WEIGHTED L? ESTIMATES
FOR THE CAUCHY INTEGRAL OPERATOR

Basil C. Krikeles

Introduction and statement of basic result. In 1977 A. P. Calderdon proved
that the Cauchy Integral Operator for a curve (x, A(x)) is bounded on L? pro-
vided that 4’ is in L™ with sufficiently small L* norm. Four years later R. R.
Coifman, Y. Meyer, A. Mclntosh, and G. David developed new techniques and
were able to remove the restriction on the size of the L* norm of A’. Further-
more, as a result of the almost everywhere existence of the Cauchy Integral for
rectifiable curves one can deduce the existence of a weighted L? estimate for such
curves (see [2]). The main objective of this paper is the direct derivation of
weighted L? estimates for the Cauchy Integral Operator with weights that can be
explicitly exhibited in a way that clarifies the role played by the geometry of the
curve. We will prove the following:

THEOREM A. There exist constants ky and k, such that for all p>1 there exists
a constant C,, for which the following inequality holds:

dx
(1484 (A))k1y* k2

where C, (4, f)=sup.so|Cc(A4, f)| and C.(A4, f)(x) is the truncated operator
corresponding to the Cauchy Singular Integral Operator

S 14+iA(y)
x—y+i(A(x)—A(»))
S4(A’) denotes the g-sharp function of A’:

ez, ne <G, | 1A\ at

C(A4,f)(x)=p.v. S(y)ay.

t/q
Sq (A’ )(X)—sup< S IA’(y)—mQ(A’)I"dy>

10|
with mg (.) denoting the mean over the specified interval, and the sup taken over
all intervals containing x. (.)* denotes the Hardy-Littlewood Maximal Function
and the variable ¢ stands for arc-length.

The proof proceeds in three steps: (a) we use the Coifman-Meyer-McIntosh
theorem (CMM) mentioned in the beginning as an a priori estimate to derive a
provisional form of Theorem A via a good-\ inequality; (b) we use the measure
theoretic and geometric techniques of step (a) again to show that the provisional
result obtained there implies an improvement of itself, thus obtaining an L” esti-
mate; and (c) we prove a weak-type (1, 1) estimate which implies Theorem A by
interpolation. The proof therefore contains a bootstrap argument from the
CMM theorem following ideas used by G. David to derive the CMM theorem
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from the original result of Calderon. The proof provides a good illustration of
the interplay between analysis and geometry.

The results of this paper were developed as part of a dissertation under the
direction of Professor R. R. Coifman.

1. The first stage of the bootstrap argument.

PROPOSITION 1. There exists a constant k such that for all positive ¢ we can
find a constant C, for which the following is true:

[{x: Ci(A, £)(x)> (1+€e)N and (1+S,(A") (X)) M, () (x) SN/ C.)|
<0.9](x: Cu(A, /() >\,

where 1/p+1/q=1/r, r is positive and M,(f) is the p-maximal function of f,
defined as follows:

1/p
3 L ar)

with the supremum taken over all intervals Q containing x.

M, (f)(x)—sup<

Proof. We decompose the following open set as a union of pairwise disjoint
open intervals: {x: C,(A4, f)(x)>A}=U Q;,=U (p;, g;). This implies that

(1.1) |Cu (A4, (PN for all i.
It suffices to prove that )
[{xin Q;: Cu (A, £)> (1+€)N and (1+S,(A")) M, (f) <A/C.}|
(1.2) <0.9|Q;l.
In fact we may also assume the following about Q;:
(1.3) |{x in Q;: (1+8,(A)) M, (f)>N/C.)|<0.1|Qyl,

since otherwise there is nothing to prove. Let Q; be an interval centered at p; with
length four times the length of Q;. Write:

(1.4) f=h+/f2 with  fi=f]g,
and let
A 1 17k
(1.5) »(Qi) = (C ] 1/p> —L
€ - pd )
ég%<—,Q| XQ [S)IP dy

We make one more decomposition of an open set into a union of pairwise dis-

joint open intervals:
(xin Q;: (14+8,(A) M, (f)>N/C. or My(A'—mg;(A")) > Cr(Q:))
(1.6) =UR,.

Set u; =mg,(A’). Since M, is of weak type (1,1) we obtain
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[Lxin Q,: My (A=) > Ev(0))| < = (CQ, |, 1w
1 1/q
(1.7) CV(Q, |Q:|< T f il ’—mlqdy)
< v (0D | QiS4 (A) (x;) with x; in Q.
In view of (1.3) we can certainly choose x; in Q; so that
(1.8) Sq(A) (x;) <v(Q)).
Returning to (1.7), and choosing C>10C, we obtain
(1.9) |(x in Q;: My (A'—p;) (x) > Cr(Q)}| <0.1| Q4.

Note that C is a geometric constant. We combine (1.3) and (1.9) to obtain the
following:

(1.10) - U R

R;CQ;

>0.8|Qil-

We let R ; be intervals of length twice the length of R; and centered around the
same points. We define

(1.11) Fi=0;— U R,
R;CQ;

It is immediate that

(1.12) |Fi[>0.6| Q.

We will now describe a modification 4; of A, which agrees with A everywhere
except for the intervals R;.

A(x)—p;x for x in Q;—UR;
A(b;) —A(a;
( ( ;))._a_(aj) —ui>(x—aj)+A(aj)—#i
o for x in R;=(a;, b;).

We claim that A, as defined above is Lipschitz. For x in 0;—UR;, |A|(x)|=
| A(x) — pil SMI(A'—M) <Cv»(Q;). For x in R; we have

(1.13)  A(x)=

410l = SR (A1) = ) dut| <My (A=) (a7) < Co(Q)).
J
Consequently,
(1.14) | Aillo < Cr(O).
Consider now
_ L+ i(A'() — )
(1.15) Cl ) =p.v. | i —d Gy O @
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thinking of it as a Cauchy Integral for A, acting on the product (1+i(A(y) —u;)) X
J1(»). Fixing r>1 we apply CMM.

IC,+ (SDN7 =11Cx (As, (1+i(A = p)) DI
<SG (1+v(Q))"|(1+i(A =) fi]]7.

We will now investigate what happens to this estimate when we add a constant w
to both g=A’—p; and A]. We will let B,,(¥)=A4,(y) +wy and we split the argu-
ment into two cases according to the relative size of |A]|» and w.

Case I. |w|<2||A}|l» +1, which implies || B}, <3(]|A}]|lw+1). Therefore,
[Ca (B, (1+i(g+wW)SD|7 <Cr(1+v(O))"||(1+]g]+[wD]AlIF
<SCr (1+2(@)™ I+ gD Al
Case II. |w|>2||A{||» + 1. By factoring out w from the denominator we obtain

1 1+i(g(y)+w)
z(x)—z(y) w

(1.16)

C(By, (1+i(g+W)f)=p.v. | fi(») dy

where

Z(x)= % +i(A'vtx) +x).

Moreover, since

A(x)—A(y) 1 1
+1{ 21— —F||A4j||le> —,
the curve defined by z(x) is bi-Lipschitz. Hence
. , 1+|g(p)|+|w g
|Cx (By, (1+i(g+w) )7 <C, | |W|| it | /i)
,

<G lla+[gDlAlF-

By comparing the estimates obtained above we see that we have an L’ estimate
in (1.16) which is independent of a constant added to both g and A4;. We now let

(1.17) w=mg,(A)=p; and B()=A,(»)+p».
Estimate (1.16) becomes:
[Cx (B, A+iAVMF < C-(A+w(Q)" 7 [[(14+] A= pi D Al
Consequently,
|[{x in Q;: Cu(B, (14iA") f1)(x) > eN/5)|

< | Cx (B, (1+iA") |7
= (eN/5)"

1 r/q 1 rip
<c,(1+u(Q,-))"“f’(ek/s>“”lQ,-l(IQl SQ__(1+|A'—-;»,~1)"> <'Q_, SQ_ |f|p).

<G (1+2(Q))"F (eN/5) ™ (1 +] A= DA
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Here we have applied Holder’s inequality. Moreover, the first of the two inte-
grals of this inequality is dominated by (14 S,(A’)(x;))" < (1+»(Q;))" by (1.8).
By choosing k so that m+2r<kr, and C,> (10C)1/’5/e, we obtain

[{x in O;: C(B, (1+iA’) fi(x) >Ne/5)| < C(Ne/5) " (N C)'| Q]
(1.18) <C(5/€C)"| Qi <0.1| Q4

(by (1.5)). We now turn our attention to the set F;. We will estimate the differ-
ence h (x)=C,(A, f1)(x) —C.(B, (1+iA’) f;)(x) for x in F;. The estimate below
is independent of €, so we will drop e from the formula. Since A =B except on
U R; (see (1.13) and (1.17)),

(1.19) h(x)=

1 1
- 1+id’ dy.
Suzej<x—y+i(A(x)—A(y)) X—y+i(B(x)—B(»)) >( AN/ () dy

Since A(x) =B(x) for x in F; we obtain the estimate

(1.20)
j‘ ()| dxsj
F:

i Fi J

ES |A(y) =B +]|A DDA W) dy dx.

1+I.(A1(x) —A,(¥) —.u:)l
x—=y

Here we have used the following fact:

B(x)—B() _ [ B du _ I (Aj(u)+w) du

X=y X—=y X—y

_ Ai(x)—=A4,() o
= . ;

(see (1.17)). Moreover,

y
| ) —mpcary au

J

|A(y)—=B(y)|=

1
<|R'|<~— A'(u) —mpg;(A) du)
J |Rj| SRJ- | j |
<|Rj|Sq(A) (a;) <|R;|(1+v(Q))).
We now claim that:

1+ A" = pil +] il

‘lﬂ.(z‘h(x) —A1(») +m>
X—=y

(1.21) SC1+[A () = (1+2(Q).

This follows from an argument similar to that for (1.16) by distinguishing two
cases, |p;| <2||A]|lo+1 and |p;|>2|A}||o +1. In view of this, (1.20) yields
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J, 10l de<Ca+r@? | a+lAm) —m Dl @y

where s=q/p’>1if 1/p+1/p’=1 and 1/p+1/g=1/r with r>1. Therefore, by
Holder’s inequality,

1 1/p
J, Il ax<carrapriola+s,e (5 [ 117)

1/p
<C(1+V(Qi))2+SIQi|(IQIS |f|p> )

l

Hence,

I(x in F,-:|h(x)|>7\e/5]|<(5/)\e)§ |h(x)| dx
Fi

1 I/p
(1.22) <C(5/>\e)IQ,I(l+v(Q,))2“( ToX S Ifl")
< (5C/eCY)|Qil<0.1]Qil.

We have taken k>2+s and C,>50C/e.
By combining (1.18) and (1.22) we obtain:
|(x in Fy: Cu(A, £1) (x) >2Ne/5 )|

<|{x in F;: sup|h.(x)|>Ne/5)|+|{x in F;: sup|C (B, (1+A4") f1)|(x)>Ne/5}|
e>0 e>0

<0.2|Qjl.
Since |F;|>0.6|Q;| we obtain the following estimate for f;:
(1.23) [{xin Q;: C.(A, f1)(x) <2Ne/5}|20.4|Q;l.

For f, we have the following estimate:

LEMMA 1. For all x in F;,
(1.24) Ci(A, f2)(x) SN+ (e/5)).
(1.23) and (1.24) immediately imply Proposition 1:
[{x in Qi: Cu(A, f)(x) SN(1+(3€/5))}|>0.4|Q;l.

Proof of Lemma 1. Recall that Q;=(p;,q;). From (1.1) it follows that
C. (A, f2)(p;) <. It suffices to prove the following estimate:

(1.25) sup|Ce (4, f2)(x) —C(A, f2)(pi)|<Ne/5 for all x in F,.

e>0

Fix an interval J, centered at x and an interval J,,=J; centered around p; and of
the same length as J,. We will estimate

X i

(1.26) HR K& LW dy={ K f()dy|<
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< (K(x,y)—K(pf,y))f(y)dy‘

SR-—JxUJ,-UQ_,—

| k@nlaod+| K@LIL
AJ; J AJ;
where
1+iA'(y)
x=y+i(A(x)—A))

The estimates for the last two integrals are the same. Here is how we estimate one
of them.

Because f is supported on Of we have [x—y|> (1/5)|J| with J=J, U J;, for all
x in F; and all y in Of N (J,AJ;).

K(x,y)=

1+]4°(y)|
So(»)| dy
ijAJI- Ix—y|l1+i(A(x)—A(y) )'I :0)
(1.27) =
< (Lt AQ) =my A+ ADILDL__
T Joeas 1+i——l—S (A1) —=my(A")) du+im;(A")
- y
Since
1 7 5 !
v S (A1) —my (A)) du| < Wi S |A(u) —my (A")] du

<584 (A")(x) <5v(Q))

we can estimate the integrand in (1.27) by distinguishing two cases as for (1.16)
depending on whether |m;(A")|>2(5¢(Q;)) +1 or not. In either case we obtain
the following estimate which is independent of the size of m,(A’):

(K| 2] dy
T AJ;
<CQ+u@) 7 | (+A=m 11| dy
(1.28)

1/p
<C(1+ v(Q,))'“( S |f2(n)|? dy) (Holder’s inequality)

SC(NC.) < he/15

where k and s are taken as in (1.22), and C,>15C/e.
We now turn our attention to the first integral in (1.26). It suffices to obtain an
estimate for

/]

Ck

§ K, =K (i ()] dy
R-Q;

S |pi —x+i(A(pi) —AX))| (A +]|A'D)D] ()]

S ~g; [Xx—=y+i(Ax)—AW)||pi—y+i(A(p)) —A())]
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Since %lp,——y|<|x—y|<(3/2)|p,~—y| we obtain: Ck <

‘|
R-9Q;

The integrals inside this integrand are all dominated by M, (A’— ;) which in turn
is dominated by C»(Q;). We are again in position to apply an argument simi-
lar to that for (1.16) by distinguishing two cases depending on whether |u;|>
2C»(Q;)+1 or not. In both cases we obtain

|0 A+AD) —wDlSD
R-0; |x—y|?
By a standard argument involving the decomposition

l X
<l+| Di—X Sl’i |A'—_u,-|| +Mi>(1+|A’—,u,.|+|‘ui|)|fl

dy.

X

1 , _
= sy (A"— i) +ip;

Yy
S (A'—p;) +ip;
Pi

2N+
X

'l—l-i

Cr<C1+0(Q)1|

R-0ic U 12/|gi>|x—yI>2"7|Qi]
jZ

we find that

1/p
Cr S CA+H(O (14 5,(4) () sup (5 I, 1£17)
050, \ 9|

1/p
<C(1+v(Q))¥ sup ( S |f|p> (for k>s+3)
059,\ Q]

SNC/C.<\e/15 if C,>15C/e.

The proof of Lemma 1 is now complete. O
COROLLARY 1. ||C.(A, N)||5 < sl (148, (AN M, (I3
Proof. Standard argument using the good-\ inequality of Proposition 1. O
THEOREM 1. Let g>1, 1/p+1/q=1/r, r>1, p;>p. If
@ (X) = (((1+84(A))/1*1)y* (x)) P/ e+ D
then |C. (A, NP < Cp, §1fP10(y) dy.

Proof. wis a maximal function to a power less than 1 so it is a weight of class
Ap for p 21. Moreover, w clearly dominates (1+Sq(A’))k”1. Theorem 1 follows
from Corollary 1 by an application of the Weighted Norm Inequality for the
Maximal Function.

2. The second stage of the bootstrap argument. The inequality in Proposi-
tion 1 contains the constant 0.9. The proof of the proposition could not be
directly improved to allow for the replacement of that constant by a parameter
that could be made arbitrarily small. Proposition 2 below moves in that direction
and follows from Proposition 1.
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PROPOSITION 2. Let p;>p and w be as in Theorem 1. Then there exists a
constant C such that

[(x: Cu(A, 1) >2) and (M2 f)w)")P1<MBY < (C/B)I(x: CulA, £)> )]

Proof. Let {x: C.(A, f)(x)>N}=U; Q;, where the Q; are pairwise disjoint
open intervals. It suffices to prove

2.1 [txin Q;: Ci(4, /)>2N and (MEI(S)w)*) 1< MBI <(C/B)| Q).
We may also assume that there exists x; in Q; such that

2.2) (MP(Sf)w)* ()P <N/B

since otherwise there is nothing to prove. Moreover, if Q; = (a;, b;),

2.3) C. (A4, /) a;) <\

Let Q; be an open interval centered at a; with length four times the length of Q;.

Write f=f+f, with fi=f|s..
First we obtain an estimate for f;:

(2 Cu (A4, /) () >N/2) < (C) | €A, £) () dy
<€ [1AIPe() dy  (Theorem 1)

(2.4) =) | 1Py dy

S (C/MY[Qi|(|f1P1w)* (x:)
S (C/M|Qi[(MPI(f) w)* (x;)
<(C/B87)|Qi|  (by 2.2).

Before proceeding with the estimate for f, we need to make some comments.
(2.2) implies that M, (f) (x;) (1+S,(A") (x;))* <N\/B and consequently

. 1 —Upy\1/k
Sq(A)(x) < (\/B)Y (sup <~—S If(y)l"‘dy> ) -1
(2.5) e AN IRy

=v(Q;)
Therefore, if p; =mg,(A’),
C

|(x in Q;: (A'—wi)* (x)> By v(Q))}] gﬁlV_(Qi)—

SQ_ | A"~ pil

(2.6) | Qi] Sq (A" (x;)

C
<——
.31V(Qi)
C
<B—1|Qf|-

Letting F; ={xin Q;: (A'—pu;)*(x) <B;v(Q;)} we obtain
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2.7) |Fi|> (1—(C/8,))| Qil-

We now obtain the estimate for f,. From (2.3) we see that C, (A, f5)(a;) <. As
in the proof of Lemma 1 we need to estimate.

A(x) =5up.o| Cc(A4, f2)(x) = C(A, f2) ()] forall x in F;.

In view of (2.5) and (2.7) we obtain as in Lemma 1 the following:

l/p
A(X) <CBR(1+7(Q))* sup<|Jl § |f|”>

J2Q;
and, by (2.5),

(2.8) A(x) <CNB#/B for all x in F;
Therefore,
2.9) Ci(A, 2)(x) SCu(A, f2)(a;) + A(x) N1+ (CB/B))

By combining (2.4), (2.6), and (2.9) we obtain
l{x in Q;: Cu(A, ) (x) SA(1+3+ (CBY/B))
Z|(xin Q;: Cy(A, f1)(x) <N/2 and C, (A4, f5)(x) SN+ (CBEB))}|
Z (1= (C/BP)y—(C/B))| Qil-
By choosing 3, and 8 so that . 1 S CBf 2B <! > we obtain
(2.10) |(x in Q;: C,(A, /) (x)>2\)|< (C/B)| Q.
This completes the proof of Proposition 2. O
COROLLARY 2. Let W be a weight of class A.,. Then
W({x: Ci(A,f)>2\ and ((M,i‘(f)w)*)”"l@\/ﬁ}) < (CIB)W({Ci(A, ) >N\)).

Proof. Recall that there exist constants C and é such that for all intervals Q
and all measurable subsets E of Q, W(E)/W(Q) <C(|E|/|Q|)‘S where W(E) =
{g W(x) dx. The corollary now follows directly from (2.10).

COROLLARY 3. If Wis in A, then

| csa,nwo ay<c, | (MR ) () Pr(r) dy.

Proof. Follows from Corollary 2 by standard argument. O

PROPOSITION 3. There exist constants k; and k, such that the following esti-
mate holds for s sufficiently large (s> p,):

S Ci(A, f)(x)
(14 S, (AN 1)*)%

Proof. wis as in the statement of Theorem 1. Write kp,/(kp,+1) =k, k, with
0<k;, k»<1 and set

C; S | S(0)]° dx.



WEIGHTED L? ESTIMATES 241

(2.11) wi= (((1+S, (ANt h*ka 5o that w=owf

Both w and w; are in A;. In particular w; is in A; where z=(s/p,)'=s/(s—p;).
By the theory of weights, W=w “"PP1 is in A,.= A, . By Corollary 3 we
obtain (by taking s> p,; and using the Weighted Norm Inequality on the right-
hand side):

|cxa,nmwm dyse, (M3, (e mwiy) ay

< Cs SMSI(f)wlf(ls/plwl—(s—‘p])/P] dy

<G |My o ar<c | Irr
for s>p,/(1—k;). This completes the proof. O

3. The weak type (1, 1) estimate.

PROPOSITION 4. Let W(x) be as in Proposition 3. The following weak type
(1,1) estimate holds:

W((x: Cu(A, ) (X)>N) < (C/N) | 17(0)] dt

where t stands for arc-length.

Proof. In the arc-length parameterization the Cauchy Integral can be written
as follows:

(S
CA, ) =lim | 2 2 (a(s, ) dt

where o(s,f) is the characteristic function of the set {¢:|x(s)—x(¢)|>€},
s(x) =3 (14+ A" (u)*)? du, and z(x) =x+iA(x).

We perform a Calderon-Zygmund decomposition for fi(¢)=fex(¢)z’(¢t) as
follows:

(3.1 Sit)y=g()+b(1)

_JA@) for tin F
(3.2) g(t)—{mgj(f;) for £ in QF with F'=J Q;

3.3) |Fe|< (cn\)5|f(t)|dr, IA(OISA for ¢ in F, mg,(| /i) <C.

We will produce estimates for g and 5. We start with the estimate for g.

g(t)a(s,t) , A _ g(t(x))(1-iA(x))
S Z(S)—Z(t) dt—ce(A’gl) with gl(x)— (1+(A'(X))2)l/2

This is the result of a change of variables for the integral. Therefore,
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W(Ci(A,8)>N2})<(C/N) S Ci(A, 8) W(x) dx

<(C/N) 5 |g1(x)|°dx (Proposition 3)
(3.4)
<(C/M) | [e(r(xp] dx  (since g(1) <A)

<@ flg)de<em [l ar

Next, we estimate b. Let dj=diam(Q;), and let Q; be an interval centered at
t, WhiCll is a fixed point of Q;, with length four times the length of Q;. If F'=
R—-U Qj, then

3.5) |F|<4|F°|< (C/N) S 17(0)] at.
As for g, we have

S————b(”af(s—’ﬂ dt=C,(A, b))

z2(s)—z(1)
and
WL{C. (A, b)) (x)>N/2]}
(3.6) <Wix{sin F:sup.|C.(A, b)) (x(s))|>N/2)} + W{x{F}}
—W(F)+W(F,).
But,
3.7) WIx(F) <|x(F) < Fe|< (e | | £ at,
~ ~ _ W(x(s)ds
W[Fl}—SFI w(x) dx—Ss(Fl)dW(s) where  dW(s) =~ i
b(t)a(s,t)
W{F,) < (C/\) SF-S‘:" [ SE s dt’ AW (s).
Recall now that & is supported on U Q; and that mg;(b) =0.
o (s, 1) als, i) ) ’
WEF ) < (C/k)gﬁsg ?ng (Z(S)_z(t) 2G)—2(8) b(t)dt|dW(s)

dtdw(s)

|z2(2) —z(¢)||b(2))]
(3.8)  <(C/N) SF ZJJ SQJ 26) —2(D)l[2(s) —2(5)]
|ae (S’ t) — & (59 tj)l

b(t)| dt dW(s).
o  l2&)—z()| b)) (s)

+(C/\) SF_ 2,: sgp&
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But,
(3.9) Il e s ) )
' |z(s) —z(1)| 7 ’
2 (1'*'Sq(A'))2
(3.10) (145, (AN dW(5) < =i ds<ds
3.11) | Jats,n—acs, i aws) <|xt Q)| <d;.

J

Returning to (3.8), and using (3.9), (3.10) and (3.11) we obtain

|b(1)|d;
W{F;} < (C/\ ———— dsdt
s (e )‘?SQJS|s~tJ|>2dj (S—f)2 s

t)— .
(3.12) +(C/)\)ES supS lae (s, 1) —ac (s, §))|
J Y0 ¢ VYls—t]>2d; IS-—t|

|b(t)| dW(s) dt

<(em [1owrar<em § 1) di

(3.12) and (3.7) now yield the desired estimate for 4. And since we already have
the estimate for g in (3.4) we see that the proof of Proposition 4 is complete.
Theorem A now follows from Propositions 3 and 4 and standard interpolation
arguments. O

In higher dimensions one can study the Double Layer Potential Operators.
These have the form
Xi =i
—yi>e (X=Y[*+ (A(x)—A)?)

CI(A, ) (x) =] s S() dy
where x, y are in R".

Instead of using a sharp function, we use a maximal function, namely M, (|VA|)
with p>n, and the techniques of this paper extend to yield similar weighted L”
estimates (see [7]).
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