WHITEHEAD TORSION AND THE SMITH CONJECTURE

Richard Hartley

The purpose of this paper is to demonstrate the close connection between two
apparently unrelated conjectures in topology. The first of these conjectures con-
cerns the dimension of elements of the Whitehead group, Wh(G) of a group, G.
Cohen [1] defined the dimension of an element, x of Wh(G) and showed that the
dimension of any element other than the identity is either 2 or 3. Taken together,
the papers of Cohen [1] and Rothaus [8] demonstrate the existence of elements of
dimension 3 in Wh(G) where G is a dihedral group D, for p a prime 25. Cohen
was led to conjecture that elements of dimension 2 do not exist in any Wh(G).
This conjecture remains unresolved for any group for which Wh(G) is non-
trivial. In this paper, we are particularly interested in the case where G is a
cyclic group.

The second conjecture we are interested in is the well known generalised Smith
conjecture which is concerned with periodic transformations of the n-dimensional
sphere. In its usual form, the generalised Smith conjecture states that if a peri-
odic transformation of the n-sphere has an (n—2)-sphere as its fixed point set,
then the fixed point set is unknotted. In this form, the conjecture is false in
dimensions n 2 4 [4, 5, 10] (though true for dimension #n =3 [13]). I will propose
an alternative conjecture (2.1) which should hold for all #» and will show that the
conjecture that there is no element of dimension 2 in Wh(G) of a cyclic group is
equivalent to the modified Smith conjecture (2.1).

1. Whitehead torsion. For the reader’s convenience, we define the Whitehead
group of a group, G. More details may be found in [2].

The elements of the Whitehead group, Wh(G) of a group G are the equiva-
lence classes of invertible matrices over the group ring, ZG where two matrices
are equivalent if one may be obtained from the other by a sequence of the follow-
ing operations:

1. Left multiply a row of the matrix by g for some g € G.

Right multiply a column by *g.

Add a row to another row.

Add a column to another column.

Replace a matrix 4 by (A 1) (Bordering operation).

6. The inverse operation of 5.

Matrix multiplication induces a well-defined multiplication on equivalence classes,
such that if X and Y are matrices of the same dimension, then [ X]-[Y]=[XY].
It may be verified that, under this multiplication, Wh(G) is an abelian group for
any G. In the particular case where G is a cyclic group, Z,, every element of
Wh(G) may be represented by a 1 X 1 matrix. Consequently, the determinant
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map gives an isomorphism of Wh(G) onto U(G)/T(G) where U(G) de-
notes the group of units of ZG and T(G) denotes the group of trivial units,
{xg:g€G}. Wh(Z,) is a trivial group if n=1,2,3,4,6 and otherwise it is a
non-trivial free-abelian group.

We now consider pairs of CW-complexes (K, L) with m(L)=G, LCK and
K~ L (K is contractible onto L). There is a canonical assignment to every such
pair, (K, L) of an element 7(K, L) of the Whitehead group, Wh(G). The ele-
ment, 7(K, L) is known as the torsion of the pair. For details of this assignment,
see [2]. The dimension of an element, x, of Wh(G) is defined to be the minimum
dimension of K —L taken over the set of all pairs, (K,L) where m;(L) =G,
K~ L and 7(K, L) =x. The following conjecture is due to Cohen [1].

(1.1). If x is a non-trivial element of Wh(G) for any group, G, then the dimen-
sion of x is equal to 3.

This conjecture may be reduced to a purely group-theoretical conjecture as
follows. Let G be a group, let F be the free group generated by x,,...,x, and
R;,..., R, be elements in the normal closure of Fin F*G, denoted FF'C. That is,
under the projection, 0 of F*G onto G, each R; is sent to the identity. We say that
the notation (G, xy,...,X,:Ry,...,R,) is a presentation for the group H=
F*G/{(Ry,...,R,)"C. Given such a presentation, let A be the matrix (3R;/dx;)°
where d/dx; is the Fox free derivative. Then A4 is a matrix over the group ring
ZG. The matrix, A may be interpreted as follows. Since R; € {x;,...,Xx,)" ©, the
group H maps onto G, and there is an exact sequence

1>N—->H->G—1.

The commutator quotient group of N, denoted N,; is a ZG-module, where G
acts on N by conjugation in H. Then A is a relation matrix for N, as a ZG-
module. Therefore, if A is a singular matrix, then N, is a non-zero ZG-module,
and so H # G. We are concerned with the case where A4 is non-singular. Then A
represents an element of Wh(G). The following conjecture is equivalent to (1.1).

(1.2). If <G, x,,...,x,: Ry,...,R,) is a presentation for H where R; € FF'C,
and A=(6R,-/6xj)6 is non-singular and represents a non-trivial element of
Wh(G), then H#G. (That is, N #{id}.)

The connection between these conjectures may be explained in the following
way. (Fuller details are given in [1].) Suppose we are given a presentation as in
(1.2). Let L be a CW-complex with 7;(L) = G and base point b. We construct a
CW-complex, K, containing L, by attaching »n 1-cells at b corresponding to the
generators, Xxj,...,X, and then attaching n 2-cells according to the relators R;.
The resulting CW-complex, K, has 7;(K) = H. If we suppose, contrary to (1.2)
that H = G, then it can be shown, that for all i, n;(K,L)={1}, and so K~ L.
Furthermore, 7(K, L) is represented by the matrix A which is supposed to repre-
sent a non-trivial element in Wh(G). However, K — L has dimension 2, and so
we have an element, 7(K, L) of Wh(G) with dimension 2.
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2. The Smith conjecture. Let / be a periodic (piecewise-linear) transformation
of an n-sphere for n 2 3 which has as its set of fixed points an (#—2)-sphere. The
generalised Smith conjecture is that this (n—2)-sphere is unknotted in S”. If this
situation is looked at from the point of view of the orbit space of S” under the
periodic transformation, then the generalised Smith conjecture may be stated as:
If (8", 8"2) is a knot pair and the k-fold cyclic covering space of S™ branched
over S"~2 is an n-sphere, then S"~? is unknotted in S™. In this generality, how-
ever, the Smith conjecture is false, except in dimension n=3. Many counter-
examples have been given [4, 5, 10].

The counterexamples seem to fall into two broad types, however. In one class
fall examples where the knot group has deficiency less than one. (Of course, all
knots in the three sphere have groups of deficiency one.) The examples of Giffen
[4] and Gordon [5] have this property. In another class fall examples of knots
which are fixed by a transformation of period ¥ and whose Alexander poly-
nomial, A(?), is congruent to ¢/ modulo ¢*¥ —1. The examples of Sumners [10]
fall into this class.

We are led to make the following conjecture.

@2.1). If (S",8""2%) is a knot pair and the k-fold branched covering of S”"
branched over S"~?2 is an n-sphere, then either

1. 7(S"—S8""2) has deficiency less than one, or

2. A(t)=xt) modulo (t*—1), where A(t) is the Alexander polynomial of
the knot, 8" 2.

Note that the case where "2 is unknotted in S” is included in Condition 2. It
will be shown next that Conjecture (2.1) is equivalent to Conjecture (1.2) for
cyclic groups.

3. Equivalence of the conjectures. In this section we will prove the main
theorem of the paper.

(3.1) THEOREM. Conjecture (2.1) is equivalent to Conjecture (1.1) for cyclic
groups.

In order to streamline the proof, we will separate two lemmas.

(3.2) LEMMA. Suppose n 2 6 and M is a manifold of dimension n with a handle
decomposition consisting of one 0-handle, k 1-handles and k 2-handles. If
m(M)= {1}, then M is an n-ball.

Proof. This may be deduced using the Poincaré conjecture, or else directly
using handle theory as follows. One begins by exchanging the 1-handles for
3-handles (see [9], Lemma 6.15). Then by ‘‘adding’’ 3-handles ([9], Lemma 6.7)
one can reach a position where the incidence number of the ith 2-handle and the
Jth 3-handle is §;;. Finally, one can use the Whitney Lemma to cancel pairs of
handles ([9], Corollary 6.5). O

(3.3) LEMMA. Let H be the knot group of a knot S"~2 in S" and let m be a
meridian of the knot (an element of the knot group represented by a small loop
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around the knot). If My is the k-fold cyclic branched cover of S" branched
over the knot, then w (M) is isomorphic to the kernel of the surjection
H/(m*y > Z,.

This is the easy result of a calculation using the Reidemeister-Schreier process.
O

Proof of Theorem (3.1).
FIRST PART. (2.1) implies (1.1) for cyclic groups.

Begin by assuming conjecture (1.1) is false, and hence (1.2) is false, for some
cyclic group, G. Thus, there is a presentation

3.4) (g,xl,...,xn:g",Rl,...,R,,)sZk

where each R; has exponent sum zero in g and where det(dR;/dx; )? is a non-
trivial unit of ZZ,. Here, @ is the natural map of F,,; onto Z, = (g: g%y where
F, ., is the free group generated by g and x,...,x,. We construct a counter-
example to (2.1).

Consider the presentation

3.5) (g, X1,...,Xn:Ry,...,Rp).

We will show that (3.5) is a presentation for the knot-group of a knot in the
S-sphere, and that the k-fold cyclic covering space branched over the knot is
again a 5-sphere. The construction is quite similar to that used by Sumners [10].
We begin with an unknotted ball pair, B* in B®. Attach n 1-handles to B®— B*
(with attaching spheres in dB®) to obtain a space X —B* where

X=BSUH}U-.-UH,.

The fundamental group of this space is a free group on n+ 1 generators. There is
one generator corresponding to a loop around B* and one generator correspond-
ing to each handle. Identify the first-named generator with the generator g in
(3.5) and the other generators with the generators xy,..., X, in (3.5). Now attach
n 2-handles to X —B* according to the relators R,,...,R, to obtain a space
Y—B*where Y =BCU (H]U .- UH)YU (HU .- UH2). It is clear that (3.5) is
a presentation for 7r1(Y—B4), and that a presentation for =;(Y) is

Xpyeoes Xn i R{,...,Rp>

where R/ is the relator obtained from R; by omitting all occurrences of the gener-
ator, g. But this is a presentation of the trivial group, since it is obtained from
(3.4), a presentation for Z;, by killing the generator, g. It follows from (3.1) that
Y is a 6-ball. Using the Van Kampen theorem to examine the effect of adding
l-and 2-handles to B®—B*, one sees that m;(dY —dB*)=m (Y —-B*). So
(3Y, 8B*) is a knotted S3 in S° and 7, (9Y —3B*) ==, (Y —B*) = (3.5).

Next, we consider the k-fold branched covering space of our knotted ball pair,
(Y, B*) (rename this (B®, B%), a knotted ball pair.) Denote by M, the k-fold
branched covering of B® branched over B*. According to (3.3), m;(My) is iso-
morphic to the kernel of the map from (3.4) onto Z;, namely, the trivial group.
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But, M} has a handle decomposition consisting of a 0-handle with nk 1-handles
and nk 2-handles. By (3.1), M is a 6-ball. Restricting the covering to the
boundary of B®, we see that the k-fold branched covering space of S°=3B*
branched over the knotted S3 = 3B* is a 5-sphere.

Since (3.5) is a presentation for the knot group, 7(S°>—S 3) has deficiency one.

To calculate the Alexander polynomial, denote by w K the group presented by
(3.5) and consider the map ¢:F,,; > Z={(t) given by g >, x; > 1. The
Alexander matrix is then given by (A4’| dR;/3g)® where A'is the block (0R;/0x;).
However, the last column is zero, since the exponent sum of g in R; is zero. It fol-
lows that the Alexander polynomial is A(¢)=det(A’(¢)®). If ¢ is the map
£:Z={t) > Z; ={g: g") taking ¢ to g, then A’% is the matrix A = (3R;/dx;)°.
By hypothesis, det(A) is a non-trivial unit of ZG. That is, A(¢)¢ = det(A"‘f’E) is
a non-trivial unit of ZZ;. In other words, A(¢) is not congruent to *¢/ mod-
ulo (#¥—=1). Thus the counterexample to (1.2) is complete. Note also that the
example we constructed was a Zj-null-cobordant knot in the terminology of
Sumners. That is, the knot pair (S>,S%) bounds a ball pair (B® B*) which
admits a Z, action with fixed point set B*.

SECOND PART. (1.1) for cyclic groups implies (2.1).

We now show that a counterexample to (2.1) gives a counterexample to (1.1).
In fact, we assume that there is a knot pair (S”,S"~2) for n>3 such that
71(S", $"~2) has deficiency one and A(¢) mod(z¥—1) is not equal to +¢/, but
that the k-fold cyclic branched covering space, M}, is simply connected (we do
not need to assume that it is a sphere). Let

(3.6) 7K ={(Xg,X1,..., Xn:Ry,..., Ry

be a presentation for the knot group. There exists a homomorphism
¢: 7K — Z = (t). After an appropriate adjustment to (3.6) if necessary, we may
assume that xo¢ =¢ and x;¢ =1 for i #0. Then, the exponent sum of x; in R;
must be zero. We rename the generator, X, as g and note that (3.6) is the same
as (3.5).

By (3.3) the kernel of the homomorphism of rK/(gk) onto Z is (M} ) and
this is trivial by assumption. A presentation for = K/ (gk Y is

(g:xl"'-axn:gksRls--'$Rn>a

a presentation for the trivial extension of Z;. This is the same as (3.4). It remains
to check the matrix A = (6Ri/6x,-)0 over ZG. However, just as in the first part of
the proof, det(A)=A(¢)&. This by assumption is not a trivial unit of ZZ,, and
so we have the required counterexample to (1.2) and hence to (1.1). a

4. Further considerations. We may draw various conclusions from the above
arguments independent of the truth of the above conjectures. Firstly

4.1). If K is a knot in a manifold and its knot group has deficiency one and the
k-fold cyclic covering space is simply connected, then there exists foreachn 25 a
knotted S"~?% in S" which has the same knot group, such that the k-fold cyclic
covering space is a sphere, S" and such that S"~?% in 8" is Zy-null-cobordant.
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This is achieved by the construction of part one of the proof of (3.1).

We now consider a purely group theoretical conjecture equivalent to (1.1)
for cyclic groups. We start with the presentation (g, xy,...,X,: g",Rl,. . R,
where the exponent sum of g in R; is zero. Apply the Reidemeister—Schreier
method to obtain a presentation for N =kernel(#), where 0 is the homomor-

phism from H to Z taking x; to 1. Select coset representatives 1, g, g?...,. gk L.
Then, let X;; be the generator g/x;(g/x;) " '=g’/x;g 7, and let G; g»’g(gfg) L
Then G is a trivial generator for i =0,1,...,k—2. From the relator g we also

obtain Gk 1=1. Thus, we get a presentatlon (Xjj:Rijdi=1,...,n;j=0,... k—1 Where
R;; is the relator obtained from g’R,g =/ by rewriting. These R;; obey certain
symmetry properties. Namely, with subscripts considered modulo £, let R;; =
W(XIO’-"aXlk—I’XZOS' ..,sz_l,...,Xn(),. "aXn/c—l)’ Then

le.l.l = W(Xll""’Xlk—'l’XlO’le""’X2k'—1!X20""’an,'",Xnk—'I’X’lO)'

That is, R;;j;, is obtained from R;; by simultaneous cyclic permutation of the
generators Xj,...,X;x—; for each i. Z; acts on this group, N, by taking Xj; to
Xij+i for all i and j. If we form the matrix (over ZZy)
k—1
Bij= ) g’(exponent sum of of Xj; in R;p)
=0

then it is easily seen that B is the same matrix as A = (aR,-/ax,-)". Thus, for cyclic
groups, (1.2) is equivalent to

(4.2). If (Xij: Rijdi=i,... n;j=0,... k—1 IS a presentation where the relators, R;;
obey the symmetry property stated above, then it is not a presentation for the
trivial group unless the matrix B has determinant a trivial unit of Zy.

In the case n=1, we have the following conjecture, the truth of which
would follow from Conjecture (1.2). (See also Problem B6 of Problems by
C. T. C. wall, [12].)

(4.3). Let N=(Xp,...,Xx—1:Rg,...,Rx_1) be a presentation with the cyclic
symmetry property: If

Ri = W(XOs' . -;Xk—l); then Ri+1 = W(Xls' o 7Xk—lsX0)-

Then the group thus presented is not trivial unless the exponent sum of X; in R,
is £0;p for some fixed b.

That is, the group is not trivial unless
k-1
P(g)= ) gf- (exponent sum of X; in Ry)
i=0
is a trivial unit of ZZ, where Z; = (g: g*). It is easily seen that N/[N,N] is
trivial if and only if P(g) is a unit of ZZ,.
Examples of groups with presentations of the form (4.3) are:
() (X1, X5 X) X5X' X3 7% X, XP X5 ' X1 7). This is well known to be a
trivial group, but in this case, P(g) =1, a trivial unit.
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(ii) The Fibonnaci groups
Flbk = (Xls' .o ,Xk:Xle =X3,X2X3 =X4,. .o ,Xle =X2).

However, these groups never even obey Fib, /[Fibg, Fib,]={1}, except for
k=1, 2. The order of Fib, /[ Fibg, Fib; ] grows in a manner related to the Fibon-
naci sequence. Note that Fiby is the kernel of the map H — Z; where H is the
group with presentation (G, X : XGXGX ~'G ~?). Thus, using the construction
of part 1 of the proof of (3.1), there exists a null-cobordant knot, S$"=2in S” for
any n 2 5 such that Fiby is the fundamental group of the k-fold cyclic covering
space of S” branched over S”~2. The same holds for all groups with presentation
as in (4.3).

5. Remarks on Cohen’s example. Cohen gave an example of an extension of
Zs for which the matrix A4 represented a non-trivial element of the Whitehead
group, and such that the extension was a proper extension. His example was
(essentially) the presentation {g,x: g°,gxegx 'g"2x~!'y=H. He showed directly
by a representation onto S5 (the symmetric group) that this group is a proper
extension of Zs. \

According to (3.3), ker(H — Zs) is the fundamental group of the 5-fold cyclic
branched covering space of a knot with presentation {g,x:gxgx 'g 2x~!).
Making the substitution x=/hg~! and eliminating x, we get a presentation
(g, h:ghgh~'g~'h~') which is easily recognised as the group of the trefoil knot.
Thus, H is an extension of m,(Ms) by Zs, where M5 is the 5-fold cyclic branched
covering space of the trefoil knot. By the classical Smith conjecture, m{(M5) is
non-trivial. In fact, M5 is the famous dodecahedral space, and w(M5) is the
binary dodecahedral group of order 120. H is an extension of this group by Zs—
a group of order 600.

Since a cyclic covering space of a knot in S cannot be trivial by the (now
proven) Smith conjecture, we see how many other examples can be generated.
Take a knot in S with a k-fold cyclic covering space which is not a homology
sphere, and such that A(¢)mod(¢#%—1) is not +¢/. (For the sort of polynomials
which can occur, see Fox [3], Kinoshita [6] or Hartley [7]. One can take for
instance A(f)=1—¢+¢%, k==+1 modulo 6. There are infinitely many knots
with this (or any other) polynomial: Seifert [11].) Then, proceeding as in part 2
of the proof of Theorem (3.1), we obtain an example of a presentation
(g,xl,...,x,,:gk,Rl,...,R,,)=H satisfying the hypotheses of (1.2) and for
which H # Z;, according to the Smith conjecture, since N =7 (M) #{1}.
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