ON CERTAIN TRANSCENDENTAL NUMBERS

M. L. Robinson

In this note we deduce some consequences of the Lindemann-Weierstrass
theorem and the Gelfond-Schneider theorem. In a simple fashion we prove cer-
tain pairs of numbers are algebraically independent. We also show certain num-
ber classes contain only transcendental numbers. Examples include the algebraic
independence of e cos 3 and e?sin 3 and the transcendence of

=]

logsin2, sinlog2, cos™!(exp(2)), exp(cos™!2), and Y @.

n=|

One form of the Lindemann-Weierstrass theorem [1, p. 20] states that if
oy,...,0p are algebraic, then e*, ..., e% are algebraically independent if and
only if «, ..., «, are linearly independent over the rationals. It follows at once
that e” is transcendental for all non-zero algebraic «. But what about the
arithmetic nature of the real and imaginary parts of e®? The transcendence of e®
insures that at least one of Re(e®) and Im(e®) is transcendental. But much more
is true if the real and imaginary parts of « are both non-zero. In this case, a
corollary of the following theorem shows that Re(e®) and Im(e®) are in fact
algebraically independent.

THEOREM 1. Suppose o and 3 are algebraic numbers. Then e® cos 8 and
e® sin (8 are algebraically independent if and only if o and Bi are linearly indepen-
dent over the rationals.

Proof. Let K denote the field of algebraic numbers. Then the following impli-
cations hold:
e cos 8 and e“sin 3 are algebraically dependent.
& Tr.deg.x K(e*cosf3,e“sinB) <1.
Tr. deg.x K(e”cos 8+ie“sin 3, e* cos 3 —ie“sin 8) <.
Tr. deg.x K(e**P e Piy«1.
e®*#" and e*~ P! are algebraically dependent.
a+if3 and o —if3 are linearly dependent over the rationals (by the Linde-
mann-Weierstrass theorem).
¢ « and @i are linearly dependent over the rationals.
The proof is complete. O

st ¢

COROLLARY. Suppose o is an algebraic number whose real and imaginary
parts are both non-zero. Then the real and imaginary parts of e® are algebra-
ically independent.

Received July 25, 1983.
The author acknowledges support received from a Naval Academy Research Council

Grant.
Michigan Math. J. 31 (1984).

95



96 M. L. ROBINSON

Proof. Let a=a+ bi where a and b are real numbers. Then @ and b are both
algebraic. Since ab#0, a and bi are linearly independent over the rationals.
Noting that Re(e®)=e“ cos b and Im(e*) =e“ sin b, the corollary follows from
Theorem 1. a

If « and 8 are algebraic with «, 3/ linearly independent over the rationals, we
see from Theorem 1 that e® cos 8 and e® sin 8 are both transcendental. The next
theorem shows that we can relax the condition on « and 8 and achieve the same
result. We shall need the following version of the Lindemann-Weierstrass
theorem [1, p. 23]: For any distinct algebraic numbers «;,...,«, and any non-
zero algebraic numbers 3,..., 8, we have

Bre®i4 - +B,e#0.

THEOREM 2. Suppose o and 3 are algebraic numbers. Then the following are
transcendental:
(@) e*cosB for (o, B)#(0,0), e*sin B and e® tan 8 for 3#0;
(b) log(acosB) for a#0and (o, ) #(1,0), and log(a sin 8) and log(« tan 3)
Jor a3 #0 (regardless of the branch of the natural logarithm);
(¢) cos~!(aeP) for (o, B)#(1,0), sin~!(ae?) for a#0, and tan~!(ae®) for
a#0and (o, B) # (xi,0) (regardless of the branches of the inverse trigo-

nometric functions;
2 (—=1)"cos na * oS na
@ X p for —w<a<w, Y Sfor 0<a<2w, and
n=1 n=1
* cos[(2n—1
Y I Jo for 0<a<m.

n=1 (2’1_1)

Proof. We will prove only the first result in each of (a)-(d). Similar arguments
apply to the other results. For (a) suppose that y=e® cos 3 is algebraic. It suf-
fices to show aa=8=0. Now

(1) e Pl e B _2re0=0.

By the second version of the Lindemann-Weierstrass theorem, at least one of the
following inequalities holds: a+Bi=a—Bi, a+Bi=0, a—Bi=0. In the first
case 3=0. Then from (1) we have e” is algebraic so that « =0. In the other cases
a=+Bi. From (1) we see that e *?# is algebraic, and again a=8=0.

As for (b), suppose that v =1log(x cos 8) is algebraic. Since a #0, it suffices to
show (a, 8)=(1,0). Now e " cos B=a ~!. Using (a) we see that B=v=0, and
thus a=1.

For (c) we suppose that y=cos !(ae®) is algebraic. It suffices to show
(o, B)=(1,0). Now e P cosy=c. From (a) we deduce that 8=y=0 so that
a=1.

Next, we consider (d). Using the theory of Fourier series we know
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2 (—=1)"cos na

o
= —log|2 cos —], —r<a<lm,
n=1 n 2
> cosnaz_log zsinﬁl’ 0<a<2m,
n=1 2
2 cos(2n—1)« 1 o
=——log|tan —|, O<a<m.
T oo Sl a=m
Hence (d) follows from (b), and Theorem 2 is proved. O

We remark that results can also be proved when the cosines occurring in (d) are
“‘replaced’’ by sines. For example, the transcendence of w implies the transcend-
ence of L,—; sin na/n=(w—a)/2 for all algebraic « with 0<a<2w.

Finally, we shall make an application of the Gelfond-Schneider theorem [1, p.
76]: If o and B are algebraic with o0, 1 and 8 irrational, then af = exp(f log o)
is transcendental (regardless of the branch of the natural logarithm). The next
theorem provides a complement to parts (b) and (c) of Theorem 2.

THEOREM 3. Suppose a, 3 are algebraic with ai irrational. Then the following
numbers are transcendental:
(@) cos(alogf), sin(alogB), and tan(a log B) for 3#0,1 (regardless of the
branch of the natural logarithm);
(b) exp(a cos "' B) for B#1, exp(a sin~! B) for 8#0, and exp(c tan~!B) for
B#0, xi (regardless of the branches of the inverse trigonometric func-
tions).

Proof. We prove only the first result in both (a) and (b). The other results are
proved in a similar fashion. For (a) assume that y = cos(« log 3) is algebraic with
B#0,1. Then e’1088 e —ixloeB — 5 Hence exp(ia log B) is algebraic. Since ai is
irrational and algebraic, the Gelfond-Schneider theorem implies 3=0or =1, a

contradiction‘. >
As for (b), recall that

cos'(z) = —i[log(z+i(1—2%)"?)], sin~'z=—i[log(iz+ (1—z*)""?)],

and tan ~'z=(i/2) log((i+z)/(i—2z)) for specific branches of the square root
and natural logarithm. Suppose exp(« cos~!B) is algebraic with 8#1. Then
exp(—ai[log(B+i(1—pB2)"?)]) is also algebraic. But —a«i is algebraic and irra-
tional while 8+ i(1—8?)"? is algebraic. The Gelfond-Schneider theorem implies
B+i(1—B%)?=0or 1. The first case is impossible and the second leads to 8=1,
a contradiction. Theorem 3 is proved. O

We conclude by noting that it was essential in Theorem 3 to assume the irra-
tionality of «i.
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