ON THE EXTENSION OF SEPARATELY
HYPERHARMONIC FUNCTIONS AND H”-FUNCTIONS

Juhani Riihentaus

1. Introduction.

1.1. Grauert and Remmert [7, p. 175] proved that in C" analytic sets are remov-
able singularities for plurihyperharmonic functions which are locally bounded
below. In fact, their result was extended also for complex spaces [7, Satz 3,
p. 181]. Lelong [12, Theorem 2, p. 279] (see also [14, Theorem 4, p. 35] or [8, The-
orem 1.2 (b), p. 704]) extended the classical result by showing that in C" (R?"-)
polar sets are removable in this situation. Using Hausdorff measure, Shiffman [21,
Theorem 3, p. 338] gave other extension results for plurihyperharmonic functions.

In Theorem 4.1 below we give a similar result to Lelong’s result for functions
which are separately hyperharmonic with respect to each complex variable. In
fact, we allow our exceptional sets to be slightly larger than polar sets. For this
purpose in Section 2 we define n-small sets in C”. Since polar sets are n-small, also
n-polar and sets of finite (27 —2)-dimensional Hausdorff measure are n-small.
In addition, our sets include #n-negligible sets. Note that there are (at least non-
measurable) n-negligible sets which are not polar (see Remark 2.8 below). For
the definition of n-polar and n-negligible sets see [5, Definition 3.10, p. 246],
[11, p. 597], [24, Definitions 3.1 and 3.2, p. 32], and [4, p. 284]. In Section 4 we
give also some other extension results for functions which are separately hyper-
harmonic with respect to each complex variable.

In Section 5 we then apply Theorem 4.1 to get extension results for H”-
functions in C”". Our result, Theorem 5.2 below, includes the results of [I11,
Theorem 2, p. 597], [4, Remark 3, p. 286], [5, Theorem B, p. 241], and [17,
Theorem 3.5, p. 287].

However, before giving the above results we begin in Section 3 with a remark
concerning separately hyperharmonic functions. Avanissian [3, Theorem 9, p.
140] (see also [10, Theorem, p. 31]) proved that a separately hyperharmonic func-
tion is hyperharmonic if it is locally bounded below. Using a different method,
Arsove [2, Theorem 2, p. 622] showed that it is enough that the function has
locally an integrable minorant. In Theorem 3.4 below we point out that Arsove’s
result can also be obtained directly and shortly from Avanissian’s result.

For the properties of distributions see [20]. For the properties of hyperhar-
monic and holomorphic functions see [10], [9], [14] and [19].

We wish to express our gratitude to Jaakko Hyvénen for many interesting
discussions.

1.2. In addition to the standard notation we use the following, which is partly
similar to the notation used in [10].
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In the sequel j, &, /, n, p and g are always positive integers. The empty set is
denoted by @. The set of real numbers is denoted by R and the set of positive real
numbers by R, . In R¥ we use its usual euclidean metric and topology. For each
set ACR* we let A and 34 denote the closure and boundary of A, both taken
with respect to R¥. Given two sets 4 and B in R¥, A\B and AAB are the set-
theoretic difference and symmetric difference of 4 and B, respectively. More-
over, d(A, B) is the distance between the sets 4 and B. If CCR!, then A x C is
the cartesian product of A and C. If a€R* and r>0, we write

B*(a,ry={x€R*||x—a|<r}.

The complex plane is denoted by C. The complex space C" will be identified
with the real space R?*". If z,€C and r> 0, we write

S'(z0,r)=03B*(z,r), U=B*(0,1).

If z=(z1,...,2,) EC", we set foreach j, 1<j<n, Z;=(21,...,Zj—1,Zj+15-++,2n) €
C" ! and (z;,Z;)=z. Similarly, for each k#j, 1<k<n, we write Zjy=2Z;;=
(215« ooy Zim1sZj1s oo os Zhm1> Tkt 1s + - -5 Zn) EC" "2 and (2x, Zjx) = (2x, Zij) = Z;.
If GCC" and zo= (2}, Z) € C", we write

G(z{)={Z,€C" | (2}, Z))€EG).
If r=(r,...,rp)€ERY, we write Ry=(r»,...,r,) and

D"(zg,r)=B*(z,r;))xD"~Y(Z?, R)),
where
D" YZ,R))=B?*(23,r;) x - -+ x BX(z2, ).

The a-dimensional Hausdorff outer measure is denoted by H“. If AcCC",
then the notation ‘H“(A) <o’ means that A is of o-finite a-dimensional
Hausdorff outer measure. For the definition and properties of Hausdorff outer
measure see [6, 2.10.2, p. 171] or [9, pp. 220-221]. The Lebesgue measure in R
is denoted by my. We write w; =my (B¥(0, 1)). The outer logarithmic capacity is
denoted by cap*.

If U is an open set in R*, then D(U) and D, (U) mean, as usual, the spaces of
testfunctions and non-negative testfunctions in U, respectively. If o€ D(U),
then A means the Laplace of ¢. If Gis an opensetin C", p€D(G)and 1< j<n,
then we write in G

9%

az,- aZj

Ajp(z)=4 (2).
If p>0, then the notation ‘f € L{,.(G)’ means that f is a complex-valued func-
tion defined Lebesgue almost everywhere in G and that | f|? is Lebesgue inte-
grable in each compact subset of G. The real and imaginary parts of a function f
are denoted by Re f and Im f, respectively; similarly for Re z and Im z.

If Uis a set in R¥ and u: U— [—o, ], then the lower semicontinuous regu-
larization of u is denoted by u*, as usual. Thus «*: U— [—o0, 0],

“
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u*(x)=liminf u(x’).
xX'—=x
A hyperharmonic function on an open set U of R¥, k>2, is a lower semicon-
tinuous function u#: U — (—, o] such that for any a € U there exists arbitrarily
small radii >0 such that

u(a)= u(x) dmy(x).

wkrk SBk(a,r)
Note that a hyperharmonic function can be identically e on any component of
U. A hyperharmonic function u: U— (—0, o] is superharmonic if u#oc on
each component of U. See [10, pp. 7, 9].

If G is an open set in C"” and u: G — (—, ], then we say that u is n-
hyperharmonic if u is separately hyperharmonic with respect to each complex
variable z;, 1<j <n, for any fixed values of the other ones. See [10, pp. 35-36].
The function u: G — R is n-harmonic if u and —u are n-hyperharmonic.

2. Exceptional sets.

2.1. We define a set function for subsets of C". The construction is based on
the use of the outer logarithmic capacity cap* in C and on the 2-dimensional
Hausdorff outer measure H 2.

2.2. DEFINITION. For each EC C we define G(E)=cap*E. If n 22, 1<j<n
and @"~!is defined for subsets of C"~!, we define for EC C"

CHE)=H?z;€C|C" {Z;€C" | (z;,Z))EE}>0).
Finally, set C"(E) =max, ¢j<, C/(E). We say that EC C" is n-small if C"(E)=0.

2.3. REMARK. Since H? is an outer measure, we see using the subadditivity of
the outer logarithmic capacity and induction that €” is an outer measure in C".
Thus EC C" is n-small if and only if EN U is n-small for each UC C" open. Simi-
larly using induction we see that ECC” is of zero Lebesgue measure if E is
Lebesgue measurable and #-small. There are, however, n-small sets which are
Lebesgue nonmeasurable (see Remark 2.8 below).

Next we give two sufficient conditions for #-smallness. In Remarks 2.7 and 2.8
below we show that these conditions are not necessary.

2.4. PROPOSITION. Let ECC", n22. Then E is n-small if, for each k,
1<k<n,

H* %7z, €C" ' cap*{z, €C| (2, Zx) EE} >0} =0.

Proof. We give an induction proof. If n=2, then the assertion is equivalent
with C*(E)=0.
Suppose then n > 3. Take j, 1</ <n, arbitrarily. Set for each k, 1<k <n,

Ey={Z,€C" | cap*{zx €C| (2, Zx) EE}>0}.

By the assumption H?"~2(E;)=0. Thus by Fubini’s theorem there is for each
k#j, 1<k<n, a set Bj; CC such that HZ(Bjk) =0 and that Hz”""(Ek(zj)) =0
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for each z; ¢Bjk, where E;(z;) = [ijGC”_2| (zj, Zjx) EEx}. Set

n
Bj= U Bjk.
k=1
k#j
Clearly HZ(B,-) =(. To show that G”_I(E(zj)) =0 for each z; ¢Bj, where E(z;) =
{Z;eC" | (z;,Z;)€EE}, we proceed as follows. Choose k#j, 1<k<n, arbi-
trarily. Then

{Zjx €C""?|cap*{zk EC| (zx, Zjx) EE(z;)} > 0)
={Z;, €C""?|cap*{zx EC| (2x, Zx) EE} >0}
={Zjx €C" 2| (2}, Zjx) EEx} = Ex (z)).

Since H 2n_4(Ek(Zj)) =0 for each z; € B;, we see by the induction hypothesis that
G”"(E(zj)) =0 whenever z; ¢ B;, concluding the proof. a

2.5. PROPOSITION. Let ECC", n22. Then E is n-small if, for each k,
1<k<n, the set

{ZyeC" '|cap*{zx €C| (24, ZY) EE} >0}
is (n—1)-small.

The proof is based on induction and is very similar to the proof of Proposition
2.4.

2.6. REMARK. If EC C"=R?" is polar, then E is n-small. This follows from
[15, Corollary 3.3] and from Proposition 2.4. Thus it follows from [9, Theorem
5.14, p. 228] that E is n-small, if H*""3(E) < 0.

However, for each a, 0 <« <2, there are n-small sets EC C", n =2, for which
H?*"~%(E)>0. To get an example take o/, 2—a/n<a’<2, and E’'C C such that
H*(E')>0and H*(E')=0. If E=E’x --- X E’, we see by [6, 2.10.25, p. 188]
(see also [21, Lemma 1, p. 113]) that H*"~%(E)>0. However, it is easy to see
that £ is n-small.

2.7. REMARK. The condition in Proposition 2.5 is not necessary for a set to be
n-small. This is seen for example from the following. Suppose n 22 and set £=
{z€EC"|z,-1, 2, E€R]}. Then clearly H*"“%(E)<0«. Thus E is n-small. How-
ever, the condition in Proposition 2.4 does not hold, since the set

E,={Z,€C"""|cap*{z,€C]| (2, Z,) EE}>0)}
={Z,€C"'|z,_,€ER)

is not (n—1)-small.

To see the difference between the above situation with n-negligible sets we
recall the following definitions. See also [4, p. 284] and [24, Definitions 3.1 and
3.2, p. 32].

For each £C C we define 8/ (E)=cap*E. If n 22, 1<j <n, and &~ !is defined
for subsets of C"~!, we define for EC C”"



ON THE EXTENSION OF n-HYPERHARMONIC AND H”-FUNCTIONS 103

&NE)=cap*{z;€C|&8"1{Z;€C"!| (z,Z,)EE}>0).

Finally, set §"(E)=max,¢j<, &/(E). We say that ECC" is n-negligible if
E"(E)=0.

Using induction one can prove the following characterization of n-negligible
sets (observe the difference between n-small sets).

Let ECC", n22. Then E is n-negligible if and only if for each k, 1<k <n, the
set

{ZyeC" | cap*{zx €C| (2, Zx) EE}>0)

is (n—1)-negligible. (Cf. [24, Proposition 3.3, p. 33].)

Using this characterization, induction and Proposition 2.5, we see that n-negli-
gible and thus also n-polar, pluripolar and Borel sets with vanishing I'-capacity
are n-small. See [4, p. 284], [24, Proposition 5.2, p. 41], and [18].

2.8. REMARK. The condition in Proposition 2.4 is not necessary for a set to be
n-small. This is seen from the following example.

Let SCR? be the well-known Sierpinski’s set which is Lebesgue nonmeasur-
able and has exactly one point in common with each line parallel to either of the
coordinate axes (see [23, p. 114]). Suppose that » >3 and set

E={ze(C"| (Rez,Imz;), (Imz,Rez) ES}].

It is easy to see that E is n-negligible and thus n-small. However, by Fubini’s
theorem we see that for each k, 3 <k <n, the set

Ei=(Z,€C" " |cap*(zx €C| (24, Zx) EE} >0}

is Lebesgue nonmeasurable. Thus H?"~%(E;) >0 and the condition in Proposi-
tion 2.4 does not hold. Note that also E is Lebesgue nonmeasurable and there-
fore gives an example of an n-negligible set which is not polar. Thus we have
answered a question posed by Singman in [24, p. 33].

3. On hyperharmonicity of separately hyperharmonic functions.

3.1. Avanissian [3, Theorem 9, p. 140] (see also [10, Theorem, p. 31]) proved
that a separately hyperharmonic function is hyperharmonic if it is locally bounded
below. Later Arsove [2, Theorem 1, p. 622] generalized Avanissian’s result by
showing that it is enough to suppose that the function has locally an integrable
minorant. Arsove’s proof was based on the use of mean value operators. We
show that Arsove’s result can be obtained directly from Avanissian’s result and
from the following, probably well-known lemma. See also [2, Lemma 1, p. 624].

3.2. LEMMA. Let UCR?, p21, and VCRY?, qg=1, be open sets. Let
S: UXV— (—o0, ] be a function which satisfies the following conditions.
(1) For each y€V the function f,: U— (—, o], f,(x)=f(x,y), is lower
semicontinuous.
(2) For each x€ U the function f,:V—>(—o, ], f.(¥)=f(x,y), is lower
semicontinuous. Moreover, for each x € U
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lim — |
r—0 wqr Bq(b,r)

fx(y) qu(y) =fx(b)

Sforall beV.
Then f is measurable.

Proof. Take V, open such that ¥;CV is compact. Take M >0 arbitrarily. It is
sufficient to show that the function g: UX V|, =R, g(x,y)=inf{ f(x,y),M], is
measurable.

For each r, 0<r<ro=d(V,,RI\V), define 4,: UX V,—> R,

h(x,y)= g(x,z) dmg(z).

(.oql‘q SBq(y,r)
Note that A, is well-defined. Using the lower semicontinuity of the functions
gky: U R, giy(x)=suplg(x,»), =k}, yeWV, k=1,2,..., Fatou’s lemma and
Monotone convergence, we see that for each y€V) the function 4,,: U—R,
h;,(x)=h,(x, y), is measurable. On the other hand, for each x € U the function
hye: Vi—R, h.(y)=h,(x,y), is continuous, since

e =l == [ gxzydme@) =], g(x,2) dmy(2)

Bq(yOyr

q
waql

1
<—|
W™ JBI(y,rABI(yy,r

) lg(x,2)| dmy(2)

for all y, yo€ V). It is straightforward to see that 4, is measurable. (In fact, it is a
classical result, originally due to Lebesgue, that a function is measurable if it is
measurable with respect to the first variable and continuous with respect to the
other variable.)

To show that 4, — g as r =0, we proceed as follows. Take (x, y) € U x V, arbi-
trarily. For each r, 0<r<ry, we have

he(x,y)= g(x,z) dmy(z) < )f(x,z) dmy(z).

wgr? SBq(y,r) wgr? SB‘?(y,r

Thus using the condition (2) we get
lim sup A, (x, y) <g(x, »).
r—>0

On the other hand, using the lower semicontinuity of g, we see that

liminf A, (x,y)=2g(x, ).

r—>0

Therefore A, — g as r = 0. Hence g and also f is measurable. O

3.3. REMARK. It is well known that a function which is separately lower
(upper) semicontinuous need not be measurable. As an example serves the char-
acteristic function xs of Sierpinski’s set S explained in Remark 2.8.

Note that by [10, Proposition 2b), p. 10] the condition (2) is satisfied if the
functions f,, x € U, are hyperharmonic.
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3.4. THEOREM [2, Theorem 1, p. 622]. Let G be an open set in R?T9, p, g 2 1.
Let v: G— (—oo, o] be separately hyperharmonic, i.e. let v satisfy the following
conditions.

(1) For each y€RY the function

{(xER?|(x,y)EG}3x~v(x,y)E(—0, ]

is hyperharmonic.
(2) For each x €RP the function

{YER?| (x,y)EG} >y~ v(x,y)E(—, 0]

is hyperharmonic.
If v has locally an integrable minorant, then v is hyperharmonic.

Proof. For each k=1,2,... define v,: G—=>R, v (x,y)=inf{v(x,y), k}]. By
[10, b), p. 8] v, is separately hyperharmonic. By [10, a), p. 8] it is sufficient to
show that each v, k=1,2,..., is hyperharmonic. Observe first that by [10,
Proposition 2 b), p. 10] and by Lemma 3.2, v, is measurable and thus locally inte-
grable. To show that for each (a, ) € G and r>0 such that B?*9((a, b),r)CG
we have

vr(a,b) 2 vk (x,y)dmy,  4(x, ),

Wprgr?Tl SB”*"((a,b),r)

just proceed as in the proof of Avanissian’s theorem [10, pp. 32-33]. Hence
v, is nearly superharmonic, and thus locally bounded below. Therefore the
lower semicontinuity of v, follows as in the proof of Avanissian’s theorem [10,
p. 32]. - O

3.5. COROLLARY. Let G be an open set in C". Let u: G— (—o0, ] be n-
hyperharmonic. If u has locally an integrable minorant, then u is hyperharmonic.

4. Extension of n-hyperharmonic functions.

4.1. THEOREM. Let G be an open set in C". Let ECG be closed in G and
n-small. Let u: G\E — (—o, 0] be n-hyperharmonic. If u is locally bounded
below in G, then u has a unique n-hyperharmonic extension u*: G — (—o, o],

Proof. We give an induction proof. For each k=1, 2, ... define u;: G\E—R,
u(z)=inffu(z), k}. By [10, b), p. 8] u, is n-hyperharmonic. Since u; is locally
bounded below in G, u is superharmonic by Corollary 3.5. Hence u; is locally
integrable in G and thus defines a distribution in G. By [10, a), p. 8] it is suffi-
cient to show that u; has a unique n-hyperharmonic extension to G.

In view of [10, Theorem 2, p. 25] we may suppose that n >2. Take j, 1 <j<n,
arbitrarily. Since E is n-small, there is a set B;C C such that H 2(B,,-) =0 and that
for each z; & B; the set

E(z;)={Z;€C"""|(z,Z;)EE]}
is (n—1)-small. Thus for each z; & B; the function Ukz;: (G\E)(z;) >R,

Ukz; (Z;) = uk (25, Z;),
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has—in the case n=2 by [10, Theorem 2, p. 25] and in the case n 23 by the induc-
tion hypothesis—a unique (7 —1)-hyperharmonic extension uiz;: G(z;) = R.
Since by Corollary 3.5 u;fzj is also superharmonic, we see by [10, Theorem 1,
p. 11] that

) |ty (Z) 205y (2)) dmay_2(Z) <0

for each testfunction ¢;; €D, (G(z;)).
Take now a testfunction ¢ € D, (G) arbitrarily. Using Fubini’s theorem we get

(n=1) | u(2)80(2) dimyy (2)

= L [u@( L are(0))dmay 2

1#j

5 <S ur(zj, Zj) ( 121 Aro(z), Zj)) dmy,_, (Zj)> dm;(z;)
J —
1]

n
=% | (g (2)805(Z) dmay_o(2))) dmr(zp),
j=17C\Bj
where ¢;;: G(z;) 2R, ¢;;(Z;)=¢(2;,Z;), when z; €C. Since ¢;; €D, (G(z;))
for each z; € B;, we see by (A) that

| 1 (2) A0(2) dmay (2) <O0.

Thus by [10, Corollary 1, p. 13] there is a superharmonic function
U : G — (—o0, o] such that vy =u,; almost everywhere in G\E. From the super-
harmonicity of u; in G\E it follows by [10, Proposition 3, p. 11] that v, is the
unique superharmonic extension of u; to G. To see that v, is actually n-hyper-
harmonic, we proceed as follows.

Define wy : G — (—0, 0],

We(2) = Uk (2)=ux(z), when z€EG\E,
k%771 o, when z€E.

Since m,, (E)=0, w; is locally integrable in G. Since v; is superharmonic and
wy = vy almost everywhere in G, wy is nearly superharmonic. Thus the function
w;{k: G_> (——-OO’ OO]’
wi(z) =liminf w; ('),
'z

is a superharmonic extension of u; to G, and in fact w{ =uv; by [10, Proposition
3, p. 11].

Take j, 1<j<n, arbitrarily. For each z;€B; the function Wiz;: G(z7) =
(—o0, ], Wiz;(Z;) =wi (2}, Zj), is nearly superharmonic, since the set E(z;) is
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(n—1)-small. Thus m,,_,(E(z;)) =0, and the function ux.; has a unique (n—1)-
hyperharmonic and thus a superharmonic extension to G(z;). Thus by [10, Prop-
osition 1, p. 33] for each z; € C the function wfz;: G(g;) = (=, ©], wi;;(Z;)=
wi(zj, Z;), is hyperharmonic. However, if z;B; then the function wj;; is
(n—1)-hyperharmonic. This follows from the facts that then wg,; is super-
harmonic, uf;; is (n—1)-hyperharmonic and superharmonic, Wiz, =Ukz; 1N
G(zj)\E(zj), my,_»(E(z;)) =0 and [10, Proposition 3, p. 11].

To show that wi is n-hyperharmonic it is by [10, Proposition 1, p. 33] suffi-
cient to show that for each /, 1</<n,

(B) [wi2)810(2) dmny(2) <0

for all p€D,(G). For this purpose take j#/, 1<j<n, arbitrarily. Using
Fubini’s theorem we get

S Wi(z) A1 p(2) dmy, (z) =SC\B_ (S Witz;(Z;) A1 pz;(Z)) dm2n—2(zj)> dmy(z;).

J

Since we have above seen that the functions w,f}"zj, z; € B;, are (n—1)-hyperhar-
monic and superharmonic, it follows from [10, Proposition 1, p.33] that

| wi; (2 Argey(2)) dimay2(Z) <0

for each z; € B;. Thus (B) holds, and we have shown that w is n-hyperharmonic,
concluding the proof. O

4.2. COROLLARY. Let G be an open set in C". Let EC G be closed in G and
polar. Let u: G\E— (—o, ] be n-hyperharmonic. If u is locally bounded
below in G, then u has a unique n-hyperharmonic extension u*: G - (—oo, ],

4.3. COROLLARY. Let G be an open set in C". Let ECG be closed in G
and let H*“*(E)<0w. Let u: G\E—> (—o, ] be n-hyperharmonic. If u is
locally bounded below in G, then u has a unique n-hyperharmonic extension
u*: G- (—oo,0].

4.4. COROLLARY (cf. [5, Theorem 3.11, p. 246] and [24, Theorems 4.8 and
4.9, p. 38]). Let G be an open set in C". Let EC G be closed in G and n-polar or,
more generally, n-negligible. Let u: G\E — (—0, o] be n-hyperharmonic. If u
is locally bounded below in G, then u has a unique n-hyperharmonic extension
u*: G- (—oo, 0],

4.5. REMARK. Lelong [12, Theorem 2, p. 279] (see also [14, Theorem 4,
p. 35] or [8, Theorem 1.2 (b), p. 704]) proved a similar result to Corollary 4.2 for
plurihyperharmonic functions. Lelong’s method of proof was to reduce the situ-
ation to the case of hyperharmonic functions by a convenient characterization of
plurihyperharmonic functions [12, Theorem 1, p. 273] (see also [14, Theorem 1,
p. 18] and [8, p. 707]). Hyvonen has proved Corollary 4.2 with a method similar
to Lelong’s method.
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4.6. REMARK. Shiffman [22, Theorem 3 (i), p. 358] proved a similar result to
Corollary 4.3 for plurihyperharmonic functions. In fact, our method in proving
that the function u; has a superharmonic extension to G seems to be slightly sim-
ilar to the idea of Shiffman in [22, p. 338]. Shiffman [22, Theorem 3 (ii), p. 338]
(see also [8, Theorem 1.2(c), p. 704]) proved also that a plurihyperharmonic
function extends plurihyperharmonically across a set E, if H*"~2(E)=0. Pro-
ceeding as in the proof of Theorem 4.1 we get a similar result for n-hyperhar-
monic functions, although under the rather heavy assumption that the function
has locally in G an integrable minorant.

4.7. THEOREM. Let G be an open set in C". Let EC G be closed in G and let
H* 2(E)Y=0. Let u: G\E — (—, ©] be n-hyperharmonic. If u has locally in
G an integrable minorant, then u has a unique n-hyperharmonic extension
u*: G- (—oo, 0],

4.8. REMARK. We do not know whether the assumption of the existence of an
integrable minorant is really necessary. Anyway, if we demand that H"(E)=0
and #n 22 then this assumption can be dropped. The key to the proof of this
fact is the following lemma which, with its proof, has its origin in [4, Lemma,
p. 284]. In fact, Cegrell gave a similar result for n-negligible sets.

4.9. LEMMA. Let ECC" be such that H"(E)=0. Then there is a point Z,€E
and j, 1<j<n, such that {

H'{z;€C|(z;,Z])€E}=0.

Proof. We give an induction proof. If n=1, the assertion follows from [21,
Corollary 2, p. 114].

Suppose then that # > 2. Suppose, on the contrary, that no point of E satisfies
the assertion of the Lemma. Set

E=(z;€C|H""1Z,€C""|(21,Z,)EE}>0).

By [6, 2.10.25, p. 188] (see also [21, Lemma 1, p. 113]), H'(E))=0. If z, € E,, it
follows from the induction hypothesis and the antithese that (z;, Z,) € E for each

€C""'. Thus ECE,xC" ! and so every point of E satisfies the assertion of
the Lemma, a contradiction. O

4.10. THEOREM. Let G be an open set in C", n22. Let ECG be closed in G
and let H"(E)=0. Let u: G\E— (—o0, ] be n-hyperharmonic and locally
bounded below in G\E. Then u has a unique n-hyperharmonic extension
u*: G— (—o0, 0], which is locally bounded below in G.

Proof. Let G’ be the set of those points z€ G which have a neighborhood U in
G such that « is bounded below in U. Since H"(E) =0, it follows from Corollary
4.3 that u has a unique n-hyperharmonic extension u*: G’— (—o0, ©]. To show
that G'=G we proceed as follows.

Set E‘=G\G’ and suppose, on the contrary, that £’ @. Since E'C E, there is
by Lemma 4.9 a point zg€E’ and j, 1</ <n, such that
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H'(z;€C| (z;,Z))EE"}=0.

For the simplicity of notation we may suppose that j=1. Thus there is ;> 0 such
that B%(z?, r)) x {Z}C G and that S'(z?, ) x {Z?} C G\E". Since E’is closed in
G, there is Ry=(ry,...,r,) ER?! such that B*(z?, r)) x D"~ 1(Z?, R,)CG and
Si(z?, r) xD"~Y(Z?, R))C G\E". Since u* is lower semicontinuous, there is m €
RU {0} such that u*(z,, Z;) = m for each (z,,Z,)€S'(z{, r)) x D""Y(ZL, R)).

Set Ey={Z,€C"" | (Cx {Z;}) NE’= @ }. By the minimum principle [10, Prop-
osition, pp. 6-7] we see that u*(z;, Z;) 2m for each

(z1,Zy) €B*(z{, r)) x (D"~ Y(Z0, R) NE)).

Since H*"~2(C"~!\E,) =0, it follows (e.g. by [10, Proposition 2b’), p. 10]) that
u(zy, Z,) =m for each (z;, Z,) € (B*(z{, r)) xD"~Y(Z?, R)))\E. Hence z,€G’, a
contradiction. Thus the theorem is proved. O

4.11. COROLLARY. Let G be an open set in C", n22. Let ECG closed in G
and let H"(E)=0. Let u: G\E — R be n-harmonic. Then u has a unique n-har-
monic extension u*: G —> R.

Proof. By [13, p. 561] (see also [10, Theorem, p. 54]) u is harmonic. Thus by
Theorem 4.10 u has a unique n-harmonic extension u*: G —> R. 0

5. Extension of H”-functions.

5.1. THEOREM. Let G be an open set in C". Let ECG be closed in G and
n-small. Let f: G\E— C be a holomorphic function such that for some p>0,
| f|? has an n-hyperharmonic majorant u in G\E. If u is superharmonic, then f
has a unique holomorphic extension f*: G — C.

Proof. We give an induction proof. By Theorem 4.1, u has a unique n-hyper-
harmonic extension u*: G— (—o0, ]. Since u is superharmonic, we see by
Corollary 3.5 that #* is superharmonic. Hence | f|” is locally integrable in G and
thus defines a distribution in G. We show first that | f|” has a unique subhar-
monic extension to G.

In view of [16, Théoréme 20, p. 182] (see also [11, Theorem 1, p. 597]) we may
suppose that n>2. Take j, 1</ <n, arbitrarily. Let B;CC and E(z;), z;¢B;,
be as in the proof of Theorem 4.1, however, with the additional property that
for each z; & B; the function u;;: (G\E)(z;) = (—, ], u;(Z;) =u(z;, Z;), is
superharmonic. Actually, B; can be furnished with this additional property using
Fubini’s theorem. If z;€B; and f;;: (G\E)(zj) >C, fy;(Z;)=/f(2;,Z;), then
| S (Z)IF <uz(Z)) for all Z;€ (G\E)(z;). By [10, Corollary 1, p. 10] | f;|” has
a harmonic majorant in (G\E)(z;). If n=2 then by [16, Théoréme 20, p. 182]
(see also [11, Theorem 1, p. 597]) and if n =3 then by the induction hypothesis
Jz; has a unique holomorphic extension JZ;: G(z;) = C. Thus by [10, Theorem 1,

p. 11]

(©) | 17217 800(2Z)) dmay_5(Z)) 20
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for each testfunction ¢,; € D, (G(z;)).
Take now a testfunction ¢ € D, (G) arbitrarily. Using Fubini’s theorem and
proceeding as in the proof of Theorem 4.1 we see with the aid of (C) that

Slf(z)]pAqo(z) dm,,(z) 20.

Thus by [10, Corollary 1, p. 13] there is a subharmonic function v: G — [—o0, o)
such that v=| f|? almost everywhere in G\E. From [10, Proposition 3, p. 11] it
follows that v=|f|? in G\E.

To show that f has a unique holomorphic extension to G it is sufficient to
show that Re f and Im f have harmonic extensions to G. Since v and thus | f]”
are locally bounded above in G, fand also Re fand Im f are locally bounded in
G. Since Re f and Im f are n-harmonic, it follows from Theorem 4.1 that they
have n-harmonic and thus harmonic extensions to G, concluding the proof. O

5.2. THEOREM. Let ECU" be closed in U" and n-small. Let f: U"\E—>C
be a holomorphic function such that for some p>0, |f|” has an n-harmonic
majorant u in U"\E. Then f has a unique holomorphic extension f*: U" - C
such that | f*|? has an n-harmonic majorant in U".

Proof. By Theorem 4.1, u has a unique n-hyperharmonic extension
u*: U"— (— oo, o], which by Corollary 3.5 is also superharmonic. By Theorem
5.1, f has a unique holomorphic extension f*: U" — C. To show that | f*|” has
an n-harmonic majorant in U”" we proceed as follows.

Take a nondecreasing sequence ry—>1 as k—oo. For each k=1,2,... set
By =B?*(0, ry) and define u}: U" >R,

uMzy, Z1) = §1f*(n, Z))|” duzk(n), when z, € By,
|f*(z1,Z1)|P, when z, € U\By.

Here ,uﬁk is the harmonic measure at z; € By over By (see [10, pp. 4-5]). Using
[10: Theorem, p. 5; Proposition 1, pp. 9-10; and c), p. 8] we see that u}, k=
1,2,..., is a nondecreasing sequence of continuous, n-subharmonic (i.e. sub-
harmonic in each complex variable separately) functions such that for each
Z,€ U""! the subharmonic function u}z: U—R, ulz (z))=ui(z1, Z;), is har-
monic in By. Since | f*|? is n-subharmonic and u* is n-hyperharmonic, we see by
the minimum principle [10, Proposition, pp. 6-7] that | f*|” <uj} <u* for each
k=1,2,....

Taking then similarly successive Poisson modifications with respect to the
variables z,,...,2, we get a nondecreasing sequence of continuous, n-subhar-
monic functions uy, k=1,2,..., which are n-harmonic in D"(0, r}) such that
|f*|? <ui <u*. Here rf=(r, ..., rx) (n copies). Using then Harnack’s theorem
[10, Corollary, p. 6] we get the desired n-harmonic majorant to | f*|” in U". O

5.3. COROLLARY. Let ECU" be closed in U" and polar. Let f: U'"\E—>C
be a holomorphic function such that for some p>0, |f|? has an n-harmonic
majorant u in U"\E. Then f has a unique holomorphic extension f*: U"—>C
such that | f*|? has an n-harmonic majorant in U".
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5.4. COROLLARY ([17, Theorem 3.5, p. 2861). Let EC U" be closed in U" and
let H""2(E)<0w. Let f: U"\E > C be a holomorphic function such that for
some p>0, |f|? has an n-harmonic majorant u in U"\E. Then f has a unique
holomorphic extension f*: U" — C such that | f*|? has an n-harmonic majorant
in U".

5.5. COROLLARY (cf. [11, Theorem 2, p. 597] and [4, Remark 3, p. 286]). Let
EC U" be n-polar or, more generally, n-negligible. Let f: U"\E — C be a holo-
morphic function such that for some p>0, |f|? has an n-harmonic majorant in
U"\E. Then f has a unique holomorphic extension f*: U" — C such that | f*|?
has an n-harmonic majorant in U".

5.6. THEOREM (cf. [8, Theorem 1.1 (d), p. 703]). Let G be an open set in C".
Let EC G be closed in G and n-small. Let f: G\E — C be a holomorphic function
such that f€ L. (G). Then f has a unique holomorphic extension f*: G— C.

Proof. Proceed essentially as in the proof of Theorem 5.1. Actually, the
only difference is that use [1, Theorem B (a), p. 530] (see also [17, Lemma 2.4,
p. 284)]) instead of [16, Théoréme 20, p. 182] or [11, Theorem 1, p. 597] when
inferring that the functions f;, z; ¢ B;, have holomorphic extensions JZito G(z;).

NOTE ADDED IN PROOF. We want to thank the referee for the following
remarks.

One can show that though C" (see Definition 2.2) is not a capacity it is a
precapacity. For the definition of capacity and precapacity see, for example,
U. Cegrell, On product capacities with application to complex analysis, Séminaire
Pierre Lelong-Henri Skoda (Analyse), Années 1978/79 (French), pp. 33-45,
Lecture Notes in Math., 822, Springer, Berlin, 1980.

In Remark 2.6 it was stated that polar sets are n-small. This follows also from
Lemma 6, p. 115 in A. Sadullaev, Rational approximation and pluripolar sets
(Russian), Math. Sb. 119, No 1 (1982), 96-118.
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