DISTANCE ESTIMATES AND PRODUCTS OF TOEPLITZ OPERATORS

Rahman Younis

1. Introduction. In this paper we establish some results concerning distance estimates. One of these results produces an equivalent condition to the Axler-Chang-Sarason-Volberg theorem. In order to state our results more precisely, we fix some notations which will be used throughout the paper.

By D we will denote the open unit disc in the complex plane, and by ∂D its boundary. Let L^{∞} denote the algebra of bounded measurable functions with respect to the Lebesgue measure on ∂D , and H^{∞} denote the subalgebra of L^{∞} consisting of all bounded analytic functions in D. We identify L^{∞} with C(X), the space of continuous functions on X, where X is the maximal ideal space of L^{∞} . The algebra $H^{\infty} + C$ is a closed subalgebra of L^{∞} ; here $C = C(\partial D)$. It is known [14] that $H^{\infty}+C$ is the smallest closed subalgebra of L^{∞} which contains H^{∞} . A closed subalgebra B of L^{∞} which contains H^{∞} is usually called a Douglas algebra. The maximal ideal space of B is denoted by M(B). The reader is referred to [16] and [10] for the theory of Douglas algebras and to [9] for uniform algebras. The largest C^* -subalgebra of $H^{\infty} + C$ will be denoted by OC. Thus OC = $(H^{\infty}+C)\cap \overline{(H^{\infty}+C)}$, where bar denotes complex conjugation. The sets in the Shilov decomposition [19] of $M(L^{\infty})$ associated with $H^{\infty}+C$ will be called QC-level sets. For $\phi \in M(H^{\infty} + C)$ the support of the representing measure for ϕ is called a support set. If A is a closed subspace of a Banach space Y and $x \in Y$, then dist $(x, A) = \inf\{\|x - y\| : y \in A\}$. The annihilator of A in Y* will be denoted by A^{\perp} , and Ext (A^{\perp}) denotes the set of the extreme points of ball (A^{\perp}) . If B is a subset of Y, then co(B) denotes the convex hull of B.

The following results will be established.

THEOREM 1. If A and B are two Douglas algebras such that $H^{\infty} + C = A \cap B$, then $\operatorname{dist}(h, H^{\infty} + C) = \max\{\operatorname{dist}(h, A), \operatorname{dist}(h, B)\}$ for all h in L^{∞} . Conversely, if the above condition is true then $H^{\infty} + C = A \cap B$.

This result produces an equivalent condition to the Axler-Chang-Sarason-Volberg theorem. A proof of Theorem 1 appears in Section 2.

THEOREM 2. Let A and B be two closed subalgebras of C(X), where X is a compact Hausdorff space. Then the following conditions are equivalent:

- (1) $\operatorname{dist}(f, A \cap B) = \max\{\operatorname{dist}(f, A), \operatorname{dist}(f, B)\}\ \text{for all } f \text{ in } C(X);$
- (2) Co(ball $A^{\perp} \cup$ ball B^{\perp}) = ball $(A \cap B)^{\perp}$;
- (3) $\operatorname{Ext}((A \cap B)^{\perp}) \subset \operatorname{Ext}(A^{\perp}) \cup \operatorname{Ext}(B^{\perp}).$

In Section 3, we show that condition (1) of Theorem 2 is not true in general.

Received April 15, 1983. Revision received October 31, 1983. Michigan Math. J. 31 (1984).

THEOREM 3. Let A be a closed subalgebra of C(X) which admits best approximation, where X is a compact Hausdorff space. If E is a weak peak set for A, then $\operatorname{dist}(f|_E, A|_E)$ is attainable for any f in C(X).

THEOREM 4. If A and B are two Douglas algebras which satisfy any one of the equivalent conditions of Theorem 2, then

$$\operatorname{dist}(f|_{E}, A \cap B|_{E}) = \max\{\operatorname{dist}(f|_{E}, A|_{E}), \operatorname{dist}(f|_{E}, B|_{E})\}\$$

for any f in L^{∞} and for any weak peak set E for $A \cap B$.

A special case of Theorem 3 was obtained by D. Sarason [16, p. 110]. Theorems 3 and 4 appear in Section 4.

2. Products of Toeplitz operators. The relevant facts about products of Toeplitz operators were established in [3] and [20]. General background can be found in [16]. For f in L^{∞} , the Toeplitz operator on the usual Hardy space of ∂D , H^2 , with symbol f will be denoted by T_f , and the closed subalgebra of L^{∞} generated by H^{∞} and f will be denoted by $H^{\infty}[f]$.

THEOREM A (Axler-Chang-Sarason-Volberg Theorem). For f and g in L^{∞} , the following conditions are equivalent:

- (i) $T_{\bar{f}} T_g T_{\bar{f}g}$ is compact;
- (ii) $H^{\infty}[f] \cap H^{\infty}[g] \subset H^{\infty} + C$;
- (iii) For each support set S, either $f|_S$ or $g|_S$ is in $H^{\infty}|_S$.

The implication from condition (i) to condition (ii) is due to A. L. Volberg [20]; the other implications are due to S. Axler, A. Chang and D. Sarason and can be found in [3].

We will show that the following condition can be added to the equivalent conditions (i)-(iii) of Theorem A: (iv) Either

$$\operatorname{dist}(h, H^{\infty} + C) = \max\{\operatorname{dist}(h, H^{\infty}[f]), \operatorname{dist}(h, H^{\infty}[g])\}$$

for all h in L^{∞} , or

$$\operatorname{dist}(h, H^{\infty}) = \max{\{\operatorname{dist}(h, H^{\infty}[f]), \operatorname{dist}(h, H^{\infty}[g])\}}$$

for all h in L^{∞} .

First we establish the following result.

THEOREM 1. Let A and B be two Douglas algebras such that $H^{\infty} + C = A \cap B$. Then $\operatorname{dist}(h, H^{\infty} + C) = \max\{\operatorname{dist}(h, A), \operatorname{dist}(h, B)\}$ for all h in L^{∞} . Conversely, if the above condition is satisfied then $H^{\infty} + C = A \cap B$.

The following results will be needed in our proof of Theorem 1.

THEOREM B ([18], [21, p. 52]). Let f and g be functions in L^{∞} such that, for each support set S, either $f|_{S}$ or $g|_{S}$ is in $H^{\infty}|_{S}$. Then, for each QC-level set E, either $f|_{E}$ or $g|_{E}$ is in $H^{\infty}|_{E}$.

THEOREM C ([12, Theorem 3.4]). Let A and B be two Douglas algebras; then $M(A \cap B) = M(A) \cup M(B)$.

Proof of Theorem 1. Assume that $H^{\infty} + C = A \cap B$. Let $h \in L^{\infty}$. Then $\operatorname{dist}(h, H^{\infty} + C) = | \int h \, d\mu |$,

for some $\mu \in \operatorname{Ext}(H^{\infty} + C)^{\perp}$, [11, p. 419]. Since $\sup \mu$ (= support of μ) is an antisymmetric set for $H^{\infty} + C$, then $\sup \mu \subset E_0$, for some QC-level set E_0 . We claim that $\mu \in A^{\perp} \cup B^{\perp}$. Suppose not. Then there exist $f \in A$ and $g \in B$ such that $\int f d\mu \neq 0$ and $\int g d\mu \neq 0$. By Theorem C, $M(H^{\infty} + C) = M(A) \cup M(B)$. Thus for each support set S, either $f|_S$ or $g|_S$ is in $H^{\infty}|_S$ (recall that $A|_S = H^{\infty}|_S$). By Theorem B we get either $f|_E$ or $g|_E$ is in $H^{\infty}|_E$ for each QC-level set E. In particular, $f|_{E_0}$ or $g|_{E_0}$ is in $H^{\infty}|_{E_0}$. This shows that $\int f d\mu = 0$ or $\int g d\mu = 0$. This contradiction establishes our claim that $\mu \in A^{\perp} \cup B^{\perp}$. So let us say, for example, that $\mu \in A^{\perp}$. Then $\operatorname{dist}(h, A) \geqslant |\int h d\mu| = \operatorname{dist}(h, H^{\infty} + C)$. Since the reverse inequality is clear $(H^{\infty} + C \subseteq A)$, it follows that $\operatorname{dist}(h, H^{\infty} + C) = \operatorname{dist}(h, A)$. Consequently, $\operatorname{dist}(h, H^{\infty} + C) = \max\{\operatorname{dist}(h, A), \operatorname{dist}(h, B)\}$.

Conversely, assume that $\operatorname{dist}(h, H^{\infty} + C) = \max\{\operatorname{dist}(h, A), \operatorname{dist}(h, B)\}$ for all h in L^{∞} . By taking $h \in H^{\infty} + C$, the equality shows that $H^{\infty} + C \subset A \cap B$. By taking $h \in A \cap B$, the equality shows that $A \cap B \subset H^{\infty} + C$, and that ends the proof of Theorem 1.

In virtue of what has just been proved, condition (iv) can be added to the equivalent conditions (i)-(iii) of Theorem A.

3. A general result on distance estimates. This section contains a proof of Theorem 2 and several examples. One of these examples shows that condition (1) of Theorem 2 is not true in general.

Proof of Theorem 2. Suppose that condition (1) is valid. By [8, p. 415] and the Kreĭn–Milman theorem we have

$$\overline{\operatorname{co}}(\operatorname{Ext}(A^{\perp}) \cup \operatorname{Ext}(B^{\perp})) = \operatorname{co}(\operatorname{ball}(A^{\perp}) \cup \operatorname{ball}(B^{\perp})).$$

Thus if condition (2) is not valid, then there exists $\mu_0 \in \text{ball}((A \cap B)^{\perp})$, and $\mu_0 \notin \overline{\operatorname{co}}(\operatorname{Ext}(A^{\perp}) \cup \operatorname{Ext}(B^{\perp}))$. Hence by [22, p. 108] there exists a continuous linear functional f such that $f(\mu_0) > 1$ and $|f(\mu)| \le 1$ for all $\mu \in \overline{\operatorname{co}}(\operatorname{Ext}(A^{\perp}) \cup \operatorname{Ext}(B^{\perp}))$. Note that the set $\overline{\operatorname{co}}(\operatorname{Ext}(A^{\perp}) \cup \operatorname{Ext}(B^{\perp}))$ is a balanced convex subset of $(C(X))^*$ and that $(C(X))^*$ with its w^* -topology is a locally convex linear topological vector space. Thus we can consider f to be an element of C(X). Consequently, $\operatorname{dist}(f,A \cap B) \ge \int f d\mu_0 > 1$, while $\operatorname{dist}(f,A) \le 1$ and $\operatorname{dist}(f,B) \le 1$. This contradiction shows that condition (1) implies condition (2).

Now, suppose that condition (2) is valid. Let $\mu \in \operatorname{Ext}((A \cap B)^{\perp})$ be written as $\mu = \sum \alpha_i \, \mu_i + \sum \beta_i \, v_i$, where $\alpha_i \ge 0$, $\beta_i \ge 0$, $\sum \alpha_i + \sum \beta_i = 1$, $\mu_i \in \operatorname{ball}(A^{\perp})$, $v_i \in \operatorname{ball}(B^{\perp})$, for each i. Since μ is extreme, $\mu = \mu_i$ for some i, or $\mu = v_i$ for some i. Thus $\mu \in A^{\perp} \cup B^{\perp}$ and hence $\mu \in \operatorname{Ext}(A^{\perp}) \cup \operatorname{Ext}(B^{\perp})$. This shows that condition (2) implies condition (3).

Finally, assume that condition (3) is valid. Let $f \in C(X)$. Then $\operatorname{dist}(f, A \cap B) = |\int f d\mu|$, for some $\mu \in \operatorname{Ext}((A \cap B)^{\perp})$. By condition (3), $\mu \in \operatorname{Ext}(A^{\perp}) \cup \operatorname{Ext}(B^{\perp})$. So assume that $\mu \in \operatorname{Ext}(A^{\perp})$. Thus $\operatorname{dist}(f, A) \ge |\int f d\mu| = \operatorname{dist}(f, A \cap B)$. Hence

 $dist(f, A \cap B) = max\{dist(f, A), dist(f, B)\}$. This shows that condition (3) implies condition (1). This ends the proof of Theorem 2.

REMARK. Theorem 2 can be extended to arbitrary finite intersection of closed subalgebras of C(X).

EXAMPLES. (1) Let H be a fixed closed subalgebra of C(X). If A and B are closed subalgebras of C(X) containing H such that A/H and B/H are M-ideals of C(X)/H, then $\operatorname{dist}(f,A\cap B)=\max\{\operatorname{dist}(f,A),\operatorname{dist}(f,B)\}$ for every f in C(X). (See Section 4 for the definition of an M-ideal.) This is due to the fact that $\operatorname{co}(\operatorname{ball}(A^{\perp}) \cup \operatorname{ball}(B^{\perp})) = \operatorname{ball}(A \cap B)^{\perp}$ [4, p. 37].

- (2) If A and B are closed subalgebras of C(X) such that every measure in A^{\perp} is singular to every measure in B^{\perp} , then $(A \cap B)^{\perp} = A^{\perp} \oplus B^{\perp}$ [6, Theorem 11.3]. Let $\mu \in \text{Ext}((A \cap B)^{\perp})$ and suppose that $\mu = \mu_1 + \mu_2$, $\mu_1 \neq 0$, $\mu_2 \neq 0$, $\mu_1 \in A^{\perp}$ and $\mu_2 \in B^{\perp}$. Then $\mu = \|\mu_1\|(\mu_1/\|\mu_1\|) + \|\mu_2\|(\mu_2/\|\mu_2\|)$. Since $\|\mu_1\| + \|\mu_2\| = 1$, we get $\mu = \mu_1/\|\mu_1\| = \mu_2/\|\mu_2\|$. This shows that $\mu \in \text{Ext}(A^{\perp}) \cup \text{Ext}(B^{\perp})$. By Theorem 2 we get $\text{dist}(f, A \cap B) = \max\{\text{dist}(f, A), \text{dist}(f, B)\}$ for all f in C(X).
- (3) Let A and B be two closed subalgebras of C(X) such that A+B is not norm closed; then condition (1) of Theorem 2 is not valid in this case. Indeed, if A and B are any two closed subalgebras of C(X) which satisfy Theorem 2, then condition (2) implies easily that $(A \cap B)^{\perp} = A^{\perp} + B^{\perp}$, which implies by [5, Lemma 2.7.7] that A+B is norm closed in C(X).
- (4) In [1], Adamjan, Arov and Kreĭn gave an example of a function $v \in C$ which has no nearest point in $A_0 = H^{\infty} \cap C$. A modification of the example was used by the authors of [7, p. 57]. It is shown in [7, Theorem 10.5] that there is an $f \in H^{\infty}$ with dist(f, C) = 1 and dist $(f, H^{\infty} \cap C) = 2$. Thus condition (1) of Theorem 2 is not true in general. Note that in this example, $A + B = H^{\infty} + C$ is norm closed in L^{∞} , in contrast with Example 3.
- **4. Local best approximation.** A subspace \mathcal{G} of a Banach space Y is called an M-ideal if there exists an L-projection $P: Y^* \to \mathcal{G}^\perp$ such that $\|\mu\| = \|P\mu\| + \|\mu P\mu\|$ for all $\mu \in Y^*$; here P is onto. If \mathcal{G} is an M-ideal of Y and $Y \in Y$, then there exists $X \in \mathcal{G}$ such that $\text{dist}(Y, \mathcal{G}) = \|y X\|$, [4, p. 126].

In this section we give proofs of Theorems 3 and 4. A special case of Theorem 3 was obtained by D. Sarason. He showed, in the case $A = H^{\infty}$ and $E = X_{\alpha} = \{\phi \in M(L^{\infty}): \phi(z) = \alpha\}$, that $\operatorname{dist}(f|_{X_{\alpha}}, H^{\infty}|_{X_{\alpha}})$ is attainable [16, p. 110], where he used the fact that $H^{\infty} + C$ admits best approximation ([2], [23]).

To prove Theorem 3, we use an M-ideal approach. We need the following lemma.

LEMMA 1. If A is a closed subalgebra of C(X) and E is a weak peak set for A then $dist(f|_E, A|_E) = dist(f, A_E)$ for any f in C(X).

By definition, $A_E = \{ f \in C(X) : f|_E \in A|_E \}$. It is a closed subalgebra of C(X).

Proof of Lemma 1. Let $f \in C(X)$; then $\operatorname{dist}(f, A_E) = |\int f d\mu|$ for some $\mu \in \operatorname{Ext}(A_E^{\perp})$. Thus $\operatorname{dist}(f, A_E) = |\int (f - g) d\mu|$ for all $g \in A$. Hence $\operatorname{dist}(f, A_E) \leq \|f|_E - g|_E\|$ for all $g \in A$. Consequently, $\operatorname{dist}(f, A_E) \leq \|f|_E - A|_E\|$. On the other

hand, $||f|_E - A|_E || = ||f|_E - A_E|_E || \le \operatorname{dist}(f, A_E)$. Thus $\operatorname{dist}(f, A_E) = \operatorname{dist}(f|_E, A|_E)$. This ends the proof of Lemma 1.

Proof of Theorem 3. First, we note that A_E/A is an M-ideal of C(X)/A. To see this, we identify $(C(X)/A)^* = A^{\perp}$ and $(A_E/A)^{\perp} = (A_E)^{\perp}$. Define the L-projection $P: A^{\perp} \to (A_E)^{\perp}$ by $P\mu = \chi_E \mu$, $\mu \in A^{\perp}$. It is easy to check that it is an L-projection. Thus, we get $\operatorname{dist}(f, A_E) = \operatorname{dist}(f - g, A)$, for some $g \in A_E$. Since A admits best approximation, then we have $\operatorname{dist}(f, A_E) = \|f - g - h\|$, for some $h \in A$. By Lemma 1, $\operatorname{dist}(f|_E, A|_E) = \|f - G\|$, $G \in A_E$. Take $k \in A$ such that $k|_E = G|_E$. Observe that $\operatorname{dist}(f|_E, A|_E) \leq \|f|_E - k|_E \| \leq \|f - G\| = \operatorname{dist}(f|_E, A|_E)$. This completes the proof of Theorem 3.

Proof of Theorem 4. Define $(A \cap B)_E = \{f \in L^{\infty} : f|_E \in (A \cap B)|_E\}$, $A_E = \{f \in L^{\infty} : f|_E \in A|_E\}$ and $B_E = \{f \in L^{\infty} : f|_E \in B|_E\}$. All these algebras are Douglas algebras. We claim that $(A \cap B)_E = A_E \cap B_E$. It is clear that $(A \cap B)_E \subset A_E \cap B_E$. Let $m \in M((A \cap B)_E)$. Then $m \in M(A \cap B)$ with supp $\mu_m \subset E$; here μ_m is the representing measure for m. By Theorem C, $m \in M(A)$ or $m \in M(B)$. So assume that $m \in M(A)$. Then $m \in M(A_E)$. Thus we have $M((A \cap B)_E) = M(A_E) \cup M(B_E)$, which is equal to $M(A_E \cap B_E)$ by Theorem C. By the Chang-Marshall theorem [15] we get $(A \cap B)_E = A_E \cap B_E$. This proves the claim.

Now, let $f \in L^{\infty}$. Then dist $(f, (A \cap B)_E) = |\int f d\mu_0|$, for some

$$\mu_0 \in \operatorname{Ext}((A \cap B)_E^{\perp}).$$

We claim that μ_0 is an extreme point of ball $((A \cap B)^{\perp})$. To see this, suppose that $\mu_0 = \frac{1}{2}\mu_1 + \frac{1}{2}\mu_2$, μ_1 and $\mu_2 \in \text{ball}((A \cap B)^{\perp})$. Thus $\mu_0 = \frac{1}{2}\chi_E\mu_1 + \frac{1}{2}\chi_E\mu_2$; here χ_E is the characteristic function of E. The measures $\chi_E\mu_1$ and $\chi_E\mu_2$ both belong to $((A \cap B)_E^{\perp})$. Since $\mu_0 \in \text{Ext}((A \cap B)_E^{\perp})$, we get $\mu_0 = \chi_E\mu_1 = \chi_E\mu_2$. Since $\|\mu_1\| = \|\chi_E\mu_1\| + \|\mu_1 - \chi_E\mu_1\|$, $\|\chi_E\mu_1\| = 1$ and $\|\mu_1\| \le 1$, we get $\|\mu_1 - \chi_E\mu_1\| = 0$. This shows that $\mu_1 = \chi_E\mu_1$. Hence $\mu_1 \in ((A \cap B)_E^{\perp})$. Similarly, $\mu_2 \in ((A \cap B)_E^{\perp})$. Since μ_0 is an extreme point of $((A \cap B)_E^{\perp})$, we get $\mu_0 = \mu_1 = \mu_2$. This proves our claim that $\mu_0 \in \text{Ext}((A \cap B)^{\perp})$.

By Theorem 2, $\mu_0 \in \operatorname{Ext}(A^{\perp}) \cup \operatorname{Ext}(B^{\perp})$. So let us say, for example, that $\mu_0 \in A^{\perp}$. Since support $\mu_0 \subset E$, we get $\mu_0 \in (A_E)^{\perp}$. Thus $\operatorname{dist}(f, A_E) \ge |\int f d\mu_0| = \operatorname{dist}(f, (A \cap B)_E)$. This shows that

$$\operatorname{dist}(f, (A \cap B)_E) = \max\{\operatorname{dist}(f, A_E), \operatorname{dist}(f, B_E)\}.$$

By Lemma 1, we get $\operatorname{dist}(f|_E, (A \cap B|_E) = \max\{\operatorname{dist}(f|_E, A|_E), \operatorname{dist}(f|_E, B|_E)\}$. This ends the proof of Theorem 4.

The author is grateful to W. Deeb for a helpful discussion concerning Theorem 2, and to the referee for very helpful comments that shortened some of the proofs in the paper.

REFERENCES

1. V. A. Adamjan, D. Z. Arov and M. G. Krein, *Infinite Hankel matrices and generalized problems of Carathéodory-Fejér and F. Riesz*, Funkcional Anal. i Prilozhen. 2 (1968), no. 1, 1–19. (Russian).

- 2. S. Axler, I. D. Berg, N. Jewell and A. Shields, *Approximation by compact operators* and the space $H^{\infty}+C$, Ann. of Math. (2) 109 (1979), 601-612.
- 3. S. Axler, S.-Y. A. Chang and D. Sarason, *Products of Toeplitz operators*, Integral Equations Operator Theory 1 (1978), 285-309.
- 4. E. Behrends, *M-structure and the Banach-Stone theorem*, Lecture Notes in Math., 736, Springer, Berlin, 1979.
- 5. A. Browder, Introduction to function algebras, Benjamin, New York, 1969.
- 6. B. J. Cole and T. W. Gamelin, *Tight uniform algebras and algebras of analytic functions*, J. Funct. Anal. 46 (1982), 158–220.
- 7. A. M. Davie, T. W. Gamelin and J. Garnett, *Distance estimates and point-wise bounded density*, Trans. Amer. Math. Soc. 175 (1973), 37-68.
- 8. N. Dunford and J. Schwartz, *Linear operators*, part 1, Interscience, New York, 1957.
- 9. T. W. Gamelin, *Uniform algebras*, Prentice-Hall, Englewood Cliffs, N.J., 1969.
- 10. J. Garnett, Bounded analytic functions, Academic Press, New York, 1981.
- 11. I. Glicksberg, *Measures orthogonal to algebras and sets of antisymmetry*, Trans. Amer. Math. Soc. 105 (1962), 415–435.
- 12. P. Gorkin, *Decomposition of the maximal ideal space of* L^{∞} , Ph.D. thesis, Michigan State University, 1982.
- 13. K. Hoffman, *Banach spaces of analytic functions*, Prentice-Hall, Englewood Cliffs, N.J., 1962.
- 14. K. Hoffman and I. M. Singer, *Maximal algebras of continuous functions*, Acta Math. 103 (1960), 217-241.
- 15. D. E. Marshall, Subalgebras of L^{∞} containing H^{∞} , Acta Math. 137 (1976), 91–98.
- 16. D. Sarason, *Function theory on the unit circle*. Conference at Virginia Polytechnic Institute and State University (Blacksburg, Va., 1978), Dept. Math., Virginia Polytech. and State Univ., Blacksburg, Va., 1978.
- 17. ——, Algebras of functions on the unit circle, Bull Amer. Math. Soc. 79 (1973), 286–299.
- 18. —, The Shilov and Bishop decomposition of $H^{\infty}+C$. Conference on harmonic analysis in honor of Antoni Zygmund, Vol. II (Chicago, Ill., 1981), 461-474, Wadsworth, Belmont, Calif., 1983.
- 19. G. E. Shilov, *On rings of functions with uniform convergence*, Ukrain. Math. Zh. 3 (1951), 404-411.
- 20. A. L. Vol'berg, Two remarks concerning the theorem of S. Axler, S.-Y. A. Chang and D. Sarason, J. Operator Theory 7 (1982), 209-218.
- 21. T. Wolff, Some theorems on vanishing mean oscillation, Ph.D. thesis, Univ. of California, Berkeley, 1979.
- 22. K. Yosida, Functional analysis, Springer, Berlin, 1974.
- 23. R. Younis, Properties of certain algebras between L^{∞} and H^{∞} , J. Funct. Anal. 44 (1981), 381–387.

Department of Mathematics Kuwait University Kuwait