”. By contracting the curvature, F4, with one of these vector
fields, they produce an ad(P) valued 1-form on S”. This infinitesimal variation
decreases the Yang-Mills functional if the connection A is Yang-Mills and p = 5.
If p =4 then the functional is invariant under this sort of conformal transforma-
tion. In this case, we get 10 null directions instead of just 5 because of the
splitting of SO(4) into two simple subgroups. Since S* is a Lie group, the case
p =3 is an example of Theorem 5.1. From the point of view of Theorem 3.3, the
second variation at the canonical connection is given by

(5.8) (Bg+Fo) (1) = (A— 5—:%)01).

When p=35, the ordinary representation is the only representation of G =
SO(p+1) which occurs in i, (m*®¥) and which has Casimir operator less than
or equal to (p—2)/(p—1). It occurs with multiplicity one and has dimension
p+ 1. So the index of the Yang-Mills functional at the canonical connection for
the bundle SO(p+1) — S” is equal to p+1 whenever p=5.

As Theorem 2.4 indicates, examples of bundles over symmetric spaces which
have nontrivial homogeneous connections are rare. In the case of the p-sphere,
S? = Spin(p+1)/Spin(p), let p: H— SU(n+1) = U be an embedding viewed as
a representation of H. Then u=p&p*—(0) as an H-representation and the
associated bundle G x4 U will have nontrivial homogeneous connections if and
only if the ordinary representation of A appears in u. By Steinberg’s formula
([13]), the only representations (\) that can occur in (A)® (\”) have maximal
weight of the form A =pu+ \” where p is a weight of (\’). Using this, it is clear
that if the embedding p comes from a representation of SO(p), then the ordinary
representation of A does not appear in u. If p is a representation of Spin(p)
which does not come from SO(p) then it is possible for G x U to have nontrivial
homogeneous connections. For example, if p is the total spin representation,
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(5.9) A p odd
) p= AT@A™ peven,

then p® p* includes one copy of (\;) when p is odd and two copies of (\;) when
pis even ([18]). So the associated total spin bundle has a one- or two-dimensional
family of homogeneous connections, and the canonical connection is a local max-
imum for the Yang-Mills functional on this space of homogeneous connections.

Appendix: Proof of Proposition 3.2. Let 7=2{p"®v, € i.(m*®u). By (1.8)
and (2.16) we have

(A.1) [1,1]" = —0dniCran* NP ®v,.
It now follows that
(A.2) (Fon)" = —Baghk Cpgnin®®@v,.

This is clear because this function is H-equivariant and
(A.3) (Fo, ln 1) = | =Bls N Cponind.

LEMMA A.l. The infinitesimal version of H-equivariance for 1-forms #¢€
L(m*®u) is
Ui = Bianf —Ne Chyul.

Proof. We have

d
Ui) [ =— 16 (g exp(fuy) ) @ v,
t =0
(A.4) = 15(8) (Ad*®@ Ad o\) (exp(—tu ) )p*® v,
1=0
= 15(2) B’ @V, — 15 ()N CH @ vq.
Equating coefficients of p*®v, gives the desired result. O

Now by (3.6), (3.8), (3.9), and (3.10) we have
Aon=dodin+didyn
— { —Ua UB"]L’;_UB(UBTIce—Uang—Bgan'f)
—(1/2)B§,(Ugn? —Uynf — B}, uf)

_ { —UgUgnt +[Ug, Uy 1nf
+2B},Usn?+ (1/2)Bg, B}, nf

By using Lemma A.1 twice, it follows that
Uk Ul = Bl Uk nf — N CFy Uil

= BloUgnf = N CFy Biamd + N Ne CF, C ke
Combining (A.2), (A.5), and (A.6) gives

(A.5) };ﬂ@vp

}u"@ Vp.

(A.6)
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— 3, UMl + NNy CF, CE
+Bls U, nf + (1/2)BE, BE nf

Since the metrics on m and u are Ad-invariant, the distinct m,’s and u;’s in
the decompositions m = @ m, and u= @ u, can be assumed to be orthogonal.
In particular, when the bases for m and u are chosen, it can be assumed that each
u, or v, lies entirely in one of these irreducible submodules. We define index sub-
sets by

AT (Bot+Fo)(n) = { ];ﬂ@v,,.

(AS) I(ma)z {aluaemal
and
(A.9) I(up) = {plvpeu,l.

We need to compute (Ag+Fo) (1) when n e iy(mi®uy). If v, e u, then
= 2

(A.10) Ty, v = X ((adoN)(ux))*v,
= )\'/; iqu; C,Pq vp-

Since I';, is a scalar, we have

(A.11) NN Gl Cly =8, Ty, tel(uy).
Similarly, if u, € m, then

(A.12) T, Uo = Bl B, g,

SO

(A.13) BB, =bus Ty, ael(m,).
Since the metric on g is —B,, it follows that

(A.14) —8ap = By(Uy, tg) = 2B} B + B} BY;
and thus for g e I(m,)

(A.15) Bg BY, = 6,5+26,5T -

Now for pe i, (m*®u,) we have 32 =0 unless o€ I(m,) and peI(u,). So by
(A.7), (A.11), and (A.15) it follows that

(A.16) (Ao+Fo) (1) = (A+Ty, + 1 +T ) (0Zn*®@v,) + Bl Uy (nf )@ v,
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