(BCP)-OPERATORS ARE REFLEXIVE

H. Bercovici, C. Foias, J. Langsam, and C. Pearcy

Let JC be a separable, infinite dimensional, complex Hilbert space, and let £(JC)
denote the algebra of all bounded linear operators on JC. If 7 is a contraction in
£(3C) (.e., | T|| < 1) that has no nontrivial reducing subspace on which it acts as a
unitary operator, then T is called a completely nonunitary contraction. A subset S of
the open unit disc D= {A € C: |\| <1} is said to be dominating for dD if almost
every point of dD is a nontangential limit point of S. (An alternative characterization
of sets dominating for dD was given in [8].) The set of all completely nonunitary
contractions 7 in £(JC) with the property that the intersection ¢,(7) N D of the
essential (i.e., Calkin) spectrum of 7 with D is dominating for dD will be denoted by
(BCP); we permit ourselves the indulgence of referring to operators in this set as
(BCP)-operators.

Such operators were first studied in [7], where a certain structure theorem ([7,
Lemma 4.9]) was obtained that had as a consequence the existence of nontrivial
invariant subspaces for all (BCP)-operators. (Proposition 1 below is a strengthening
of this structure theorem.) The study of the class (BCP) continued in [2], [3], [4],
[13], [14], and [16], and, as a result, we now know considerably more about the
structure of (BCP)-operators. (In particular, we owe to [16] the clarification of the
correct definition of the class (BCP). Before [16] a somewhat more restrictive defini-
tion of (BCP)-operator was in use.)

The purpose of this paper is to make an additional contribution to the theory of
(BCP)-operators by proving the theorem of the title and related results. Recall that if
T e £(3C), then Lat(7T) is by definition the lattice of all invariant subspaces of T,
and AlgLat(7) is the algebra of all operators 4 in £(JC) such that Lat(7T) C
Lat(A). An operator 7 in £(JC) is said to be reflexive if AlgLat(T) = "W(T),
where “W(T) is the smallest subalgebra of £(JC) that contains 7 and 1 and is
closed in the weak operator topology (WOT).

The first examples of reflexive operators were given by Sarason in [17], where
he showed that normal operators and analytic Toeplitz operators in £(JC) are
reflexive. This line of research was continued by Deddens [10], who showed that
every isometry in £(JC) is reflexive, and these results of Sarason and Deddens are
particular cases of the recent beautiful theorem of Olin and Thomson [15] which says
that all subnormal operators in £(JC) are reflexive. In another direction, Deddens
and Fillmore [11] characterized those operators acting on a finite dimensional space
that are reflexive. This result was extended to C,-operators (in the sense of [18])
in [5].

Our central result is as follows.

THEOREM 1. Every (BCP)-operator in £(3C) is reflexive.
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The third author, in [14], obtained some interesting special cases of this result. We
now introduce some notation and terminology from [7] that will be needed in the
proof of Theorem 1.

Suppose T € £(3C), let @(T) be the smallest subalgebra of £(JC) that contains T
and 15 and is closed in the ultraweak operator topology (cf. [12, Chapter I]), and let
Q(T) denote the quotient space (7¢)/°Q@(T), where (7c) denotes the trace class ideal
in £(3C) under the trace norm, and @(7T) denotes the preannihilator of @Q(7T) in
(7c). Then Q(T) is the dual space of Q(7) and the duality is given by

(A, [L])=1tr(AL), Ae(T), [L]eQ(T),

where [L] is the image in Q(7T) of the operator L in (7c). Furthermore, the weak*
topology that accrues to @(T') by virtue of this duality coincides with the ultraweak
operator topology on @(T) (see [7] for details). Moreover if x and y are vectors in JC
and we write, as usual, x@ y for the rank-one operator in (7c) defined by

(x@y)(u) = (u,y)x, uei,

then an easy computation shows that for any 4 in Q(7), we have (A4, [x®y]) =
tr(A(x®y)) = (Ax,y). Furthermore the content of [7, Lemma 4.9], mentioned
above, is that if 7€ (BCP), then every element of Q(7) has the form [x® y] for
some vectors X, y in 3C. The following proposition from [3] is an improvement of this
result.

PROPOSITION 1. Suppose T € (BCP), [L] € Q(T), € is any positive number, and
X,y are vectors in 3C. Then there exist x’,y’ in JC such that

[ ®y1=I[L],
lx—x"|| < [L]1—[x®»1|'*+¢, and
ly=»" I < L] = [x®1[|"* +e.

An easy consequence of Proposition 1 is the analog for (BCP)-operators of the
fact from [15] that if T is a subnormal operator, then W(T) = Q(T).

COROLLARY 1. If T € (BCP), then W(T) = Q(T) and the weak operator and
ultraweak operator topologies coincide on Q(T).

Proof. One knows that Q(7) C W(T), so to prove W(T) = Q(T) it suffices to
prove the reverse inclusion. Thus, let A be any operator in ‘W(7T'), and let {A4,] be a
net in @(7T) that is WOT-convergent to A. We assert that the formula

(D) #([L]) =lim(A,, [L]), [L] €Q(T),

defines a bounded linear functional on Q( 7). Indeed, if [L] € Q(T) it follows from
Proposition 1 that we can write [L] = [#& k] for certain vectors 4 and £ in JC satis-
fying || A|), | k|| < V2||[L]1)"/? (take x=0, y=0, e= (V2—1)||[L1]|'/?, h=x’, and
k =y’). Therefore

) lim{A,,[L])=1im{(A,, [h®Kk])=lim(A h, k) = (Ah, k),
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so that the limit in (1) exists and equals (Ah, k). Moreover, ¢ is obviously linear and
|o([LD| = [(Ah, k)| < | Al [ Al £]| < 2[|A[I[LT],

so ¢ is bounded. Since @(T) = (Q(T))*, there exists an operator B in Q(7T) such
that

¢([L]) =<B,[L]), [L]€QT).

Since (Bx,y) = (B, [x®)y])=¢([x®y]) =lim,(4,, [x®y]) = (Ax, y) for all vec-
tors x and y in 3C, we conclude that B= A4 and hence A € @(T). To conclude the
proof we note that (2) can now be rewritten as

lim{A,, [L])=(A,[L]), [L]€Q(T),

from which it follows that the net {A,} converges to A in the weak* or ultraweak
operator topology. Since the ultraweak operator topology is, by definition, stronger
than the weak operator topology, the proof is complete. 0O

We now proceed to the proof of Theorem 1, which depends upon the following
sequence of lemmas.

LEMMA 1. Suppose A and T belong to £(3C). If for every positive integer n and
every pair of sequences { hy, ..., h,} and { k, ..., k,} of vectors from 3C, the equation
Y hi®kl=0in Q(T) implies X7- 1 (Ah;, k;) =0, then A € W(T).

Proof. Suppose, to the contrary, that A € “W(T). Then the Hahn-Banach theorem
(cf. [6, Proposition 15.9]) implies the existence of a weakly continuous linear func-
tional ¢ on £(JC) such that ¢(W(7)) =0 but ¢(A) # 0. By [12, Theorem 1, Section
1.3}, there exist sequences { A;,..., h,} and { k,..., k,} in 3C such that ¢ has the form

6(X) = ¥ (Xh k), X €£(3).
i=1
Thus, in particular, if X € Q(T) C W(T), we have
(X, ‘)_:l [hi®kil) = Z}l (Xh;, ki) = ¢(X) =0,

so XL 1[h;®k;]1 =0in Q(T). On the other hand, ¢(A) = L7 ,(Ah;, k;) # 0, which
contradicts the hypothesis, so the lemma is proved. O

LEMMA 2. If B is an operator acting on any complex Hilbert space and there exists
a nonzero polynomial p such that p has only simple zeros and p(B) =0, then B is
reflexive and “W(B) coincides with the algebra of all polynomials in B.

Proof. One can give various proofs of this elementary lemma. For example, it is
easy to see that B is similar to a normal operator with finite spectrum, and the reflex-
ivity of B then follows from [17] and the fact that the reflexivity is invariant under
similarity transformations. This reflexivity result is also an easy corollary of [5,
Theorem A]. That “W(B) coincides with the algebra of all polynomials in B follows
from the fact that this algebra is finite dimensional and therefore weakly closed. = O
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LEMMA 3. Suppose T € £(3C), and M, N € Lat(T) with I C M. Suppose also
that A € AlgLat(T), and write T= Pyion T MON and A= Pyioa A|MON,
where Poyy oo is the projection onto MO N. Then A € AlgLat(T). Moreover, if
M, € Lat(T*) and N =MNIM;, then a necessary and sufficient condition that
A=0is that (Ah, k) =0 for all h in M and k in M.

Proof. We have Lat(7T|9L) C Lat(T) so that obviously 4|9 € AlgLat(7|9),
which in turn implies that (A] M) * € AlgLat((7T| 9)*). Since M O N is invariant
for (T| M) *, a similar argument shows that

A*=(A|M)* | MO N € AlgLat{(T|M)* | MO N} = Alg Lat( T*),

or, equivalently, that A € Alg Lat(7T).
To prove the second statement, note that A = 0 if and only if AM C N. Indeed,
the fact that A9M C 9N implies A = 0 is trivial, and since

AM=A(MOSIN) + AN
CAMON) + PrAMON) + AN CA(MON) + N,

it is clear that 4 = 0 implies A9M C 9. Now since N = MN ML, a vector x in M
belongs to 9 if and only if (x, k) = 0 for all kin MM, . Thus, for any ~in M, Ah € I
if and only if (Ah,k) =0 for all £k in M,, and the lemma follows from these
remarks. O

The following proposition is a special case of the basic matricial factorization
theorem of [3]. Note that for n =1, its content is exactly Proposition 1. For a proof
of Proposition 2 that does not rely upon the Sz.-Nagy-Foias functional model of a
contraction, see [16].

PROPOSITION 2. Suppose T € (BCP), n is a positive integer, and {[L;]}} =, is a
doubly indexed family of elements of Q(T). Suppose also that 6 and ¢ are any
positive numbers, and that there exist sequences {(hy,...,h,} and {ky,...,k,} of
vectors in 3C such that

L1 —[h®k1<s, 1<ij<n
Then there exist sequences { h{,...,h;} and { k|,..., k;} in 3C such that
[L;]=[h/®K], 1<i,j<n,
and
[#/ = hillsc < né'*+e, | ki — killse < né'*+e, 1<i<n

PROOF OF THEOREM 1. Let T be a (BCP)-operator. Since it is obvious that
W(T) C AlgLat(T), it suffices to prove that every A in AlgLat(7) belongs to
W(T). We will accomplish this via Lemma 1, so let n be a positive integer and let
{hy,....h,} and (ky,...,k,} be sequences from JC such that X2 ,[h;®k;] =0 in
Q(T). We must show that X7, (Ah;, k;) = 0. If n=1, and p is any polynomial, then
(p(TYhy, k) ={p(T), [l @k ])=0, so the cyclic subspace M = {p(T)h,}” is
orthogonal to k;. Thus the equality (Ah;, k) =0 follows from the fact that
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M € Lat(A). We may therefore suppose that »> 1. To show that Y, (Ahk;, k;) =0,
we fix an arbitrary positive number y <1 and show that |L/L,(Ah;, k)| <7v. To
accomplish this, we first set M=2n3(]]A|| +1)(K+1), where

K=max{{|afl,..., [ Ball, & lls- - [ Kallds

and we observe that a simple calculation shows that it suffices to exhibit sequences
{h{,....,h;} and {k{,..., h;} from JC such that Y/, (AhA/, k/) = 0 and such that
n2y
M 3’

n2y ,
3) | A/ — B < VAL ki — k|l <

i=1,...,n

Indeed, given such sequences {A,..., h,} and {k|,..., k,;}, we have
|(Ah;, k;) — (Ahi, k)| < [(Abi, ki— k)| + [(A(h;— k), kD))
< AW Al Il ki — &L N+ LAY 2= B AL < v/,

and therefore

Y. (Ah;, k;)
i=1

< ¥ (Al k) — (AR k)| <.
i=1

To construct the desired sequences { 4/} and { £/}, we choose, using [7, Lemma 4.7],
for each fixed pair (i,/) of intege;s sat_isfying 1< i,j< nand (i,j) # (n,n), finite
sequences {ap/ ¥ € C and {N2/)¥4) C D satisfying

N(i,jy 5 )
4) I[h®k]1— X a,'(v![C}\,,;,j]H <y /M*,
1=
where the elements [C,] in Q(T) satisfy {(p(T), [C\]1) = p(N) for all polynomials p.
For all pairs (i,/) except the pair (n, n), we now set

NG,j) .
%) [Lij]= X op/[Cil,
k=1
and we also set
n-—1 N{(n,n)
(6) (L nl=~— _El [L;il= kEl g " [ Cypn]
= =

where the af>” and Aj" are defined in the obvious way in terms of the aff and A},
1 < i< n—1. By virtue of (4) and (5), it follows that

) Il ®@kj1— (L 1| <¥*M?,  1<ij<n, (i,j)#(n,n).

For (i,/) = (n, n), we have from (6) and (7),

VU @ kil = (L) | = ] < (n— 1)y M.

n—1 n—1
- ‘2—:1 [7: @ k] + ;l [Li,i]|

Thus, by Proposition 2 (with §=ny?/M? and e sufficiently small), there exist
sequences { A{,..., h,} and { ky,..., k;} in 3C such that
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¢)) [h/®Kk[] = [L; ], 1<i,j<n,

and such that (3) is valid. Hence, to complete the argument, it suffices to show that
=1(Ah/, k{) = 0. But, by virtue of (6) and (8), we know that L7, [#/® k{1 =0
in Q(T), and thus for every polynomial p, we have

L (p(Tyhi, k) =0,

Thus it suffices to show that there is some polynomial g such that
)] (Ahj, k) = (q(T)h{, k), 1<i<n
To accomplish this, let

M= {p(T)h{+---+p,(T)h,:p,,...,p, any polynomials}~, and
(10)
M, ={rn(Tk{+---+r,(T*)k),: r,..., 1, any polynomials}~.

It is obvious that 9 € Lat(7) and 9N, € Lat(T*), so we set L =IMNM, and
note that 9 € Lat(T). Let T and A be as in Lemma 3. To show that there is a poly-
nomial g such that (9) is valid, it suffices, by virtue of Lemma 3, to show that
A= q(T) for some polynomial q. Furthermore, since A € Alg Lat(T) by that same
lemma, we conclude from Lemma 2 that it is enough to show that T satisfies a
polynomial equation s(T) = 0, where s has only simple zeros.

Let F denote the finite set of all those (distinct) A}/ that appear in (4) (and (6)), and
let s be the monic polynomial with simple zeros at exactly the points of F. The proof
of the theorem can be completed by showing that s(7) = 0, or, what comes to the
same thing (Lemma 3), by showing that (s(7T) A, k) = 0 where A runs over a dense set
of vectors in M and & runs over a dense set of vectors in M, . But if # and & have the
form as in (10):

h=p (TYhi+ -+ p,(T)hy,
k=r(T*k{+:---+r,(T*)k,
then we have (using (5), (6), and (8))
(s(TYh, k) = ¥ (s(T)pi(TIhiy r;(T) k)

LJ=

n

= ¥ (7 (D)s(T)pi(T)hi, kf)

ij=1

]

T 7 (Ds(Dp(T), [Ly1)

i,j=1
n NU,J) | .. .. ..
= Y X ol NDsN)pi(M) =0
ij=1 k=1

since s was defined so that s(\j/) = 0 for all i, j, k. Thus the theorem is proved. O
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A careful perusal of the above argument shows that in any ‘‘(BCP)-like’’ setting in
which one has a version of Proposition 2, one will be able to prove reflexivity. One
such setting occurs in [9] and [16], so we are able to conclude immediately the
following result.

THEOREM 2. If T is any polynomially bounded operator in £(3C) such that
0,.(T) N D is dominating for dD and such that { T"} converges to zero in the strong
operator topology, then T is reflexive.

It is clear that Theorem 2 is not a generalization of Theorem 1 (because, for example,
of the hypothesis that { 7"} converges strongly to zero). But [3] contains another
setting in which Proposition 2 is valid and which does, indeed, yield a generalization
of Theorem 1. If T is any contraction in £(JC) and A € D, then the operator

T=(T—N)(I—-AT)"!
is also a contraction, and we may define the sets

Ap={N€ D:min{info (T3 Ty),infe. (T} T¥)} < 6%}, 0<0<]1.

THEOREM 3. Every completely nonunitary contraction T in L£(JIC) with the
property that Ay is dominating for dD whenever 0 < 0 <1 is reflexive.

It is easy to see from the definitions (cf. [3]) that if T is a (BCP)-operator, then A,
is a dominating set for 8 = 0, so Theorem 3 does generalize Theorem 1.

In fact, an example given below (Example 2) shows that there exist contractions 7°
in £(JC) satisfying the hypotheses of Theorem 3 such that o(7) N D= @&, so the
generalization is certainly not vacuous. Furthermore, as was noted in [3], the opera-
tors studied by Apostol in [1, Theorem 2.3] also satisfy the hypotheses of Theorem 3.
Thus we obtain the following.

THEOREM 4. If T is a completely nonunitary contraction, with the property that,
Jor each 0 < 0 <1, the set

(NED:NE 0 (T) or O|(x(T) =N "' 21— |\

is dominating for dD, where w(T) is the image of T in the Calkin algebra, then T
is reflexive.

It was noted in [14] that the hypocthesis that 7 is completely nonunitary plays no
essential role in the preceding results. For example, one has the following theorem.

THEOREM 5. Every contraction T in £(3C) such that 6,(T) N D is dominating for
aD is reflexive.

Proof. We may suppose that such a 7 has the form T, @ U where T, € (BCP) and
U is a unitary operator acting on a nontrivial Hilbert space. Write U= U, ® U;,
where U, and U are, respectively, absolutely continuous and singular unitary opera-
tors. It is known that every absolutely continuous unitary operator is similar to a
completely nonunitary contraction. (In fact, the bilateral shift W of multiplicity one
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is obviously similar to a bilateral weighted shift all of whose weights except one are
equal to 1. Furthermore, every absolutely continuous unitary operator is unitarily
equivalent to the restriction to some reducing subspace of W® lj.) Thus U, is
similar to some completely nonunitary contraction T;, and it clearly suffices to show
that 7" = Ty ® T ® Uy is reflexive.

Write T, = Ty @ T, and observe that 7, € (BCP). Now let A € AlgLat(7”). Then,
of course, A= A, ® B where A, € AlgLat(7,) and B € AlgLat(U;). Since T, is re-
flexive by Theorem 1 and W(T,) = Q(T3) ={u(T,) : u € H*} (cf. [7]), we have 4, =
v(T3) for some v in H*. Consider next v(W) @ B, which belongs to Alg Lat(W @ Uj)
because Lat(W®D Us) = (M@ N : M € Lat(W), N € Lat(U;)} (cf., for example,
[10]). Since W® Us is normal (and hence reflexive), there exists a net { p,} of poly-
nomials such that {p,(W® U;)} is WOT convergent to v(W) @ B. Thus, in par-
ticular, the net

1 27 . ,  —
{— |7 puteynieg(e™ dtz
27 Jo
converges to
1 2T R , —
—— | (e (e g(e™ ar
27 Jo
for all functions 4 and g in L,[0,27], and since every function in L;[0,27] is a
product hg where h,g € L,[0,27], we conclude that the net {p,} converges to v in
the weak* topology on H®. Therefore (cf. [7]), the net {p,(T>)} converges ultra-
weakly to v(7,) =A,. Consequently the net {p, (T’) = p, (T3) ®p,(U)} is WOT-
convergent to A=A, ® B, so A € W(T’) and the theorem is proved. 0O

The following examples show that the above theorems have several interesting
consequences.

EXAMPLE 1. It was shown in [13] that there exists an invertible (BCP)-operator T
with the property that Lat( 7 ~!) is linearly ordered. Thus T is reflexive while 7! is
not reflexive. The existence of such operators 7T is a striking phenomenon, which
certainly cannot happen on finite dimensional spaces.

EXAMPLE 2. As promised above, we will now exhibit an operator T satisfying the
hypotheses of Theorem 3 such that ¢(7) N D = @&. For every A in dD and every posi-
tive number a we denote by 6, , the inner function defined by

+A
O, q(z) = exp(a ad ), Z€D.
Z—A\

Note that lim,_,, 6, ,(z) = 0 where z — 1 nontangentially. Therefore the relation
Ora(2) =01,4(A2), zED,

implies that lim,_,) 0) ,(z) = 0 uniformly in N\ as z— N nontangentially. It follows
from the Sz.-Nagy-Foias model theory (cf. [3]) that the operator T= ® -, S (0x,,1)»
where the S8, ) are as defined in [5] and {\,} is a dense sequence in dD, satisfies
the hypotheses of Theorem 3 and also satisfies o(7) N D = @&. A more careful analy-
sis shows that the operator 7= @, S (0»,,4,) also satisfies the hypotheses of
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Theorem 3 for some sequences {a,} with lim,_, ., @, = 0; thus such operators 7" are
reflexive. Interestingly enough, if the sequence {a,} satisfies the stronger condition

<0
n=

1 a, < oo, the operator 7’ is an operator of class C, in the sense of [18] and 7" is

not reflexive (cf. [5]).
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