DISTANCE ESTIMATES AND PRODUCTS OF TOEPLITZ OPERATORS ## Rahman Younis 1. Introduction. In this paper we establish some results concerning distance estimates. One of these results produces an equivalent condition to the Axler-Chang-Sarason-Volberg theorem. In order to state our results more precisely, we fix some notations which will be used throughout the paper. By D we will denote the open unit disc in the complex plane, and by ∂D its boundary. Let L^{∞} denote the algebra of bounded measurable functions with respect to the Lebesgue measure on ∂D , and H^{∞} denote the subalgebra of L^{∞} consisting of all bounded analytic functions in D. We identify L^{∞} with C(X), the space of continuous functions on X, where X is the maximal ideal space of L^{∞} . The algebra $H^{\infty} + C$ is a closed subalgebra of L^{∞} ; here $C = C(\partial D)$. It is known [14] that $H^{\infty}+C$ is the smallest closed subalgebra of L^{∞} which contains H^{∞} . A closed subalgebra B of L^{∞} which contains H^{∞} is usually called a Douglas algebra. The maximal ideal space of B is denoted by M(B). The reader is referred to [16] and [10] for the theory of Douglas algebras and to [9] for uniform algebras. The largest C^* -subalgebra of $H^{\infty} + C$ will be denoted by OC. Thus OC = $(H^{\infty}+C)\cap \overline{(H^{\infty}+C)}$, where bar denotes complex conjugation. The sets in the Shilov decomposition [19] of $M(L^{\infty})$ associated with $H^{\infty}+C$ will be called QC-level sets. For $\phi \in M(H^{\infty} + C)$ the support of the representing measure for ϕ is called a support set. If A is a closed subspace of a Banach space Y and $x \in Y$, then dist $(x, A) = \inf\{\|x - y\| : y \in A\}$. The annihilator of A in Y* will be denoted by A^{\perp} , and Ext (A^{\perp}) denotes the set of the extreme points of ball (A^{\perp}) . If B is a subset of Y, then co(B) denotes the convex hull of B. The following results will be established. THEOREM 1. If A and B are two Douglas algebras such that $H^{\infty} + C = A \cap B$, then $\operatorname{dist}(h, H^{\infty} + C) = \max\{\operatorname{dist}(h, A), \operatorname{dist}(h, B)\}$ for all h in L^{∞} . Conversely, if the above condition is true then $H^{\infty} + C = A \cap B$. This result produces an equivalent condition to the Axler-Chang-Sarason-Volberg theorem. A proof of Theorem 1 appears in Section 2. THEOREM 2. Let A and B be two closed subalgebras of C(X), where X is a compact Hausdorff space. Then the following conditions are equivalent: - (1) $\operatorname{dist}(f, A \cap B) = \max\{\operatorname{dist}(f, A), \operatorname{dist}(f, B)\}\ \text{for all } f \text{ in } C(X);$ - (2) Co(ball $A^{\perp} \cup$ ball B^{\perp}) = ball $(A \cap B)^{\perp}$; - (3) $\operatorname{Ext}((A \cap B)^{\perp}) \subset \operatorname{Ext}(A^{\perp}) \cup \operatorname{Ext}(B^{\perp}).$ In Section 3, we show that condition (1) of Theorem 2 is not true in general. Received April 15, 1983. Revision received October 31, 1983. Michigan Math. J. 31 (1984). THEOREM 3. Let A be a closed subalgebra of C(X) which admits best approximation, where X is a compact Hausdorff space. If E is a weak peak set for A, then $\operatorname{dist}(f|_E, A|_E)$ is attainable for any f in C(X). THEOREM 4. If A and B are two Douglas algebras which satisfy any one of the equivalent conditions of Theorem 2, then $$\operatorname{dist}(f|_{E}, A \cap B|_{E}) = \max\{\operatorname{dist}(f|_{E}, A|_{E}), \operatorname{dist}(f|_{E}, B|_{E})\}\$$ for any f in L^{∞} and for any weak peak set E for $A \cap B$. A special case of Theorem 3 was obtained by D. Sarason [16, p. 110]. Theorems 3 and 4 appear in Section 4. **2. Products of Toeplitz operators.** The relevant facts about products of Toeplitz operators were established in [3] and [20]. General background can be found in [16]. For f in L^{∞} , the Toeplitz operator on the usual Hardy space of ∂D , H^2 , with symbol f will be denoted by T_f , and the closed subalgebra of L^{∞} generated by H^{∞} and f will be denoted by $H^{\infty}[f]$. THEOREM A (Axler-Chang-Sarason-Volberg Theorem). For f and g in L^{∞} , the following conditions are equivalent: - (i) $T_{\bar{f}} T_g T_{\bar{f}g}$ is compact; - (ii) $H^{\infty}[f] \cap H^{\infty}[g] \subset H^{\infty} + C$; - (iii) For each support set S, either $f|_S$ or $g|_S$ is in $H^{\infty}|_S$. The implication from condition (i) to condition (ii) is due to A. L. Volberg [20]; the other implications are due to S. Axler, A. Chang and D. Sarason and can be found in [3]. We will show that the following condition can be added to the equivalent conditions (i)-(iii) of Theorem A: (iv) Either $$\operatorname{dist}(h, H^{\infty} + C) = \max\{\operatorname{dist}(h, H^{\infty}[f]), \operatorname{dist}(h, H^{\infty}[g])\}$$ for all h in L^{∞} , or $$\operatorname{dist}(h, H^{\infty}) = \max{\{\operatorname{dist}(h, H^{\infty}[f]), \operatorname{dist}(h, H^{\infty}[g])\}}$$ for all h in L^{∞} . First we establish the following result. THEOREM 1. Let A and B be two Douglas algebras such that $H^{\infty} + C = A \cap B$. Then $\operatorname{dist}(h, H^{\infty} + C) = \max\{\operatorname{dist}(h, A), \operatorname{dist}(h, B)\}$ for all h in L^{∞} . Conversely, if the above condition is satisfied then $H^{\infty} + C = A \cap B$. The following results will be needed in our proof of Theorem 1. THEOREM B ([18], [21, p. 52]). Let f and g be functions in L^{∞} such that, for each support set S, either $f|_{S}$ or $g|_{S}$ is in $H^{\infty}|_{S}$. Then, for each QC-level set E, either $f|_{E}$ or $g|_{E}$ is in $H^{\infty}|_{E}$. THEOREM C ([12, Theorem 3.4]). Let A and B be two Douglas algebras; then $M(A \cap B) = M(A) \cup M(B)$. *Proof of Theorem* 1. Assume that $H^{\infty} + C = A \cap B$. Let $h \in L^{\infty}$. Then $\operatorname{dist}(h, H^{\infty} + C) = | \int h \, d\mu |$, for some $\mu \in \operatorname{Ext}(H^{\infty} + C)^{\perp}$, [11, p. 419]. Since $\sup \mu$ (= support of μ) is an antisymmetric set for $H^{\infty} + C$, then $\sup \mu \subset E_0$, for some QC-level set E_0 . We claim that $\mu \in A^{\perp} \cup B^{\perp}$. Suppose not. Then there exist $f \in A$ and $g \in B$ such that $\int f d\mu \neq 0$ and $\int g d\mu \neq 0$. By Theorem C, $M(H^{\infty} + C) = M(A) \cup M(B)$. Thus for each support set S, either $f|_S$ or $g|_S$ is in $H^{\infty}|_S$ (recall that $A|_S = H^{\infty}|_S$). By Theorem B we get either $f|_E$ or $g|_E$ is in $H^{\infty}|_E$ for each QC-level set E. In particular, $f|_{E_0}$ or $g|_{E_0}$ is in $H^{\infty}|_{E_0}$. This shows that $\int f d\mu = 0$ or $\int g d\mu = 0$. This contradiction establishes our claim that $\mu \in A^{\perp} \cup B^{\perp}$. So let us say, for example, that $\mu \in A^{\perp}$. Then $\operatorname{dist}(h, A) \geqslant |\int h d\mu| = \operatorname{dist}(h, H^{\infty} + C)$. Since the reverse inequality is clear $(H^{\infty} + C \subseteq A)$, it follows that $\operatorname{dist}(h, H^{\infty} + C) = \operatorname{dist}(h, A)$. Consequently, $\operatorname{dist}(h, H^{\infty} + C) = \max\{\operatorname{dist}(h, A), \operatorname{dist}(h, B)\}$. Conversely, assume that $\operatorname{dist}(h, H^{\infty} + C) = \max\{\operatorname{dist}(h, A), \operatorname{dist}(h, B)\}$ for all h in L^{∞} . By taking $h \in H^{\infty} + C$, the equality shows that $H^{\infty} + C \subset A \cap B$. By taking $h \in A \cap B$, the equality shows that $A \cap B \subset H^{\infty} + C$, and that ends the proof of Theorem 1. In virtue of what has just been proved, condition (iv) can be added to the equivalent conditions (i)-(iii) of Theorem A. 3. A general result on distance estimates. This section contains a proof of Theorem 2 and several examples. One of these examples shows that condition (1) of Theorem 2 is not true in general. *Proof of Theorem* 2. Suppose that condition (1) is valid. By [8, p. 415] and the Kreĭn–Milman theorem we have $$\overline{\operatorname{co}}(\operatorname{Ext}(A^{\perp}) \cup \operatorname{Ext}(B^{\perp})) = \operatorname{co}(\operatorname{ball}(A^{\perp}) \cup \operatorname{ball}(B^{\perp})).$$ Thus if condition (2) is not valid, then there exists $\mu_0 \in \text{ball}((A \cap B)^{\perp})$, and $\mu_0 \notin \overline{\operatorname{co}}(\operatorname{Ext}(A^{\perp}) \cup \operatorname{Ext}(B^{\perp}))$. Hence by [22, p. 108] there exists a continuous linear functional f such that $f(\mu_0) > 1$ and $|f(\mu)| \le 1$ for all $\mu \in \overline{\operatorname{co}}(\operatorname{Ext}(A^{\perp}) \cup \operatorname{Ext}(B^{\perp}))$. Note that the set $\overline{\operatorname{co}}(\operatorname{Ext}(A^{\perp}) \cup \operatorname{Ext}(B^{\perp}))$ is a balanced convex subset of $(C(X))^*$ and that $(C(X))^*$ with its w^* -topology is a locally convex linear topological vector space. Thus we can consider f to be an element of C(X). Consequently, $\operatorname{dist}(f,A \cap B) \ge \int f d\mu_0 > 1$, while $\operatorname{dist}(f,A) \le 1$ and $\operatorname{dist}(f,B) \le 1$. This contradiction shows that condition (1) implies condition (2). Now, suppose that condition (2) is valid. Let $\mu \in \operatorname{Ext}((A \cap B)^{\perp})$ be written as $\mu = \sum \alpha_i \, \mu_i + \sum \beta_i \, v_i$, where $\alpha_i \ge 0$, $\beta_i \ge 0$, $\sum \alpha_i + \sum \beta_i = 1$, $\mu_i \in \operatorname{ball}(A^{\perp})$, $v_i \in \operatorname{ball}(B^{\perp})$, for each i. Since μ is extreme, $\mu = \mu_i$ for some i, or $\mu = v_i$ for some i. Thus $\mu \in A^{\perp} \cup B^{\perp}$ and hence $\mu \in \operatorname{Ext}(A^{\perp}) \cup \operatorname{Ext}(B^{\perp})$. This shows that condition (2) implies condition (3). Finally, assume that condition (3) is valid. Let $f \in C(X)$. Then $\operatorname{dist}(f, A \cap B) = |\int f d\mu|$, for some $\mu \in \operatorname{Ext}((A \cap B)^{\perp})$. By condition (3), $\mu \in \operatorname{Ext}(A^{\perp}) \cup \operatorname{Ext}(B^{\perp})$. So assume that $\mu \in \operatorname{Ext}(A^{\perp})$. Thus $\operatorname{dist}(f, A) \ge |\int f d\mu| = \operatorname{dist}(f, A \cap B)$. Hence $dist(f, A \cap B) = max\{dist(f, A), dist(f, B)\}$. This shows that condition (3) implies condition (1). This ends the proof of Theorem 2. REMARK. Theorem 2 can be extended to arbitrary finite intersection of closed subalgebras of C(X). EXAMPLES. (1) Let H be a fixed closed subalgebra of C(X). If A and B are closed subalgebras of C(X) containing H such that A/H and B/H are M-ideals of C(X)/H, then $\operatorname{dist}(f,A\cap B)=\max\{\operatorname{dist}(f,A),\operatorname{dist}(f,B)\}$ for every f in C(X). (See Section 4 for the definition of an M-ideal.) This is due to the fact that $\operatorname{co}(\operatorname{ball}(A^{\perp}) \cup \operatorname{ball}(B^{\perp})) = \operatorname{ball}(A \cap B)^{\perp}$ [4, p. 37]. - (2) If A and B are closed subalgebras of C(X) such that every measure in A^{\perp} is singular to every measure in B^{\perp} , then $(A \cap B)^{\perp} = A^{\perp} \oplus B^{\perp}$ [6, Theorem 11.3]. Let $\mu \in \text{Ext}((A \cap B)^{\perp})$ and suppose that $\mu = \mu_1 + \mu_2$, $\mu_1 \neq 0$, $\mu_2 \neq 0$, $\mu_1 \in A^{\perp}$ and $\mu_2 \in B^{\perp}$. Then $\mu = \|\mu_1\|(\mu_1/\|\mu_1\|) + \|\mu_2\|(\mu_2/\|\mu_2\|)$. Since $\|\mu_1\| + \|\mu_2\| = 1$, we get $\mu = \mu_1/\|\mu_1\| = \mu_2/\|\mu_2\|$. This shows that $\mu \in \text{Ext}(A^{\perp}) \cup \text{Ext}(B^{\perp})$. By Theorem 2 we get $\text{dist}(f, A \cap B) = \max\{\text{dist}(f, A), \text{dist}(f, B)\}$ for all f in C(X). - (3) Let A and B be two closed subalgebras of C(X) such that A+B is not norm closed; then condition (1) of Theorem 2 is not valid in this case. Indeed, if A and B are any two closed subalgebras of C(X) which satisfy Theorem 2, then condition (2) implies easily that $(A \cap B)^{\perp} = A^{\perp} + B^{\perp}$, which implies by [5, Lemma 2.7.7] that A+B is norm closed in C(X). - (4) In [1], Adamjan, Arov and Kreĭn gave an example of a function $v \in C$ which has no nearest point in $A_0 = H^{\infty} \cap C$. A modification of the example was used by the authors of [7, p. 57]. It is shown in [7, Theorem 10.5] that there is an $f \in H^{\infty}$ with dist(f, C) = 1 and dist $(f, H^{\infty} \cap C) = 2$. Thus condition (1) of Theorem 2 is not true in general. Note that in this example, $A + B = H^{\infty} + C$ is norm closed in L^{∞} , in contrast with Example 3. - **4. Local best approximation.** A subspace \mathcal{G} of a Banach space Y is called an M-ideal if there exists an L-projection $P: Y^* \to \mathcal{G}^\perp$ such that $\|\mu\| = \|P\mu\| + \|\mu P\mu\|$ for all $\mu \in Y^*$; here P is onto. If \mathcal{G} is an M-ideal of Y and $Y \in Y$, then there exists $X \in \mathcal{G}$ such that $\text{dist}(Y, \mathcal{G}) = \|y X\|$, [4, p. 126]. In this section we give proofs of Theorems 3 and 4. A special case of Theorem 3 was obtained by D. Sarason. He showed, in the case $A = H^{\infty}$ and $E = X_{\alpha} = \{\phi \in M(L^{\infty}): \phi(z) = \alpha\}$, that $\operatorname{dist}(f|_{X_{\alpha}}, H^{\infty}|_{X_{\alpha}})$ is attainable [16, p. 110], where he used the fact that $H^{\infty} + C$ admits best approximation ([2], [23]). To prove Theorem 3, we use an M-ideal approach. We need the following lemma. LEMMA 1. If A is a closed subalgebra of C(X) and E is a weak peak set for A then $dist(f|_E, A|_E) = dist(f, A_E)$ for any f in C(X). By definition, $A_E = \{ f \in C(X) : f|_E \in A|_E \}$. It is a closed subalgebra of C(X). Proof of Lemma 1. Let $f \in C(X)$; then $\operatorname{dist}(f, A_E) = |\int f d\mu|$ for some $\mu \in \operatorname{Ext}(A_E^{\perp})$. Thus $\operatorname{dist}(f, A_E) = |\int (f - g) d\mu|$ for all $g \in A$. Hence $\operatorname{dist}(f, A_E) \leq \|f|_E - g|_E\|$ for all $g \in A$. Consequently, $\operatorname{dist}(f, A_E) \leq \|f|_E - A|_E\|$. On the other hand, $||f|_E - A|_E || = ||f|_E - A_E|_E || \le \operatorname{dist}(f, A_E)$. Thus $\operatorname{dist}(f, A_E) = \operatorname{dist}(f|_E, A|_E)$. This ends the proof of Lemma 1. Proof of Theorem 3. First, we note that A_E/A is an M-ideal of C(X)/A. To see this, we identify $(C(X)/A)^* = A^{\perp}$ and $(A_E/A)^{\perp} = (A_E)^{\perp}$. Define the L-projection $P: A^{\perp} \to (A_E)^{\perp}$ by $P\mu = \chi_E \mu$, $\mu \in A^{\perp}$. It is easy to check that it is an L-projection. Thus, we get $\operatorname{dist}(f, A_E) = \operatorname{dist}(f - g, A)$, for some $g \in A_E$. Since A admits best approximation, then we have $\operatorname{dist}(f, A_E) = \|f - g - h\|$, for some $h \in A$. By Lemma 1, $\operatorname{dist}(f|_E, A|_E) = \|f - G\|$, $G \in A_E$. Take $k \in A$ such that $k|_E = G|_E$. Observe that $\operatorname{dist}(f|_E, A|_E) \leq \|f|_E - k|_E \| \leq \|f - G\| = \operatorname{dist}(f|_E, A|_E)$. This completes the proof of Theorem 3. Proof of Theorem 4. Define $(A \cap B)_E = \{f \in L^{\infty} : f|_E \in (A \cap B)|_E\}$, $A_E = \{f \in L^{\infty} : f|_E \in A|_E\}$ and $B_E = \{f \in L^{\infty} : f|_E \in B|_E\}$. All these algebras are Douglas algebras. We claim that $(A \cap B)_E = A_E \cap B_E$. It is clear that $(A \cap B)_E \subset A_E \cap B_E$. Let $m \in M((A \cap B)_E)$. Then $m \in M(A \cap B)$ with supp $\mu_m \subset E$; here μ_m is the representing measure for m. By Theorem C, $m \in M(A)$ or $m \in M(B)$. So assume that $m \in M(A)$. Then $m \in M(A_E)$. Thus we have $M((A \cap B)_E) = M(A_E) \cup M(B_E)$, which is equal to $M(A_E \cap B_E)$ by Theorem C. By the Chang-Marshall theorem [15] we get $(A \cap B)_E = A_E \cap B_E$. This proves the claim. Now, let $f \in L^{\infty}$. Then dist $(f, (A \cap B)_E) = |\int f d\mu_0|$, for some $$\mu_0 \in \operatorname{Ext}((A \cap B)_E^{\perp}).$$ We claim that μ_0 is an extreme point of ball $((A \cap B)^{\perp})$. To see this, suppose that $\mu_0 = \frac{1}{2}\mu_1 + \frac{1}{2}\mu_2$, μ_1 and $\mu_2 \in \text{ball}((A \cap B)^{\perp})$. Thus $\mu_0 = \frac{1}{2}\chi_E\mu_1 + \frac{1}{2}\chi_E\mu_2$; here χ_E is the characteristic function of E. The measures $\chi_E\mu_1$ and $\chi_E\mu_2$ both belong to $((A \cap B)_E^{\perp})$. Since $\mu_0 \in \text{Ext}((A \cap B)_E^{\perp})$, we get $\mu_0 = \chi_E\mu_1 = \chi_E\mu_2$. Since $\|\mu_1\| = \|\chi_E\mu_1\| + \|\mu_1 - \chi_E\mu_1\|$, $\|\chi_E\mu_1\| = 1$ and $\|\mu_1\| \le 1$, we get $\|\mu_1 - \chi_E\mu_1\| = 0$. This shows that $\mu_1 = \chi_E\mu_1$. Hence $\mu_1 \in ((A \cap B)_E^{\perp})$. Similarly, $\mu_2 \in ((A \cap B)_E^{\perp})$. Since μ_0 is an extreme point of $((A \cap B)_E^{\perp})$, we get $\mu_0 = \mu_1 = \mu_2$. This proves our claim that $\mu_0 \in \text{Ext}((A \cap B)^{\perp})$. By Theorem 2, $\mu_0 \in \operatorname{Ext}(A^{\perp}) \cup \operatorname{Ext}(B^{\perp})$. So let us say, for example, that $\mu_0 \in A^{\perp}$. Since support $\mu_0 \subset E$, we get $\mu_0 \in (A_E)^{\perp}$. Thus $\operatorname{dist}(f, A_E) \ge |\int f d\mu_0| = \operatorname{dist}(f, (A \cap B)_E)$. This shows that $$\operatorname{dist}(f, (A \cap B)_E) = \max\{\operatorname{dist}(f, A_E), \operatorname{dist}(f, B_E)\}.$$ By Lemma 1, we get $\operatorname{dist}(f|_E, (A \cap B|_E) = \max\{\operatorname{dist}(f|_E, A|_E), \operatorname{dist}(f|_E, B|_E)\}$. This ends the proof of Theorem 4. The author is grateful to W. Deeb for a helpful discussion concerning Theorem 2, and to the referee for very helpful comments that shortened some of the proofs in the paper. ## **REFERENCES** 1. V. A. Adamjan, D. Z. Arov and M. G. Krein, *Infinite Hankel matrices and generalized problems of Carathéodory-Fejér and F. Riesz*, Funkcional Anal. i Prilozhen. 2 (1968), no. 1, 1–19. (Russian). - 2. S. Axler, I. D. Berg, N. Jewell and A. Shields, *Approximation by compact operators* and the space $H^{\infty}+C$, Ann. of Math. (2) 109 (1979), 601-612. - 3. S. Axler, S.-Y. A. Chang and D. Sarason, *Products of Toeplitz operators*, Integral Equations Operator Theory 1 (1978), 285-309. - 4. E. Behrends, *M-structure and the Banach-Stone theorem*, Lecture Notes in Math., 736, Springer, Berlin, 1979. - 5. A. Browder, Introduction to function algebras, Benjamin, New York, 1969. - 6. B. J. Cole and T. W. Gamelin, *Tight uniform algebras and algebras of analytic functions*, J. Funct. Anal. 46 (1982), 158–220. - 7. A. M. Davie, T. W. Gamelin and J. Garnett, *Distance estimates and point-wise bounded density*, Trans. Amer. Math. Soc. 175 (1973), 37-68. - 8. N. Dunford and J. Schwartz, *Linear operators*, part 1, Interscience, New York, 1957. - 9. T. W. Gamelin, *Uniform algebras*, Prentice-Hall, Englewood Cliffs, N.J., 1969. - 10. J. Garnett, Bounded analytic functions, Academic Press, New York, 1981. - 11. I. Glicksberg, *Measures orthogonal to algebras and sets of antisymmetry*, Trans. Amer. Math. Soc. 105 (1962), 415–435. - 12. P. Gorkin, *Decomposition of the maximal ideal space of* L^{∞} , Ph.D. thesis, Michigan State University, 1982. - 13. K. Hoffman, *Banach spaces of analytic functions*, Prentice-Hall, Englewood Cliffs, N.J., 1962. - 14. K. Hoffman and I. M. Singer, *Maximal algebras of continuous functions*, Acta Math. 103 (1960), 217-241. - 15. D. E. Marshall, Subalgebras of L^{∞} containing H^{∞} , Acta Math. 137 (1976), 91–98. - 16. D. Sarason, *Function theory on the unit circle*. Conference at Virginia Polytechnic Institute and State University (Blacksburg, Va., 1978), Dept. Math., Virginia Polytech. and State Univ., Blacksburg, Va., 1978. - 17. ——, Algebras of functions on the unit circle, Bull Amer. Math. Soc. 79 (1973), 286–299. - 18. —, The Shilov and Bishop decomposition of $H^{\infty}+C$. Conference on harmonic analysis in honor of Antoni Zygmund, Vol. II (Chicago, Ill., 1981), 461-474, Wadsworth, Belmont, Calif., 1983. - 19. G. E. Shilov, *On rings of functions with uniform convergence*, Ukrain. Math. Zh. 3 (1951), 404-411. - 20. A. L. Vol'berg, Two remarks concerning the theorem of S. Axler, S.-Y. A. Chang and D. Sarason, J. Operator Theory 7 (1982), 209-218. - 21. T. Wolff, Some theorems on vanishing mean oscillation, Ph.D. thesis, Univ. of California, Berkeley, 1979. - 22. K. Yosida, Functional analysis, Springer, Berlin, 1974. - 23. R. Younis, Properties of certain algebras between L^{∞} and H^{∞} , J. Funct. Anal. 44 (1981), 381–387. Department of Mathematics Kuwait University Kuwait