THE RANGE OF THE RESIDUE FUNCTIONAL
FOR THE CLASS S,

Stephen M. Zemyan

Let U denote the unit disk {z: |z|<1}. For 0<p <1, the class S, will consist of
all functions g(z) which are meromorphic and univalent in U and in addition are
normalized so that g(0)=0, g’(0)=1 and g(p) = . Define the set

Qp= {a:a= Resz=p 8(z2), gESpl-
In this note we prove the following:
THEOREM. Q,={—p?(1—p?): |¢|<1}.

Proof. The proof consists of a mutual inclusion argument.

Suppose that @ €€),. Then a=Res;-, g(z) for some g(z) €S,. Let S denote
the class of all functions f(z) which are analytic and univalent in U and are
normalized so that f(0) =0 and f’(0)=1. Then a short argument shows that the
function

_cg(z) _
fc(z)—c+g(z) (—cEg(U))

belongs to S and that a= —f2(p)/f!(p). We shall apply the Golusin Inequalities
[1, p. 898] to the function f.(z). For each f €S, we have
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S(Zn) =S (%) Zn ) ST TN log<1 ;z )
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Zn—2<k S(zn) f(2) n=1 k=1

where the z,, (0<|z,|<1) are distinct and the A, are arbitrary complex numbers.
For z, =z, the quotient is interpreted as a derivative. We apply these inequalities
with k=n=N=1, A\;=1 and z,=p to obtain the inequality
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(D) 1-p?

This inequality was originally discovered by Grunsky [2]. Setting f(z)=/.(z) in

(1), we obtain
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(D)
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|log(—a) —log p?|<log >
l-p

It follows that
log(—a)=log p*+elog(l—p*)

where |e| < 1. Exponentiating and multiplying by —1, we obtain a= —p?(1—p?)¢,
which was what we wanted.
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In order to establish inclusion in the other direction, we shall consider the
functions

@ gs(z)=;’f—z(1—pz)i el <1,

which are clearly meromorphic in U. Also, g.(0)=0, g/(0)=1, g.(p)=c and
Res;=p g:(2) = —p3(1—p?)°. If |e|=1, then g, is univalent and thus g, €S,. Fur-
thermore, each such function maps U onto the plane less a certain logarithmic
slit, so that the area of C—g, (U) is zero. See [3, p. 279-280] for details.

To complete the proof, we must show that g.(z) is univalent for |¢|<1. To do
this, we shall make use of some results for the class L. Recall that £ consists of all
functions A(z) which are analytic and univalent on the set A={z: |z|>1} and
satisfy the normalizations 4 (c0) =0, and A’(0) =1. The following facts about L
are well-known and may be found, for instance, in [4, p. 58-60]. If A(z) and
A1, - .., N,y are arbitrary complex numbers not all zero, then the Grunsky Inequal-
ities assert that
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3) Xk

k=1

2 m
< Y M|k, m=1,2,...,
k=1

m

| bkn )\n

n

where the numbers by, are the Grunsky coefficients of 4(z) defined by the rela-
tion
) log PRZRE) Y L bz *¢"
{— f k=1 n=1

where |z|, | {|> 1. Equality holds in (3) if and only if the area of the complement
C—h(4) is zero. Also, if h(z) =z+bg+ -+ is analytic in 1<|z|<oo and if (3)
holds forall \y,...,A,and m=1,2,..., then A(z) is univalent in A and therefore
belongs to L.

We introduce the auxiliary function A.(z) =1/g.(1/z). Now k. (z) is analytic in
z and €, |z|>1, |e¢|<1. The earlier remarks about g.(z) imply that if |¢|=1 then
h.(z) €L, and that the area of C— A, (A) is equal to zero.

Let {brn(e)} (k,n=1,2,...) denote the Grunsky coefficients of 4,(z). Then
integration of (4) above yields

o he(z) —h(S) Z*-1¢

"~ldzd¢ (R>1).
z—-¢

bin(e)=— {[ 1o

|Zi=R
I5l=R

Clearly, by, (€) is an analytic function of €. It follows that
2

B(e)= T k| L bia(e)\,

is a subharmonic function of ¢ in the closed unit disk for every m=1,2,... By the
maximum principle for subharmonic functions, B must take its greatest value
when [e|=1. Indeed, for |e¢|=1, the equality
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2 2441 _
—p (1-p5)" =-0.1647

N —3.8105=—p%(1—-p*)~!

B(e)= Y |\e|¥k
k=1

must hold since 4. (z) €L and the area of C —h.(A)is eql}al to zero.
Consequently, for |e| <1, we have the strict inequality /

m
B(e)< ¥ | M| ¥k.
k=1
By a prior remark, this implies that A.(z) and hence that g, (z) is univalent.

Thus, g.(z) €S, for |e| <1, and the proof is complete. O

If p is small, the set @, is a small oval-shaped disk which covers the point
w= —p2. The region Q¢ so00._ is sketched above. As p tends to one, the two bulges
tangent to the imaginary axis advance toward one another and then overlap
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infinitely often as they circle around the origin in opposite directions. The union
U Q, covers the entire complex plane, punctured at the origin.
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