ON CERTAIN TRANSCENDENTAL NUMBERS

M. L. Robinson

In this note we deduce some consequences of the Lindemann-Weierstrass theorem and the Gelfond-Schneider theorem. In a simple fashion we prove certain pairs of numbers are algebraically independent. We also show certain number classes contain only transcendental numbers. Examples include the algebraic independence of $e^2 \cos 3$ and $e^2 \sin 3$ and the transcendence of

log sin 2, sin log 2,
$$\cos^{-1}(\exp(2))$$
, $\exp(\cos^{-1} 2)$, and $\sum_{n=1}^{\infty} \frac{\cos(\sqrt{2}n)}{n}$.

One form of the Lindemann-Weierstrass theorem [1, p. 20] states that if $\alpha_1, \ldots, \alpha_n$ are algebraic, then $e^{\alpha_1}, \ldots, e^{\alpha_n}$ are algebraically independent if and only if $\alpha_1, \ldots, \alpha_n$ are linearly independent over the rationals. It follows at once that e^{α} is transcendental for all non-zero algebraic α . But what about the arithmetic nature of the real and imaginary parts of e^{α} ? The transcendence of e^{α} insures that at least one of $Re(e^{\alpha})$ and $Im(e^{\alpha})$ is transcendental. But much more is true if the real and imaginary parts of α are both non-zero. In this case, a corollary of the following theorem shows that $Re(e^{\alpha})$ and $Im(e^{\alpha})$ are in fact algebraically independent.

THEOREM 1. Suppose α and β are algebraic numbers. Then $e^{\alpha}\cos\beta$ and $e^{\alpha} \sin \beta$ are algebraically independent if and only if α and β i are linearly independent over the rationals.

Proof. Let K denote the field of algebraic numbers. Then the following implications hold:

- $e^{\alpha}\cos\beta$ and $e^{\alpha}\sin\beta$ are algebraically dependent.
- \Leftrightarrow Tr. deg. $K(e^{\alpha}\cos\beta, e^{\alpha}\sin\beta) \leq 1$.
- $\Leftrightarrow \text{Tr. deg.}_{K} K(e^{\alpha} \cos \beta + ie^{\alpha} \sin \beta, e^{\alpha} \cos \beta ie^{\alpha} \sin \beta) \leq 1.$ $\Leftrightarrow \text{Tr. deg.}_{K} K(e^{\alpha + \beta i}, e^{\alpha \beta i}) \leq 1.$
- $\Leftrightarrow e^{\alpha+\beta i}$ and $e^{\alpha-\beta i}$ are algebraically dependent.
- $\Leftrightarrow \alpha + i\beta$ and $\alpha i\beta$ are linearly dependent over the rationals (by the Lindemann-Weierstrass theorem).

 $\Leftrightarrow \alpha$ and βi are linearly dependent over the rationals.

The proof is complete.

COROLLARY. Suppose α is an algebraic number whose real and imaginary parts are both non-zero. Then the real and imaginary parts of e^{α} are algebraically independent.

Received July 25, 1983.

The author acknowledges support received from a Naval Academy Research Council Grant.

Michigan Math. J. 31 (1984).

Proof. Let $\alpha = a + bi$ where a and b are real numbers. Then a and b are both algebraic. Since $ab \neq 0$, a and bi are linearly independent over the rationals. Noting that $\text{Re}(e^{\alpha}) = e^{a} \cos b$ and $\text{Im}(e^{\alpha}) = e^{a} \sin b$, the corollary follows from Theorem 1.

If α and β are algebraic with α , βi linearly independent over the rationals, we see from Theorem 1 that $e^{\alpha} \cos \beta$ and $e^{\alpha} \sin \beta$ are both transcendental. The next theorem shows that we can relax the condition on α and β and achieve the same result. We shall need the following version of the Lindemann-Weierstrass theorem [1, p. 23]: For any distinct algebraic numbers $\alpha_1, \ldots, \alpha_n$ and any non-zero algebraic numbers β_1, \ldots, β_n we have

$$\beta_1 e^{\alpha_1} + \cdots + \beta_n e^{\alpha_n} \neq 0.$$

THEOREM 2. Suppose α and β are algebraic numbers. Then the following are transcendental:

- (a) $e^{\alpha} \cos \beta$ for $(\alpha, \beta) \neq (0, 0)$, $e^{\alpha} \sin \beta$ and $e^{\alpha} \tan \beta$ for $\beta \neq 0$;
- (b) $\log(\alpha \cos \beta)$ for $\alpha \neq 0$ and $(\alpha, \beta) \neq (1, 0)$, and $\log(\alpha \sin \beta)$ and $\log(\alpha \tan \beta)$ for $\alpha\beta \neq 0$ (regardless of the branch of the natural logarithm);
- (c) $\cos^{-1}(\alpha e^{\beta})$ for $(\alpha, \beta) \neq (1, 0)$, $\sin^{-1}(\alpha e^{\beta})$ for $\alpha \neq 0$, and $\tan^{-1}(\alpha e^{\beta})$ for $\alpha \neq 0$ and $(\alpha, \beta) \neq (\pm i, 0)$ (regardless of the branches of the inverse trigonometric functions;

(d)
$$\sum_{n=1}^{\infty} \frac{(-1)^n \cos n\alpha}{n} \quad for \quad -\pi < \alpha < \pi, \quad \sum_{n=1}^{\infty} \frac{\cos n\alpha}{n} \quad for \quad 0 < \alpha < 2\pi, \text{ and}$$

$$\sum_{n=1}^{\infty} \frac{\cos[(2n-1)\alpha]}{(2n-1)} \quad for \quad 0 < \alpha < \pi.$$

Proof. We will prove only the first result in each of (a)-(d). Similar arguments apply to the other results. For (a) suppose that $\gamma = e^{\alpha} \cos \beta$ is algebraic. It suffices to show $\alpha = \beta = 0$. Now

$$e^{\alpha+\beta i}+e^{\alpha-\beta i}-2\gamma e^0=0.$$

By the second version of the Lindemann-Weierstrass theorem, at least one of the following inequalities holds: $\alpha + \beta i = \alpha - \beta i$, $\alpha + \beta i = 0$, $\alpha - \beta i = 0$. In the first case $\beta = 0$. Then from (1) we have e^{α} is algebraic so that $\alpha = 0$. In the other cases $\alpha = \pm \beta i$. From (1) we see that $e^{\pm 2\beta i}$ is algebraic, and again $\alpha = \beta = 0$.

As for (b), suppose that $\gamma = \log(\alpha \cos \beta)$ is algebraic. Since $\alpha \neq 0$, it suffices to show $(\alpha, \beta) = (1, 0)$. Now $e^{-\gamma} \cos \beta = \alpha^{-1}$. Using (a) we see that $\beta = \gamma = 0$, and thus $\alpha = 1$.

For (c) we suppose that $\gamma = \cos^{-1}(\alpha e^{\beta})$ is algebraic. It suffices to show $(\alpha, \beta) = (1, 0)$. Now $e^{-\beta} \cos \gamma = \alpha$. From (a) we deduce that $\beta = \gamma = 0$ so that $\alpha = 1$.

Next, we consider (d). Using the theory of Fourier series we know

$$\sum_{n=1}^{\infty} \frac{(-1)^n \cos n\alpha}{n} = -\log \left| 2 \cos \frac{\alpha}{2} \right|, \quad -\pi < \alpha < \pi,$$

$$\sum_{n=1}^{\infty} \frac{\cos n\alpha}{n} = -\log \left| 2 \sin \frac{\alpha}{2} \right|, \quad 0 < \alpha < 2\pi,$$

$$\sum_{n=1}^{\infty} \frac{\cos(2n-1)\alpha}{2n-1} = -\frac{1}{2} \log \left| \tan \frac{\alpha}{2} \right|, \quad 0 < \alpha < \pi.$$

Hence (d) follows from (b), and Theorem 2 is proved.

We remark that results can also be proved when the cosines occurring in (d) are "replaced" by sines. For example, the transcendence of π implies the transcendence of $\sum_{n=1}^{\infty} \sin n\alpha/n = (\pi - \alpha)/2$ for all algebraic α with $0 < \alpha < 2\pi$.

Finally, we shall make an application of the Gelfond-Schneider theorem [1, p. 76]: If α and β are algebraic with $\alpha \neq 0$, 1 and β irrational, then $\alpha^{\beta} = \exp(\beta \log \alpha)$ is transcendental (regardless of the branch of the natural logarithm). The next theorem provides a complement to parts (b) and (c) of Theorem 2.

THEOREM 3. Suppose α , β are algebraic with α i irrational. Then the following numbers are transcendental:

- (a) $\cos(\alpha \log \beta)$, $\sin(\alpha \log \beta)$, and $\tan(\alpha \log \beta)$ for $\beta \neq 0$, 1 (regardless of the branch of the natural logarithm);
- (b) $\exp(\alpha \cos^{-1} \beta)$ for $\beta \neq 1$, $\exp(\alpha \sin^{-1} \beta)$ for $\beta \neq 0$, and $\exp(\alpha \tan^{-1} \beta)$ for $\beta \neq 0$, $\pm i$ (regardless of the branches of the inverse trigonometric functions).

Proof. We prove only the first result in both (a) and (b). The other results are proved in a similar fashion. For (a) assume that $\gamma = \cos(\alpha \log \beta)$ is algebraic with $\beta \neq 0, 1$. Then $e^{i\alpha \log \beta} + e^{-i\alpha \log \beta} = 2\gamma$. Hence $\exp(i\alpha \log \beta)$ is algebraic. Since αi is irrational and algebraic, the Gelfond-Schneider theorem implies $\beta = 0$ or $\beta = 1$, a contradiction.

As for (b), recall that

$$\cos^{-1}(z) = -i[\log(z+i(1-z^2)^{1/2})], \quad \sin^{-1}z = -i[\log(iz+(1-z^2)^{1/2})],$$

and $\tan^{-1}z = (i/2) \log((i+z)/(i-z))$ for specific branches of the square root and natural logarithm. Suppose $\exp(\alpha \cos^{-1}\beta)$ is algebraic with $\beta \neq 1$. Then $\exp(-\alpha i[\log(\beta+i(1-\beta^2)^{1/2})])$ is also algebraic. But $-\alpha i$ is algebraic and irrational while $\beta+i(1-\beta^2)^{1/2}$ is algebraic. The Gelfond-Schneider theorem implies $\beta+i(1-\beta^2)^{1/2}=0$ or 1. The first case is impossible and the second leads to $\beta=1$, a contradiction. Theorem 3 is proved.

We conclude by noting that it was essential in Theorem 3 to assume the irrationality of αi .

REFERENCES

1. C. L. Siegel, Transcendental numbers, Princeton Univ. Press, Princeton, 1949.

Department of Mathematics U.S. Naval Academy Annapolis, Maryland 21402