DIVISIBILITY IN DOUGLAS ALGEBRAS

Sheldon Axler and Pamela Gorkin

Let D denote the open unit disk in the complex plane. Let L® and H® denote
the usual Banach algebras on the unit circle dD. A closed subalgebra between
H* and L® is called a Douglas algebra. The smallest Douglas algebra properly
containing H~ is H” + C, where C denotes the algebra of continuous complex
valued functions defined on dD.

The set of nonzero multiplicative linear functionals on a Douglas algebra B is
called the maximal ideal space of B and is denoted M(B). With the weak-*
topology, M(B) is a compact Hausdorff space. Each m € M(H *) has a unique
extension (also denoted by m) to a linear functional on L* of norm one. Thus
M(B) may be identified with a subset of M(H ®). Each function f€ L% can be
thought of as a continuous function (also denoted by f) on M(H%). In the
obvious way, we think of D as a subset of M(H ™). With these identifications,
when a function f €L is thought of as a function on M(H ), then f | D is just
the usual harmonic extension of f. Furthermore, the map on H® taking f to
S| D identifies H> with the set of bounded analytic functions on the disk D.

For u € L, the smallest norm closed subalgebra of L™ containing H ® and u is
denoted H”[u].

Theorem 4 gives a condition which insures that a function 4 in a Douglas alge-
bra B multiplies all powers of a function « into B. In the case where B=H” +C
and # is a unimodular function in H* + C, this was proved by Guillory and
Sarason; see the Theorem on page 176 of [3] and also the last paragraph on page
178 of [3]. Their proof used the construction invented by Carleson to prove the
Corona Theorem. Luecking [6] sought a proof that did not use the corona con-
struction, and in doing so he found a nice generalization of Guillory and Sara-
son’s theorem to arbitrary Douglas algebras, while removing the restriction that
i be in the Douglas algebra under consideration. Luecking considered only uni-
modular functions «, and in this case Theorem 1 of Luecking’s paper [6] is actu-
ally equivalent to our Theorem 4, despite the somewhat different appearance.
However, Luecking’s proof uses two deep theorems—one concerning Blaschke
products and the other dealing with Bergman spaces—in a nontrivial way. We
believe our proof of Theorem 4 is considerably easier than either Guillory and
Sarason’s or Luecking’s proofs.

Our main tool involves interpolating sequences. A sequence {z,} in D is called
an interpolating sequence if for each bounded sequence {w,} of complex num-
bers, there exists a function f in H “ such that f(z,) =w,, for each n. A Blaschke
product whose zero sequence is an interpolating sequence is called an interpolat-
ing Blaschke product.
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For B a Douglas algebra, OB denotes the set of functions f in B such that the
complex conjugate f is also in B. For the special case where B=H® +C, the
algebra OB is traditionally denoted by QC. An important result of Wolff [8,
Theorem 1] states that given f€ L, there is an outer function g € QC such that
Jg € QC. Wolff breaks his proof into two lemmas; our Theorem 5 is a strength-
ened version of one of these lemmas. In the case where B=H~ + C, Wolff’s
Lemma 1.1 [8] gives a Blaschke sequence (not necessarily interpolating) satis-
fying the conditions of Theorem 5. The proof of Theorem 5 uses Theorem 4
rather than the dyadic VMO techniques used by Wolff.

We now discuss some facts that we will need. We make frequent use of the
Chang-Marshall Theorem, which states that every Douglas algebra is generated
by H” and the complex conjugates of some collection of interpolating Blaschke
products; see [2, Chapter IX].

If W is a subset of the disk D, the closure of W means the closure of W in the
space M(H ). An interpolating Blaschke product b with zero sequence {z,} has
the property that if m € M(H ) and m(b) =0, then m is in the closure of {z,];
see [4, p. 206].

The proof of Theorem 4 will require three lemmas.

LEMMA 1. Let B be a Douglas algebra. Let h be a function in B and let b be an
interpolating Blaschke product. If

fmeM(B): m(b)=0}C{meM(B): m(h)=0)}
then h/b E€B.

Proof. Let € be a positive number. By the Chang-Marshall Theorem there is a
function f€ H® and an inner function g with § € B such that |4 — fg|| <e. Let

Wi={z€D:b(z)=0 and |f(z)|<e} and
W,={z€D:b(z)=0 and |f(z)|>€]}.

Let b; be the interpolating Blaschke product whose zero set is W;. Thus b=b, b,.

We claim that b, € B. If not, then b, is not invertible in B and thus there exists
m €M (B) with m(b,)=0. Thus m(b)=0 and so by hypothesis m (/) =0. Since
m is in the closure of W,, we have |m(f)|=e¢. Recall that |h—fG| <e, so

e>|m(h—fq)ym(q)|=|m(fq) m(q)|=|m(f)|>e,

a contradiction. Thus our claim that b, € B is verified.

It follows easily from the definition of interpolating sequence and the Open
Mapping Theorem that there is a constant K such that the distance from g to
bH > (abbreviated dist(g, bH *)) is less than or equal to K sup{|g(z)|: z€D and
b(z)=0}. Now

dist(#/b, B) <e+ dist(fgb, B)
=e+dist(f, bB)
=¢+ dist(fb,, bB)
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<e+dist(fby,, bH™)
<e+Ksup{|f(z)|:z€ W}
<e+Ke.

Since e is arbitrary we have A/b € B, as desired. O

We note that the next lemma can be false if b is a Blaschke product whose
zeroes do not form an interpolating sequence. For example, take B=H~ + C, let
q be a Blaschke product with infinitely many zeroes, and let b be a Blaschke
product such that m(b)=0 for all meM(H*+C) such that |m(g)|<l. A
Blaschke product b with this property is constructed in [7, p. 441]. Since b equals
zero on an open subset of M(H * + C), the conclusion of Lemma 2 cannot hold.
Note that b(1—|g|) =0 on M(H* + C}), so by Theorem 4, b/q" isin H® + C for
every integer N.

LEMMA 2. Let B be a Douglas algebra. Let m € M(B) and let b be an inter-
polating Blaschke product. Then there is a sequence {m,} in M(B) such that
m, —> m and m,(b) #0 for every n.

Proof. If m(b) #0, then take m,, =m, and we are done. So we can assume that
m(b)=0. Thus m is in the closure of the zero sequence of b. There exists a con-
tinuous function L: D — M(H®) such that L(0)=m, foL is analytic on D for
every f€H®, and boL is not constant on D. The existence of a mapping L with
these properties is shown by Hoffman [5, p. 80], see also [2, p. 198]. Let m,
equal L(1/n). Since the zeroes of a nonconstant analytic function are isolated,
for n sufficiently large we have m,, (b) = (b-L)(1/n) #0.

To complete the proof we need only show that m, € M(B). By the Chang-
Marshall Theorem, it suffices to show that if g is inner and g € B, then |m, (q)|=
1. Since g € B and m € M(B), we have |m(qg)|=1. However, g-L is an analytic
map from D to D satisfying |geL(0)|=|m(q)|=1. Thus by the Maximum Mod-
ulus Theorem, gL is constant, so 1=|(geL)(1/n)|=|m,(q)|, completing the
proof. 0

A final lemma is needed before proving Theorem 4.

LEMMA 3. Let B be a Douglas algebra. Let h be a function in B and let b be a
finite product of interpolating Blaschke products. If |h|<|b| on M(B), then
h/b€B.

Proof. Suppose b is the product of n interpolating Blaschke products. The
proof will be by induction on n. The case n=1 follows immediately from
Lemma 1.

Now suppose n>1and b=»b,... b,, where each b; is an interpolating Blaschke
product. Thus |A|<|b,...b,|<|b,| on M(B), and so by the n=1 case, we have
h/b, € B. We claim that |h/b,|<|b,...b,_,| on M(B). Once the claim is veri-
fied, we are done by induction.

To prove the claim let m € M(B). Then
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|m(h/b,) m(b,)|=|m(h)|
=|m(by...b,—1)||m(by)|.

If m(b,) is nonzero, then we obtain the desired result by dividing both sides of
the inequality above by m(b,). If m(b,) =0, then use Lemma 2 to approximate
m by elements of M(B) on which b, does not vanish. Thus the claim is verified
and the proof is completed. 0O

As motivation for Theorem 4, consider the special case where u is a uni-
modular function and # € B. Suppose the conclusion of Theorem 4 holds, so
hu™ € B for every positive integer N. Let gy=hu”, so gy€B. Now for each
meM(B) we have

|m ()| =|m(a)y~m(gn)| <|m @)V | A].

Letting N — oo, we see that if |m(u)|<I1, then m(h)=0. Thus the converse of
Theorem 4 holds in this case.

THEOREM 4. Let B be a Douglas algebra. Let h be a function in B and let u be
a function in L™ with |u||<1. If h(1—|u|)=0 on M(B), then hH”[u]CB.

Proof. Without loss of generality we may assume that || A <1. If b is a finite
product of interpolating Blaschke products with b€ H®[u], we claim that
h/b€B. By Lemma 3 we need only verify that |k|<|b| on M(B). So let
meM(B). If |m(b)|=1, we are done by the normalization of 4. So suppose
|m(b)|<1. Since b € H*[u], we see that m & M(H ®[u]). Thus |m(u)|<1 (other-
wise u would be constant on the support of m, which would imply that m is
multiplicative on M(H “[u])). Since A(1—|u|)=0 on M(B), we must have
m(h)=0. Thus |m(h)|<|m(b)|, and the claim is verified.

To complete the proof fix a positive integer N and let ¢ be positive. Use the
Chang-Marshall Theorem to choose a function g € H®[u] such that [|u™ —g||<e,
where g is a finite sum of functions of the form f/b, with f€ H* and b a finite
product of interpolating Blaschke products invertible in H *[u«]. The paragraph
above shows that hg € B. Since || hu™ — hg| <e, we see that the distance from Au™
to B can be made arbitrarily small. Thus Au” is in B, and so hH®[u]CB, as
desired. ]

For meM(H®), the closed support of the probability measure on M (L")
which represents m is denoted by supp m. In the proof of Theorem 5, we will use
the following fact twice: If g is a Blaschke product and m € M(H ) is such that
|m(g)|<1, then there exists m; €M(H™) such that suppm;Csuppm and
m;(g)=0. To prove this, let Q be the closure of H* |supp m in the Banach
algebra C(supp m). (Actually H* | supp m is closed in C(supp m), but we don’t
need to know that.) It is easy to verify that the maximal ideal space of Q can be
identified with {m; € M(H ™) : supp m,; C supp m}. In particular m € M(Q), and
since |m(g)|<1, the unimodular function g is not invertible in Q. Thus there
exists m; € M(Q) such that m;(g)=0.
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THEOREM 5. Let B be a Douglas algebra and let g € L. Then there exists an
interpolating sequence {z,} such that fg € OB whenever f€ QB and f(z,) = 0.

Proof. First we consider the case where g is a Blaschke product. By Theorem
2W of [9] (which is actually a weaker version of part of the Chang-Marshall
Theorem) there exists an interpolating Blaschke product b such that

sup{|b(z)|: z€D and |g(z)|<1/2}<]1.

Let {z,} be the zero sequence of b. To prove the theorem in the case where g is a
Blaschke product, supposethat f€ QB and f(z,) — 0. We claim that f(1—|g|) =
0 on M(B). To verify this claim, suppose m € M(B) and |m(g)|<1. Thus there
exists m; € M(H ™) such that supp m;Csuppm and m;(g)=0. The Corona
Theorem and the condition defining b now imply that |m,(b)|<1. Thus there
exists m, € M(H ) such that supp m,C supp m; and m,(b) =0. Since m; is in
the closure of {z,}, the hypothesis on f implies that n2,(f) =0. Since every OB
function is constant on supp m (the support of any representing measure is
always an anti-symmetric set), we must have m(f)=0. Thus f(1—|g|)=0 on
M(B), as claimed. Hence f(1—|g|) =0 on M(B), and so by Theorem 4, fg €B.
Since f and g are both in B, we have fg € B and so fg € OB as desired.

To complete the proof we now assume that g is an arbitrary function in L. By
Theorem 1 of [1] there exist Blaschke products b, b, and functions Ay, k, in
H®+C such that g=h, b, and §=h, b,. Since b, b, is a Blaschke product, the
case proved above implies that there exists an interpolating sequence {z,} such
that (b, b,) € OB whenever f€ QB and f(z,) — 0.

We now show that the sequence {z,]} has the desired properties for g. So sup-
pose f€QOB and f(z,) 0. Thus fg=fh, b,=(fb,b,)h,b,€B. Also, fEQOB
and f(z,) — 0, so fg=fh, b= (fb,;b,)h b, €B. Thus fg € OB and the proof is
complete. 0O

NOTE. After the preparation of this paper had been completed, we received a
preprint entitled ‘‘Interpolating Blaschke products and division in Douglas
algebras’’, by C. Guillory, K. Izuchi, and D. Sarason. They have obtained the
divisibility criterion in our Lemma 1 and given applications of it, different from
ours, to Douglas algebras.
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