DISTANCE ESTIMATES AND PRODUCTS
OF TOEPLITZ OPERATORS

Rahman Younis

1. Introduction. In this paper we establish some results concerning distance
estimates. One of these results produces an equivalent condition to the Axler-
Chang-Sarason-Volberg theorem. In order to state our results more precisely,
we fix some notations which will be used throughout the paper.

By D we will denote the open unit disc in the complex plane, and by aD its
boundary. Let L™ denote the algebra of bounded measurable functions with
respect to the Lebesgue measure on dD, and H” denote the subalgebra of L%
consisting of all bounded analytic functions in D. We identify L* with C(X), the
space of continuous functions on X, where X is the maximal ideal space of L*.
The algebra H”+ C is a closed subalgebra of L™; here C=C(aD). It is known
[14] that H*+C is the smallest closed subalgebra of L™ which contains H®.
A closed subalgebra B of L™ which contains H* is usually called a Douglas
algebra. The maximal ideal space of B is denoted by M(B). The reader is referred
to [16] and [10] for the theory of Douglas algebras and to [9] for uniform alge-
bras. The largest C*-subalgebra of H™ + C will be denoted by QC. Thus QC=
(H”+C)N(H*+C), where bar denotes complex conjugation. The sets in
the Shilov decomposition [19] of M(L*) associated with H* + C will be called
QOC-level sets. For ¢ € M(H™ + C) the support of the representing measure for ¢
is called a support set. If A is a closed subspace of a Banach space Y and x€Y,
then dist(x, A) =inf{|[x—y|: y €A}. The annihilator of A in Y* will be denoted
by A%, and Ext(A") denotes the set of the extreme points of ball(4*). If Bis a
subset of Y, then co(B) denotes the convex hull of B.

The following results will be established.

THEOREM 1. If A and B are two Douglas algebras such that H® + C=ANB,
then dist(h, H” + C) =max{dist(h, A), dist(h, B)} for all h in L™. Conversely,
if the above condition is true then H*+C=ANB.

This result produces an equivalent condition to the Axler-Chang-Sarason-
Volberg theorem. A proof of Theorem 1 appears in Section 2.

THEOREM 2. Let A and B be two closed subalgebras of C(X), where X is a
compact Hausdorff space. Then the following conditions are equivalent:

(1) dist(f,ANB)=max{dist(f, A), dist(f,B)} for all fin C(X);

(2) Co(ballA*Uball B*)=Dball(ANB)*;

(3) Ext((ANB)Y)CExt(A*)UExt(B").
In Section 3, we show that condition (1) of Theorem 2 is not true in general.
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THEOREM 3. Let A be a closed subalgebra of C(X) which admits best ap-
proximation, where X is a compact Hausdorff space. If E is a weak peak set for
A, then dist(f|g,A|g) is attainable for any f in C(X).

THEOREM 4. If A and B are two Douglas algebras which satisfy any one of
the equivalent conditions of Theorem 2, then

dlSt(f|E9A rslB|E) = maX[ diSt(flE’A |E)s diSt(flEsB|E)]
Sor any fin L™ and for any weak peak set E for ANB.

A special case of Theorem 3 was obtained by D. Sarason [16, p. 110]. Theorems
3 and 4 appear in Section 4.

2. Products of Toeplitz operators. The relevant facts about products of
Toeplitz operators were established in [3] and [20]. General background can be
found in [16]. For f in L*, the Toeplitz operator on the usual Hardy space of
aD, H?, with symbol f will be denoted by T, and the closed subalgebra of L=
generated by H™ and f will be denoted by H”[ f].

THEOREM A (Axler-Chang-Sarason-Volberg Theorem). For f and g in L%,
the following conditions are equivalent:
(i) T7T,—Tp, is compact;
(i) H[fINH [g]CH*+C;
(iii) For each support set S, either f|s or g|s is in H Zs-

The implication from condition (i) to condition (ii) is due to A. L. Volberg
[20]; the other implications are due to S. Axler, A. Chang and D. Sarason and
can be found in [3].

We will show that the following condition can be added to the equivalent con-
ditions (i)-(iii) of Theorem A: (iv) Either
dist(h, H® + C) = max{dist(h, H*[ f]), dist(h, H”[g])}
for all #in L, or
dist(h, H*)=max{dist(h, H”[f1), dist(h, H*[g])}

for all A in L*. .
First we establish the following result.

THEOREM 1. Let A and B be two Douglas algebras such that H® +C=ANB.
Then dist(h, H® + C) = max|dist(k, A), dist(h, B)} for all h in L”. Conversely,
if the above condition is satisfied then H” + C=ANB.

The following results will be needed in our proof of Theorem 1.

THEOREM B ([18], [21, p. 52]). Let f and g be functions in L™ such that, for
each support set S, either f|s or g|s is in H”|s. Then, for each QC-level set E,
either f|g or g|g is in H” .

THEOREM C ([12, Theorem 3.4]). Let A and B be two Douglas algebras; then
M(ANB)=M(A)UM(B).
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Proof of Theorem 1. Assume that H*+C=ANB. Let h€L™. Then
dist(h, H®+C)=|{ hdy|,

for some p € Ext(H*+C)*, [11, p. 419]. Since supp p (=support of u) is an
antisymmetric set for H* + C, then supp u C E,, for some QC-level set E,. We
claim that p € A*UB™*. Suppose not. Then there exist f € A4 and g € B such that
{ fdp#0 and | gdu#0. By Theorem C, M(H”+ C)=M(A)UM(B). Thus for
each support set S, either f|s or g|s is in H%|s (recall that A|s=H%|s). By
Theorem B we get either f|g or g|g is in H °°| g for each QC-level set E. In par-
ticular, f|g, or g|g, is in H* |g,. This shows that | fdu=0or | g du=0. This con-
tradiction establishes our claim that 4 € A*UB™. So let us say, for example, that
p € A*. Then dist(h, A) 2|§ hdp|=dist(h, H* + C). Since the reverse inequality
is clear (H” + CZ<A), it follows that dist (k, H” + C) = dist(#, A). Consequently,
dist(h, H” + C) = max{dist(h, A), dist(h, B)}.

Conversely, assume that dist(#, H* + C)=max{dist(#, A), dist(A, B)} for all
hin L®. By taking h € H” + C, the equality shows that H” + CC ANB. By tak-
ing h € AN B, the equality shows that ANBC H” + C, and that ends the proof of
Theorem 1. O

In virtue of what has just been proved, condition (iv) can be added to the
equivalent conditions (i)-(iii) of Theorem A.

3. A general result on distance estimates. This section contains a proof of
Theorem 2 and several examples. One of these examples shows that condition (1)
of Theorem 2 is not true in general.

Proof of Theorem 2. Suppose that condition (1) is valid. By [8, p. 415] and the
Krein-Milman theorem we have

Co(Ext(AM)UExt(B*))=co(ball(4*)Uball(B')).

Thus if condition (2) is not valid, then there exists uy € ball((ANB)*), and py &
co(Ext(A*)UExt(B*)). Hence by [22, p. 108] there exists a continuous linear
functional f such that f(pe) >1and | f(r)| <1 for all p € Co(Ext(A*) U Ext(B1)).
Note that the set Co(Ext(A*)U Ext(B~)) is a balanced convex subset of (C(X))*
and that (C(X))* with its w*-topology is a locally convex linear topological
vector space. Thus we can consider f to be an element of C(X). Consequently,
dist(f,ANB) 2| fduy> 1, while dist(f, A) <1 and dist(f, B) <1. This contradic-
tion shows that condition (1) implies condition (2).

Now, suppose that condition (2) is valid. Let u € Ext((ANB)") be written as
p=X a; i+ X B;v;, where o; 20, 3,20, Lo;+ X Bi=1, MiEball(A‘L), v; €
ball(B™), for each i. Since u is extreme, p=y; for some i, or p=v; for some i.
Thus p € A" UB* and hence pu € Ext(A4*) U Ext(B"). This shows that condition
(2) implies condition (3).

Finally, assume that condition (3) is valid. Let f€ C(X). Then dist(f,ANB) =
|§ fdu|, for some u € Ext({(ANB)*). By condition (3), u € Ext(4*)UExt(B").
So assume that pu € Ext(A"). Thus dist(f, A) 2|| fdu|=dist(f, ANB). Hence
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dist(f, AN B)=max{dist(f,A), dist(f, B)}. This shows that condition (3) im-
plies condition (1). This ends the proof of Theorem 2. O

REMARK. Theorem 2 can be extended to arbitrary finite intersection of closed
subalgebras of C(X).

EXAMPLES. (1) Let H be a fixed closed subalgebra of C(X). If 4 and B are
closed subalgebras of C(X) containing H such that A/H and B/H are M-ideals
of C(X)/H, then dist(f,ANB)=max{dist(f, A), dist(f, B)} for every f in
C(X). (See Section 4 for the definition of an M-ideal.) This is due to the fact
that co(ball(A*)Uball(B*))=ball(ANB)* [4, p. 37]. '

(2) If A and B are closed subalgebras of C(X) such that every measure in A" is
singular to every measure in B+, then (ANB)*=A*@®B* [6, Theorem 11.3].
Let p € Ext((ANB)*) and suppose that u=p;+puy, p;#0, py#0, u €A and
m2€B*. Then p=|m (/[ ml) +lpa2ll (2’| w2])). Since [[m]|+[p2l|=1, we get
p=pi/||m1]|=pa2/|lp2- This shows that p € Ext(A*)UExt(B*). By Theorem 2
we get dist(f, ANB)=max{dist(f, A), dist(f, B)} for all f in C(X).

(3) Let A and B be two closed subalgebras of C(X) such that A+ B is not
norm closed; then condition (1) of Theorem 2 is not valid in this case. Indeed, if
A and B are any two closed subalgebras of C(X) which satisfy Theorem 2, then
condition (2) implies easily that (ANB)'=A*+B*, which implies by [5,
Lemma 2.7.7] that A+ B is norm closed in C(X).

(4) In [1], Adamjan, Arov and Krein gave an example of a function vE€C
which has no nearest point in Ag=H*NC. A modification of the example was
used by the authors of [7, p. 57]. It is shown in [7, Theorem 10.5] that there
is an f€ H™ with dist(f, C)=1 and dist(f, H*NC)=2. Thus condition (1) of
Theorem 2 is not true in general. Note that in this example, A+B=H"+C is
norm closed in L®, in contrast with Example 3.

4. Local best approximation. A subspace § of a Banach space Y is called an M-
ideal if there exists an L-projection P: Y* — §* such that ||u|=|Pu|+|x—Pu|
for all u € Y*; here P is onto. If § is an M-ideal of Y and y €Y, then there exists
X € g such that dist(y, ) =||y—X]|, [4, p. 126].

In this section we give proofs of Theorems 3 and 4. A special case of Theorem
3 was obtained by D. Sarason. He showed, in the case A=H* and E=X,=
{(pEM(L”): ¢(z)=a}, that dist(f|Xa,H°°|Xa) is attainable [16, p. 110], where
he used the fact that H” + C admits best approximation ([2], [23]).

To prove Theorem 3, we use an M-ideal approach. We need the following
lemma.

LEMMA 1. If A is a closed subalgebra of C(X) and E is a weak peak set for A
then dist(f|g, A|g) =dist(f, Ag) for any f in C(X).

By definition, Ag ={f€C(X): f|g€A|Eg]}. Itis a closed subalgebra of C(X).

Proof of Lemma 1. Let f€C(X); then dist(f, Ag)=|| fdu| for some p€
Ext(Ag). Thus dist(f, Ag)=|] (f—g) du| for all g€ A. Hence dist(f, Ag) <
If|z—g|ell for all g € A. Consequently, dist(f, Ag) <||f|z—A|e|. On the other
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hand ”f'E A‘E”“’“fIE AEIE” < dlSt(f,AE) Thus dlSt(f AE) dlSt(f‘E,Alg)
This ends the proof of Lemma 1. a

Proof of Theorem 3. First, we note that Ag/A is an M-ideal of C(X)/A. To
see this, we identify (C(X)/A)*=A* and (Ag/A)'=(Ag)*. Define the
L-projection P: A* - (Ag)t by Pu=xgp, p €EA*. It is easy to check that it is an
L-projection. Thus, we get dist(f, Ag) =dist(f—g,A), for some g €Af. Since A
admits best approximation, then we have dist(f, Ag)=||f—g—#h|, for some
h€A. By Lemma 1, dist(f|g,A|g)=|f—G|, GEAg. Take k€A such that
k|g=G|g. Observe that dist(f|g, A|r) <|f|e—k|ell <|f- Gll—dlst(fIE,AIE)
This completes the proof of Theorem 3.

Proof of Theorem 4. Define (ANB)g = {f€L°°:f|E€ (AﬂB)IE}, Ag =
(fEL™: fl[r€EA|g}and Bg={f€L”: f|r € B|g}. All these algebras are Douglas
algebras. We claim that (ANB)g=ArNBg. It is clear that (ANB)gCAgNBE.
Let me M((ANB)g). Then m € M(ANB) with supp u,, CE; here u,, is the rep-
resenting measure for m. By Theorem C, m € M(A) or m € M(B). So assume that
meM(A). Then meM(Ag). Thus we have M((ANB)g)=M(Ag)UM(Bg),
which is equal to M(AgNBg) by Theorem C. By the Chang-Marshall theorem
[15] we get (ANB)g=ArNBg. This proves the claim.

Now, let f€L*®. Then dist(f, (ANB)g)=|{ fduy|, for some

to € Ext (AN B)E).

We claim that p, is an extreme point of ball((ANB)*). To see this, suppose that
po=3p1+3p2, py and py € ball((ANB)*Y). Thus po=3xep1+ 3Xep2; here xg is
the characteristic function of E. The measures xgu; and xgu; both belong
to ((ANB)E). Since pg € Ext((ANB)5), We get puo=xg =Xz M2 Since || ||=
I pill+llm=xgpalls Ixemll=1and [u <1, we get |1 —xg pi | =0. This shows
that 4y =xgp. Hence | € ((A NB)g). Similarly, u, € ((ANB)E). Since Mo is an
extreme point of ((ANB)E), we get po=p=pz. This proves our claim that
po € Ext((ANB)*1).

By Theorem 2, pug€ Ext(AY)UExt(B*). So let us say, for example, that
po EA™. Since support uoCE, we get ug€ (Ag)*. Thus dist(f, Ag) 2| fduo|=
dist(f, (ANB)g). This shows that

dist(f, (AN B)g)=max{dist(f, Ag), dist(f, Bg)].

By Lemma 1, we get dist(f|g, (AN B|g)=max{dist(f|e, 4|£), dist(f|e, B|g)}-
This ends the proof of Theorem 4. O

The author is grateful to W. Deeb for a helpful discussion concerning
Theorem 2, and to the referee for very helpful comments that shortened some of
the proofs in the paper.

REFERENCES

1. V. A. Adamjan, D. Z. Arov and M. G. Krein, Infinite Hankel matrices and general-
ized problems of Carathéodory-Fejér and F. Riesz, Funkcional Anal. i Prilozhen. 2
(1968), no. 1, 1-19. (Russian).



54

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

RAHMAN YOUNIS

. S. Axler, 1. D. Berg, N. Jewell and A. Shields, Approximation by compact operators

and the space H® + C, Ann. of Math. (2) 109 (1979), 601-612.

S. Axler, S.-Y. A. Chang and D. Sarason, Products of Toeplitz operators, Integral
Equations Operator Theory 1 (1978), 285-309.

E. Behrends, M-structure and the Banach-Stone theorem, Lecture Notes in Math.,
736, Springer, Berlin, 1979,

A. Browder, Introduction to function algebras, Benjamin, New York, 1969.

B. J. Cole and T. W. Gamelin, Tight uniform algebras and algebras of analytic func-
tions, J. Funct. Anal. 46 (1982), 158-220.

A. M. Davie, T. W. Gamelin and J. Garnett, Distance estimates and point-wise
bounded density, Trans. Amer. Math. Soc. 175 (1973), 37-68.

N. Dunford and J. Schwartz, Linear operators, part 1, Interscience, New York, 1957.

. T. W. Gamelin, Uniform algebras, Prentice-Hall, Englewood Cliffs, N.J., 1969.
10.
11.

J. Garnett, Bounded analytic functions, Academic Press, New York, 1981.

I. Glicksberg, Measures orthogonal to algebras and sets of antisymmetry, Trans.
Amer. Math. Soc. 105 (1962), 415-435.

P. Gorkin, Decomposition of the maximal ideal space of L™, Ph.D. thesis, Michigan
State University, 1982.

K. Hoffman, Banach spaces of analytic functions, Prentice-Hall, Englewood Cliffs,
N.J., 1962.

K. Hoffman and I. M. Singer, Maximal algebras of continuous functions, Acta
Math. 103 (1960), 217-241.

D. E. Marshall, Subalgebras of L™ containing H*, Acta Math. 137 (1976), 91-98.
D. Sarason, Function theory on the unit circle. Conference at Virginia Polytechnic
Institute and State University (Blacksburg, Va., 1978), Dept. Math., Virginia Poly-
tech. and State Univ., Blacksburg, Va., 1978.

, Algebras of functions on the unit circle, Bull Amer. Math. Soc. 79 (1973),
286-299.

, The Shilov and Bishop decomposition of H®+ C. Conference on harmonic
analysis in honor of Antoni Zygmund, Vol. II (Chicago, Ill., 1981), 461-474,
Wadsworth, Belmont, Calif., 1983.

G. E. Shilov, On rings of functions with uniform convergence, Ukrain. Math. Zh. 3
(1951), 404-411.

A. L. Vol’berg, Two remarks concerning the theorem of S. Axler, S.-Y. A. Chang
and D. Sarason, J. Operator Theory 7 (1982), 209-218.

T. Wolff, Some theorems on vanishing mean oscillation, Ph.D. thesis, Univ. of Cali-
fornia, Berkeley, 1979.

K. Yosida, Functional analysis, Springer, Berlin, 1974.

R. Younis, Properties of certain algebras between L and H*, J. Funct. Anal. 44
(1981), 381-387.

Department of Mathematics
Kuwait University
Kuwait



