LACUNARY SERIES AND THE
BOUNDARY BEHAVIOR OF BLOCH FUNCTIONS

George Csordas, A. J. Lohwater and Thomas Ramsey

1. Introduction. In this paper we are concerned with two open problems involving
the boundary behavior of Bloch functions and the derivatives of schlicht analytic
functions. Lohwater conjectured (see also [5]) that certain Bloch functions which are
represented by lacunary series in |z| <1 and having radial (angular) limits only on a
set of measure zero on |z| =1, must possess radial (angular) limits on a set whose
logarithmic capacity is positive. Recently, Jefferson [5] obtained some preliminary
results in this direction. In the present note we establish the validity of this conjec-
ture. To this end, we shall first provide here a refinement of Beardon’s construction
of Cantor sets [1] which have positive logarithmic capacity (Theorem 1.5). This
result, in conjunction with some theorems of J.-P. Kahane, M. Weiss, and G. Weiss
(see [6]), enables us to show that certain lacunary trigonometric series converge
(to +9o0) on a set which is of measure zero but of positive logarithmic capacity. The
method of Abel summability then leads to a proof of the aforementioned conjecture
(Theorem 2.15).

The second and larger open problem of Lohwater (see Lohwater [7]) asks whether
the derivative of a schlicht analytic function can have radial limits only on a set of
(logarithmic) capacity zero. It is known [9] that the derivative f’(z) of a schlicht func-
tion f(z) can have radial limits only on a set E of measure zero on the circle |z| = 1.
Today, there are several results known [7] about the topological nature of this set E.
But in spite of the sophisticated techniques that have been developed in this area of
investigation, the problem of determining the capacity of E seems very difficult.
Thus, while this question is still open, in Section 2 we provide some partial results in
this direction. Indeed, using our previous results about Bloch functions and a repre-
sentation theorem of Pommerenke [11], we establish the existence of a schlicht
analytic function in |z| <1 whose derivative possesses radial limits only on a set E of
measure zero, while the (logarithmic) capacity of E is positive.

In [1] Beardon provided a condition which is both necessary and sufficient for a
Cantor set to have positive capacity with respect to a generalized capacity function
(cf. R. Nevanlinna [10]). The function-theoretic applictions we shall present in the
sequel require that we relax some of the conditions in the usual construction of
Cantor sets which have positive capacity. Beardon’s theorem remains valid under
weaker hypotheses.

We now construct a Cantor set C< [0,2«] as follows. Let

(1.1 C=j=ﬂ](USj),
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where §; is a set of 2/ closed disjoint intervals contained in [0, 27]. Moreover, we
impose on these intervals the following conditions.

(1.2) Each interval in S; contains exactly two intervals of S;;.
(1.3) The intervals of S; have equal length d; and d; = 0 as j — <o.
(1.4) For some « > 0 the inequalities d;;./d; 2 « > 0 hold for j=1,2,3,....

We remark that the only difference between this construction and the one given in
[1] is that here we have disposed of the requirement that two intervals of S, ,, be
symmetrically placed in an interval of S,. Since the argument used in [1] applies
verbatim, even in this general situation, we omit the proof of the following theorem.

THEOREM 1.5 (Beardon [1]). Every Cantor set of the above type, which satisfies
(1.1)-(1.3) and (1.4), has positive logarithmic capacity.

2. Lacunary series. Let { \;} be a lacunary sequence of positive integers satisfying

(2.1) )\k+1/)\k> q> 1.
Let
2.2) S(z)= B ez, [zl <1,

where {c,} is a sequence of complex numbers such that

2.3) lex| € M, k=0,1,2,3,...,\
and
(2.4) Y |ck| = .

Then it is known (see, for example, [5]) that

, _ 1
@3) @1 =0(5=77):

so that f(z) is in the Bloch class. (For the various properties of functions in the Bloch
class see Pommerenke [11] and the survey article of Cima [3]). Since a Bloch function
is also normal, the concepts of asymptotic value, radial limit and angular limit are
equivalent (see, for example, Lohwater [8]). If we impose some other condition on
the coefficients {c;}, to wit,

(2.6) liminf|c;| > 0,

k—> o

then the function f(z) in (2.2) can have only the radial limit c (see, for example,
[2, Corollary 1]). But an analytic function having angular limit oo on a set of positive
measure on |z| = 1, must be identically c (see, for example, [4, p. 145]). Therefore,
the function f(z) defined by (2.2) and satisfying (2.1), (2.3) and (2.6) possesses radial
limits only on a set, E, of measure zero. In this section we shall show that this set £
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is, nevertheless, ‘‘thick’’ in the sense that the logarithmic capacity of E is positive
(Theorem 2.15). This result thus solves the first open problem to which we had
alluded in the Introduction. Finally, we conclude this paper with a result which
provides a partial answer to the larger problem involving the derivatives of schlicht
analytic functions (see Section 1).

Our investigation of the boundary behavior of certain Bloch functions will be
based on the following theorem concerning lacunary trigonometric series.

THEOREM 2.7. Suppose that the sequence {\;)g=, of positive integers satisfies
(2.1) and that the sequence { c; }y-, of complex numbers satisfies the conditions (2.3)
and (2.4). Then there is a Cantor set C<[0,27] of positive logarithmic capacity
such that for x in C

n »
lim Re{ Y cke‘)‘ff"} = 400,

n—ow k=1

Moreover, if n is large enough, then there is a constant K such that for every x in C
n . n
Re{ v cke"‘k"} 2K Y |ckl.
k=1 k=1

In order to prove Theorem 2.7 we will borrow several results from [6].

LEMMA 2.8 ([6, p. 6]). Let Q(x) = XR_ cre'™™*, where {u;)i—, is a lacunary
sequence of positive real numbers with py/ur > q> 1. Then there exist two con-
stants A= A, and B = B, 2 1, which depend only on q, such that every interval I of
length A/p, contains a subinterval J of length 2/(Buy) such that

N

BRe(Q(x)}) 2 X ]

k=1
Jor each x in J.

The next lemma provides a rather useful decomposition of a general lacunary
power series into successive lacunary blocks.

LEMMA 2.9 ([6, p. 17)]. Let € > 0 and let s be a positive integer. Let

[» o]
S(x) = kg ce™*,  p €RY, o /pe>qg>1,

be a lacunary power series. Then there exists a constant R, depending on q, € and s,
such that S(x) can be written as a sum of successive lacunary blocks (corresponding
to the same q)

S(x) = Q1(x) + Of (x) + Qo (x) + QF (x) + - - -
with the following properties.
(i) Qj(x) and Qf (x) are blocks of consecutive terms of the series.

(i) Qf has at most s terms and Q; has at most 3(m+1)s terms, where m = [1/¢] + 1
and [x] denotes the greatest integer less than or equal to x.
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(iii) p/’/uf <R, where p; and pj’ denote the lowest and highest frequency of Q;(x).

(iv) r<pjiy/pf <r? wherer=q*tl

(V) A <e(Aj+Aj,y), where Aj and A} denote the sums of the absolute values of
the coefficients of Q;(x) and Qj (x), respectively.

We remark that the decomposition in Lemma 2.9 is based on the following simple
observation. A lacunary power series ¥ cge'™*, pe.i1/pe>q>1, pr € RY, can be
modified by introducing terms of the form 0- e/, if necessary, so that the ratio of
consecutive frequencies satisfies

q<p’k—+1<q2, k=1,2,3,....
(294

(For the sake of simplicity of notation we have labeled the new frequencies also

by ug.)
We now proceed to the proof of Theorem 2.7.

Proof of Theorem 2.7. Consider the lacunary series L2, c,e*, where the fre-
quencies A, are positive integers and satisfy the gap condition Az, /Ny > g > 1. By
introducing zero-terms (see above remark) we can find a sequence { u; J7=, of positive
real numbers such that {A;) S {ux}, 1 <q<pps;/pr < g? and for each positive
integer n

n

(2.10) Y ce™= Y cle™*, 0<x<2m,
k=1 pks)\,,

where

ol = ¢, if kis s.uch that pg =N\,
0 otherwise

By (2.10) it suffices to show that
n .
(2.11) lim Re{ ) c,;e'”k"} = 4o
n—co k=1

on a set of positive logarithmic capacity.
Now let A= A, and B = B, be the constants given by Lemma 2.8. Let s be a posi-
tive integer so large that

(2.12) r=q°"'> AB.
Finally, let e = 1/4B. Then by Lemma 2.9 we obtain the decomposition
k@} cre ¥ =0y (x) + O (X) + Qy(X) + O3 (X) + -+ -,

where Q;, Q7 (x), etc. satisfy the properties (i)-(v) of Lemma 2.9. Furthermore, we
may assume, without loss of generality, that u; is so large that 27 > 2(A/u;). (Recall
that pj is the first frequency in Q,.) Because 27 > 2(A/u1), there are two disjoint
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closed subintervals of [0, 27] each of length A/u;{. Now Lemma 2.8 gives us a closed
subinterval of each, labeled 7;(1) and I,(1), of length 2/Buy, such that for x in
LI (1) UL(1), Re{Q,(x)} 2 (1/B)A,. .

We next define inductively sets of closed disjoint intervals {1;(k)}?_; such that

D L— (k) 2L;(2k)V ;(2k—1),

(ii) Re{Q,(x)} (1/B)Ajon I;(k), 1< k< 2,
and

(i) the length of Z;(k) is d; = 2/(Bu}).

The induction step applies Lemma 2.8 to Q;,;(x) and I;(k) foreach k, 1< k< 2/. 1t
is necessary, however, to check that I;(k) contains two disjoint closed intervals each
of length A/p;,,. But the length ofI (k) is d; = 2/(Bp) and so by our choice of r,
(2.12), the inequality AB < r<uj+1/ 1mp11es that di=2/(Bpj) > 2(A/pj+1).
Consequently, by Lemma 2.8 I;(k) contains two intervals L (2k) and I;; 1 (2k—1)
which satisfy the above properties (i), (ii) and (iii).

With the aid of the intervals /;(k) we now define the Cantor set

=1 { k=1

o0 24
c=N [U 1,-(k>].
J
Now by Lemma 2.9 parts (iii) and (iv) we have

”n " 4

djy) I R . B TS
- ” - ’ ”

d; it Hjiv1 K+

so that condition (1.4) is fulfilled. Hence, by Theorem 1.5 the Cantor set C has posi-
tive logarithmic capacity.

We now proceed to show that (2.11) holds for each x in C. Let N be a positive
integer. Then there is a positive integer ji, such that Bjo € pN < pf 1. With the aid of
the lacunary blocks of Lemma 2.9, we obtain

>r 2R '=a>0,

N X Jo
Re{k}: c,ge’i‘k"g 2 Re{z Qj(x)} E A} —Aj 41

By our choice of the intervals 7;(k), Re Q;(x) = (1/B)A; for every x in I;(k) and
a fortiori for every x in C. Consequently, if x is in C, then

)
Re{Ece’“k"}>——EA—EA Aj 41
B j= Jj=1 0

Jo—1

= E(Ar*' o) + E [—(A + A '+1)_AJ¥]—A};)_AJO+1’

1 ot
2 _(Al+ 4B Jg (Aj+48j41) —Af = 4Aj 415
where the last estimate holds by virtue of the inequality Af < (1/74B)(A;+ Aj4 ) (see
Lemma 2.9 part (v)). Since |c;| < [cx] < M by assumptlon and since Q}* has at most
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s terms, while Q; has at most 3(m+ 1)s terms we have that A} < sM and Aji+1S
3(m+ 1)sM. Thus, if x is in C, then
N ) 1 Jo
Rel ¥ c,;e“‘k"z 2 — Y A —sM-3(m+1)sM.

Clearly, as N — oo the right-hand side tends to +oo, (Note that this is the only place
where we have used the assumption that Y ;_,|c,| = c0.) Finally, the second conclu-
sion of Theorem 2.7 follows from the above inequality and thus the proof of the
theorem is complete. . O

It is clear that Theorem 2.7 remains valid if we replace [0, 27] by any other closed
interval [a, b]. Thus, as a direct consequence of this theorem, we obtain the follow-
ing corollary.

COROLLARY 2.13. Suppose that the sequence { N\ } =, of positive integers satisfies
(2.1) and that the sequence { ¢, } =1 of complex numbers satisfies the conditions (2.3)
and (2.4). Then there is a set E < [0,2w] with the following properties:

(@) Eisof type F,, that is, E is the union of a countable set of closed sets;

(b) the logarithmic capacity of E is positive;

(c) Eisdensein [0,27]; and

(d) for each x in E, lim,_, ., Re{L%_, c,e™*} = 4o,

Before we will turn to some of the applications of the foregoing results we will
include here, for the sake of completeness, the following lemma concerning Abel
summability.

LEMMA 2.14. Let f(z) = Ex-o a2k, o € C, be analytic in |z|<1. If at 6= 10,
Re{Xi-o Ckefkao} = 40, then lim,_,,_f(re’GO) = o0,

Proof. It suffices to show that lim,_,,- Re{ Lg.o ¢, 7¥e %) = 400, For the sake
of simplicity of notation set a; = Re{c,e™*%}, so that ¥ ga, = +. Let Sy =
ay+---+ag, k=0,1,2,.... Then the partial summation formula, when applied to
the (partial sums of the) convergent power series ¥ 5o ax ¥, 0< r<1, implies that

0 0

Y ark=01-r) Y Srt, o<sr<l1.
We will now show that for any K > 0 an r, can be found such that ¥, a, 7* > K for
all r 2 ry. Since by hypothesis S, — o0 as n— ', we may assume, without loss of

generality, that S, = 0 for all n. Furthermore, there is a positive integer /N such that
S, 2 2K for all n > N. Now fix ry such that rl’ = 1. Then for all r > r, we obtain

Yark=0-r ¥ Sir*
k=0 k=0

N-1 0
2(1—r) ¥ Serf+(0—-r2K Y r*
k=0 k=N

1
>(1—r)2Kr({V<1_r)>K.

This completes the proof of the lemma. O
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As an immediate consequence of Theorem 2.7 and Lemma 2.14, we obtain the
following result.

THEOREM 2.15. Let f(z) = Li=o k2™, |z| <1, where the sequence (N )=y Of
positive integers satisfies (2.1) and the sequence { c; }5—o of complex numbers satisfy
(2.3) and (2.4). Let E denote the set of points on |z| = 1 at which lim,_,,- f(re?) = co.
Then the logarithmic capacity of E is positive.

Theorem 2.15 thus establishes the validity of Lohwater’s conjecture con-
cerning lacunary power series (see Introduction). The condition that |c;| < M
(k=0,1,2,...), implies, as we have noted above, that the function f(z) of Theorem
2.15 is in the Bloch class. Therefore, the following stronger conclusion follows: the
set of points on |z| = 1 at which the function f(z) of Theorem 2.15 has angular limit
oo is of positive logarithmic capacity (see also [5, Corollary 4.1 and Theorem 4.2]).

We are still unable to settle the larger problem whether the derivative of a schlicht
analytic function can have radial limit only on a set of capacity zero. On the other
hand, it is known (Lohwater [9]) that the derivative #’(z) of a schlicht analytic func-
tion A (z) has angular limits on a set which is uncountable and everywhere dense on
|z| =1, even though A’(z) possesses radial (angular) limits only on a set of measure
Zero.

REMARK. One can construct a schlicht analytic function #(z) in |z] <1 whose
derivative has radial limits only on a set of measure zero but of positive logarithmic
capacity. Let f(z) be a function as in Theorem 2.15 and suppose that f(z) satisfies
the additional requirement (2.6). Then condition (2.3) implies that f(z) is in the
Bloch class. Now by Pommerenke’s representation theorem for Bloch functions [11},
there is a schlicht analytic function 4(z) =z+a,z?+--- in |z| <1 and a real con-
stant o > 0 such that f(z) = alog h’(z). Then this function #(z) has the desired
properties. Moreover, the radial limits of /(z) are only zero and infinity.

Added in proof: With great sorrow we note here that our esteemed colleague,
teacher and advisor, Professor A. J. Lohwater passed away on June 10, 1982.
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