ZEROS OF PARTIAL SUMS OF LAURENT SERIES

Albert Edrei
To the memory of David L. Williams.

Introduction. The present investigation was prompted by a theorem and a con-
jecture of Abian. Before stating Abian’s problem, I introduce some general assump-
tions and notations.

Consider a Laurent series

)] 3‘? 2z = f(z) (z=re"),

J=—o
whose exact annulus of convergence is
(2) p<|z] <R (0<p<R =< +»).

The partial sums of (1):
n .
€)) T,(z) = L @z’ (p=p(n), n=12,3,...),
J=—P

are defined in terms of a given sequence {p(n)};-, of positive integers. There are no
restrictions on p(n) other than

4 lim p(n) = + .

n—-+too

The sums T,,(z) are also called sections or truncations of the Laurent series.
I find it convenient to impose, throughout the paper, one additional assumption:

A. For some £ >0, the compact annulus
%) Q={z:et=|z| =ef}] (p<e7t ef<R)

contains no zeros of f(z).

It is clear that the condition A has the character of a normalization; it will not
affect the generality of my results. Since the zeros of f(z) play a dominant role in
this note, it is natural to consider, beside (1), the factored form

©) f(2) = C'Y(1/z)p(2),

where C#0 is a constant, / is an integer (not necessarily positive), ¢(z) and y(z) are
analytic functions represented by
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@) e(z) =1+ _El gzl (|z] <R),
j=
1 ® h;
®) ¢(—)=1+ Y~ (z] > 0);
V4 j=1 Z

R and p are the exact radii of convergence of the series in (7) and (8). The repre-
sentation (6), which may be deduced from the elements of complex analysis, is auto-
matically established in the proof of a preliminary result [stated below as Lemma L];
it is therefore unnecessary to take it for granted.

LEMMA L. Let f(z), T,(z) and @ have the same meaning as above and let
) f(z) #0 (z€ Q).

In addition, let there be infinitely many positive, as well as infinitely many negative
values of j such that

(10) aj # 0.

Consider all the zeros of T, (z); denote by

(1D Znls Zn2s <2 Zng (0= 0(n))
those of modulus >1 and by

(12) $nts $nzs v vs $nr (7 =17(n))

those of modulus <1.
Introduce the polynomials in z

(13) znu)=]ﬁ(1—§?)(o=am»,

Jj=1 nj

and the polynomials in ¢
(14) 00 = I (=85 (r=7(m).
j=

I. Then, as n—> +oo,
(15) P,(z) — ¢(2)

uniformly throughout the disk |z| <R’ (R’'<R).
Similarly, as n—> +oo,

(16) Q. (§) — ¥(9),

uniformly throughout the disk |{| < (1/p’) (p'>p).
II. The representation (6) is valid with ¢ and  defined by (15) and (16). The
integer [ is given by

17) e'ldo =1,

1 - fr(eiﬂ)
2m So f(ei®)
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and C by formulae (21) below.
III. Let s(n) be the largest integer such that

(18) s=s(n) =n, a,#0,
and q(n) be the largest integer such that
19) qg=q(n) =p(n), a_;#0.

Then, if n is sufficiently large, say n>ny, we have

(20) o(n) =s(n)—1>0, 7(n)=qn)+1>0,
and
(21) C= nglllm ( —1)"asz,,,z,,2 ceelpg = HETDO ( _1)1a~q(§nl §n2 v g_nr)_l # 0.

As might be expected, the proof of the above lemma is completely elementary. The
relations (6), (13) and (15) constitute the key to my proofs because they reduce ques-
tions concerning 7, (z) to analogous questions concerning the sections of Taylor
series and therefore suggest the possibility of extending to Laurent series the funda-
mental results of Jentzsch, Szeg6, Carlson and Rosenbloom describing the distribu-
tion of zeros of the partial sums of Taylor series.

Theorem 1 below is an extension to Laurent series of Szegd’s sharp form of
Jentzsch’s classical theorem [8].

THEOREM 1. Let (1) and (2) hold with 0 <p<R< +oo, and let condition A be
satisfied. Let Q* = {ny )=, denote a sequence of positive, strictly increasing integers
such that, as n—> +o, n€ Q*, we have |a,|'/"— R 1.

Then
I. If N(¢,, ¢3; n) denotes the number of zeros of T,(z) in the sector

A={z:¢0y sargz< ¢y |z| > 1] (1 <¢p <o +27),

we have

n 27
as
(23) n—> +oo, nefl*

II. For any given €>0, there are outside the annulus Re ™ < |z| <Re*, at most
o(n) (neQ*) zeros of T,(z) of modulus >1.

The reader will notice that the distribution of arguments described by (22) is the
one usually referred to as equidistribution in the sense of Weyl.

Theorem 2 below is the extension to Laurent series of the results, announced by
Carlson in 1924, first proved by Rosenbloom (1943) and then by Carlson (1948).

THEOREM 2. Let (1) and (2) hold with 0 <p<R= +o, let the condition A be
satisfied, and let f(z) have at infinity an essential singularity of order exactly N\
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O0< A=< +oo. It is then possible to define a sequence Q= {n; };-,, depending only on
the sequence {a;}; (j=0), and having all the following properties.
L. If A= 400, and if

(24) n— 4o, nefy,
then

@5) N(py, p251) 02 — ¢

n 2

where N (¢, ¢,; n) is defined as in Theorem 1.
II. If 0<A < +00 we may only assert the existence of a constant k=« (¢, — ¢, A) >0,
independent of n, such that

(26) N(p1, 025n) >kn (n€Q, n>ng).

III. If A= +oo, there exists a positive sequence (p,} such that p, —> +o (n—> oo,
n €(1), and such that, for any given € >0, there are at jnost o(n) zeros of T,,(z), of
modulus >1, which lie outside the annulus

@7 pne” ¢ < |z| <ppet.

IV. If 0<A< 4+, it is possible that assertion 111 holds without modification. Other-
wise there is a positive sequence {p, }, such that

1
(28) > <liminf —2Pn
A n—oo ogn
nen

and a constant A (0<A< +o) having the following properties: given B>0, the
partial sum T,(z) has

(i) no more than An/B zeros in the annulus 1 < |z| <p,e 8 (n>ny, n€ Q), and

(ii) as n—> o (n€Q), no more than o(n) zeros in the annulus |z| =p,e®.

The assertions of Theorems 1 and 2 concern the zeros of 7, (z) of modulus >1;
those of modulus <1 may be treated by the change of variable {=1/z followed by a
return to the original variable z. This offers no difficulties provided we observe that
our notation (3) for the partial sums 7, (z) does not explicitly indicate the value
p=p(n). We are thus led to the introduction of the more detailed notation

n
T_pn= Y @z’ (p>0,n>0).
j==p

Since the sequences 2* and € which appear in Theorems 1 and 2 only depend on
the behavior of the sequence {a;}; (j=0) it is clear that we may deduce from our
results a number of Corollaries describing the behavior of all the zeros (large and
small) of suitable truncations T_, ,. It will suffice to state the simplest assertion of
this kind.

COROLLARY 1.1. Let the radii of convergence p and R of the series (1) be finite
and positive.
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Define two sequences Q= [m;}jZ,, = {n;}jZ, of positive, strictly increasing
integers by the conditions

|a—MIl/m——>p (m_-:. + o, menl)’
la,|V" — R™! (n— +o, ne,).

Consider all the zeros of T_,, ,, (m=m;, n=n;) which lie in the angle | =argz<¢p,
(p1 <@y <@, +27). Then, as j —> oo, there are

Y2 — ¢
1 1)) —————m;
(1 +o0(1)) o m;

of these zeros which have modulus <1 and

Y2 — ¥1
1+0(1))—n;
( (1)) P
of them which have modulus > 1.
It is clear that there are analogous Corollaries covering the remaining cases: p =0,
R=+400; p>0, R=+00; p=0, R< +00.

Conjecture of Abian [1]. Let (1) and (2) hold with 0 <p<R=+ and let f(z)
have at o« an essential singularity which is not a limit point of zeros of f(z). Denote
by T, (z) the truncations defined by (3).

It is then possible, given ¢>0, K>0, to find arbitrarily large values of n and
complex quantities c,, such that simultaneously

(29) lea| > K, T,(cy) =0, |f(cx)] <e.

Abian formulated the above conjecture in connection with his recent proof [1] that
quantities c, satisfying the relations (29) do in fact exist for all n=ny(e K),
provided the essential singularity at o is a limit point of zeros of f(z).

I am unable to settle Abian’s conjecture if, as z—> oo, the growth of f(z) is
unrestricted. If f(z) has, at infinity, an essential singularity of finite order, the proof
of the conjecture is contained in the following simple consequence of Theorem 2 and
of some refinements which are possible because of the perfect regularity of the
growth of the functions under consideration.

THEOREM 3. Let (1) and (2) hold with 0<p<R=+ and let f(z) have, at
infinity, an essential singularity. Let \:0 <A< 400, be the exact order of this
singularity and let there be some Ry < +oo such that f(z) #0 (|z| >R;).

I. Then M is necessarily a positive integer. Writing

(30) My (1) = max|f(2)],
we have
31 lim M=Kl (0 <k < +00).

t—o th
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I1. There exist three positive constants «; (j=2,3,4) having the following prop-
erty: for arbitarily large values of n, there will exist, among the zeros

ZntsZn2s e+ -9 8pjse-e

of T,(z) no fewer than kyn, which satisfy simultaneously
(32) |f(znj) | < exp(—k3|zaj|N), |20 > kan'™

A closer study of the implications of (31) would enable us to say a good deal more
about the values of n whose existence is asserted in Theorem 3. For sake of brevity
this aspect of the question is omitted.

Notational conventions. The symbols K, e always denote positive quantities. By
{n,}, we denote a sequence (not necessarily positive) such that 5, — 0 (n—> +o0).
Inequalities such as n>ny, k> kg, ... following some relation mean that the relation
in question holds for sufficiently large values of n, k,.... The symbols X, ¢, »,, ng,
ko, ... may have different values in different places.

1. The logarithmic derivatives of f and 7,,. Our assumption (9) proves the exis-
tence of some Laurent series, convergent for z € @ and such that

S (z)

JS(z)

[It is obvious that the compact annulus @ is a proper subset of the exact annulus of
convergence of the series in (1.1).]

By integrating (1.1) round the unit circumference I', we see that, since f(z) is single
valued, / defined by

(1.2)

+ oo ]
(1.1) T dz=
J=-—0e

1 Sf’(z)
27i Jr f(z)

must be an integer. [Note the equivalence of (1.2) and (17).]
Given p’ and R’ such that

dz=l=d_1,

1.3) p<p ' <e f e'<R'<R,

we have, as n —> +oo,

(1.4) T,(z) — f(z) (o’ = |[z] =R").
Similarly, in view of (9),

T,(z) _ f')

T, (z) f(z)

In both (1.4) and (1.5) the convergence is uniform in the regions indicated.
Considering (10), (18) and (19) we see that as n—> +oo,

(n— +o0, zEQR).

(1.5)

(1.6) s(n) — +o, g(n) — +oo,

so that, for n large enough,
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2T, (z) =a_g+a_g0 2+ - +a, %77 (s=s(n), g=q(n), a;a_, #0).
(1.7)

By the elements of complex analysis

1 T,(z) _
(1.8) 5 gr T %= —a
and hence, by (1.2), (1.5) and (1.8)
(1.9 I=7(n) —q (n>ny);
the relations (20) are thus established.
Put

7(n) z
(1.10) Vaz) = 11 (1 - )

Jj=1 §ﬁj
and note that
(1.11) 29T, (z) = a_, P, (2) V, (2).

The Laurent series for 7,/T,, convergent in the annulus @, immediately follows
from (1.11); we find

T:(z t®
(1.12) T"—EZ;= k_}; taz® (ze @),
where
a(n)
(1.13) te=— ¥ 277" (k=0,1,2,3,...)
j=1

7{n)

(1.14) by =l=d_y, tyu= ¥ &% (k=-2,-3,-4,...).
Jj=1

From (1.1), (1.5), (1.12) and Parseval’s relation (also known as Gutzmer’s formula
in this case) we deduce

(1.15)
o 1 c2x| Ty(re®)  f'(re®) |
- 2,2k _ _~ n _ —t £ .
k=z—:m e — di|*r 27 So T, (rei) f(ret®) a9 (e™* =r=e)

Similarly, setting

(1.16) G(z) = k)i;o diz® (|z] = ef),
and

(1.17) H(z) = k;{i diz® (|z] = e~ ¥,
we find

P, (re) o |
i - - ! 0 < ef),
B, (re®) G(re”)| df (r <e®)

= 2.2k 1 f2x
A18) % |t — dl = o |
k=0 2w Jo
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and
(1.19)
i 1 2x| Vi(re®®y  7e¥ o |2
g 1202k n _ _ i -¢
o2, Ve = Al = 2 So v, (rei) Fo T HEeT) | db (r=em).

Combining (1.5), (1.15), (1.18) and (1.19) we obtain, as n—> +oo,

P,;(Z) s £
(1.20) (@) G(z) (|z] =e®),
VI
(1.21) ( VZ; —%) — H(z) (|z] =ze7%),

uniformly in the regions indicated.

2. Proof of Lemma L. By integrating (1.20) we see that

@.1) P,(z) — exp(S(z)G(u)du) (2] =< ef),

uniformly in the indicated disk.
To integrate (1.21) note that

Al Vau) 7 LA 11
Sz (Vn(u) u>du_ ,-§1 »‘z (u = $nj u>du

= 5 () ()

and let A — oo along the ray passing through 0 and z. Hence, as in (2.1)
(2.2)

T

IT (1 — ﬁ) = Qn($) — exp(— SmH(u)du> <§=1, lz| = 6_5>’
Jj=1 zZ z

Z

as n—> +oo, and the convergence is uniform in the indicated annulus.
Combining (1.9), (1.11) and (14) we first notice that

(—1)a_ / 1
@.3) T,(z) = {——————" }z Py ()0 <-)
" fnlg‘nZ---fnr 4§ ! Z
Hence, taking z € @, letting n—> +o0 and using (1.4), (2.1) and (2.2) we see that

@.4)
f(z)Z"exn<— S:G(u)du)exmeH(u)du) = fim =17%q

=C#0.
n—o g_nl fnzu- g’m

We have thus proved one of the relations (21); an inspection of (1.7) shows that the
expression of C as limit of C,=(—1)°""a,z,1 2, - .. Zne(ny Must also hold.
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We now rewrite (2.3) as

1 -1
(2.5 P,(z) = C,,“z"{Qn(E)} T,(z)
and notice that, if
(2.6) e f < |z| =R,

the limiting process n —> + oo yields, in view of (1.4) and (2.2), the uniform con-
vergence of P,(z) toward a regular limit function which we may call ¢(z). The
uniform convergence of P,(z) in the disk |z| <ef was already guaranteed by (2.1).
Hence we have proved (15) and also shown that ¢(z) is the analytic continuation
throughout the disk |z| <R of the expression

2 3
exp(doz+dl-%—+ dz—%——‘i‘ )

The exact radius of convergence of the series in (7) cannot exceed R since otherwise
the representation (6) would imply (against assumption) that f(z) is regular at all
points of the circumference |z| =R.

The symmetrical treatment of (16) is obvious and will be left to the reader.

The proof of Lemma L is now complete. We have also established the factoriza-
tion (6).

3. Proof of Theorem 1. Put
@3.1) F(z)= Y az/, M(r)= max |F(re®)|.
Jj=0 0=<6<2r

LEMMA 3.1. Let the series in (3.1) have radius of convergence R (0<R < + ).
Then, given €>0, it is possible to find ny(e) such that

D=

3.2) laj| R < e (n>ny(e)).

Jj=0

il

Proof. By Cauchy’s estimate
. . n .
IaleJe—f.l/z < M(Re—é/z), ‘EO Ialel < (n + l)eenle(Re-—e/z),
J:

and (3.2) follows.
Our definition of the sequence Q* implies

la,|/" — R™! (0<R< +4+», neQ* n— +m).

Hence in view of Lemma 3.1, we have, for n€ Q*,

(3.3) |a,|R™ = exp(n,n), ’Ex |a;| R/ = exp (n,n).
j=

[The validity of (3.3) is restricted by our notational convention regarding the sym-
bol 3,,.1
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Throughout the remainder of this section we only pass to the limit #—> + oo under
the restriction n € Q*. Consequently, by (18) and (20), -

3.4) s=s(n)y=n, on)=n-1;
moreover the relations (3.3) are valid and consequently

(3.5) max |7, (Rz)| < exp(n,n) + K < exp(n,0).
By (2.2)

(3.6) =K (n>ngp).

1
max |—————
l2] 3' 0, (1/Rz)
Combining (3.5), (3.6), (2.6), (2.5), (21), and writing

3.7 U,(2) =P,(RZ) =1 +uy 2+t z?+ -+ + u,,2°,
we find
(3.8) max |U,(2)| = exp(n,0).

z —

By (3.7), (13), (21), (3.3) and (3.4) we obtain

R° _ la,|R"

3.9 u. | = =
( ) l Wl lznlznz'”znal lCnI

R~ !'=exp(n,0).

An inspection of (3.8) and (3.9) shows that a well known equidistribution condition
[5; p. 14] is immediately applicable and leads to assertion I of Theorem 1.

Assertion II, concerning the moduli of the zeros z,;, is an immediate consequence
of (3.8), (3.9) and Jensen’s identity applied to the polynomials U,(z) and z°U,(1/z).
Consider, for instance the latter polynomial. Its zeros are R/z,;; let there be N, of
them in the disk |z[ <exp(—e) (e>O0, is fixed, otherwise arbitrary). Then, by
Jensen’s theorem and (3.8) log |u,,| + €N, <n,0 and hence, in view (3.9), N, <7,0
(60— + ).

We thus see that there are ‘““few’’ zeros of P,(z) in the annulus |z| = eR.

The same arguments applied to U,(z) show that there are few zeros of P,(z) in
the disk |z] <e ™ °R.

Assertion II of Theorem 1 immediately follows. The proof of Theorem 1 is now
complete.

4. Maximum term and central index of F(z). Throughout the remainder of the
paper we assume that F(z) defined by (3.1), is an entire, transcendental function of
order exactly A < +o. We adopt the notations (3.1) with this new meaning of F(z).

We take for granted the notion of maximum term

4.1) p(r) = max |a;| r/,
<J
and central index »(r) of the series in (3.1). What little we need to know about u(r)

and »(r) is entirely covered by Pélya and Szego [6; pp. 1-9]. The following lemma is
contained in [6; p. 9, ex. 60].
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LEMMA 4.1. [f 0<A< + oo, and e is given (0<e<N\), there exist arbitrarily large
values of r such that

4.2) logutr) 1

v(r) N—¢€’
In the limiting case A= + oo,
4.3) liminf 228#(7) _ .
r—oo v(r)

Take n, = v(r;) and note that, by definition

4.4) lap|rk = p(re)  (n=ny).
Using Lemma 4.1 we select a sequence of values r; such that
4.5) ry —> +o (k— +o0),

and such that

(4.6) lim M =

1
A =- (0= A4, < +),
e Py 1= ( 1 o)

In the special case A=+ o0, we take 4; =0.

We now consider the sequence of positive integers : ny, n,, n3,.... We write n for
any member of this sequence and let n — + oo by values of the sequence Q. Con-
sequently, in view of (20), ¢ — o means that ¢ takes on, successively, the values
o(ng)=n,—1(k=1,2,3,...). Using the above notations, we have

It:

la;j|rf = (1 + m)p(ry),
and hence

@4.7)
mé’f [T, (nz)| = (W +n)p(r) +1<2mp(ry) (n=n, k> k).

|z
Putting
(4.8) Wo(z) =Pp(rnz) =1+ wyz+ -+ w27 (n=ny),
and using (2.6) and (4.7), we see that the arguments which lead to (3.8) now imply
4.9) max| W, (2)| = Krf'nep(re) (k> ko, 0=0a(ny)).

By Liouville’s theorem, we know (since F(z) is transcendental) that

(4.10) logrn) _, Lo (k— +o).
log ry

Consequently (4.6), (4.9) and (4.10) yield
(4.11) max |W,(z)| < exp((4; +n,)0) (0 —> +o).

|z} =1
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With regard to the leading term of W, (z) we have, by (20), (2.5), (21) and (4.4),

n
(4.12) 0] = A2 o1 2 Ky,
|Cal
and by (4.6) and (4.10)
(4'13) lwao| ZeXp((Al +T)o)0) (G—_> +°°)

5. Proof of assertions I and III of Theorem 2. Since F(z) is of infinite order we
may take A; =0in (4.11) and (4.13). The latter relations may be given the same form
as (3.8) and (3.9). Our proof of Theorem 1 holds with the fixed quantity R replaced
by the quantities r, which appear in (4.4). The members of  are the integers
n,=v(r;), and we may complete the change of notation by setting p,=r, (n=n;).
It is now obvious that the proof of assertions I and I1I is almost identical to the proof
of Theorem 1. [The reader will have no difficulty in performing the necessary minor
adaptations of our arguments.]

6. Proof of assertion II of Theorem 2. It is advantageous to introduce the
auxiliary polynomial

| o /o
6.1) X, (z) = K2 Pn<IC"| . )
wry) z

By (20), (2.5) and (4.4)
6.2) 1X,(0)] = 1.

By (4.8), (4.9) and Cauchy’s estimate |C,|"°|w,;| <Krllnip(ry) (k>ky), and
hence (6.1) implies max ;| X, (z) | =Kr?" n. Using again (4.6) and (4.10) we find

(6.3) IrrTaP]( [ X;(2)| <exp(n,0) (60— +x).

[Note that, in view of (6.2), it is necessary that y,>0 in (6.3).]
Let x,, be the coefficient of the leading term of the polynomial X,(z); by (6.1)

i
Tk
X5o| = ———,
ool w(ry)
and by (4.6) and (4.10) we finally obtain
6.4 |X,0] =€xp(—(Ay +1,)0) (06— +x).

If A, =0, (6.2), (6.3) and (6.4) enable us to reduce the treatment of X,(z) to that
of W,(z), given in §5. In this case the very precise relations (25) hold and, a fortiori,
the relations (26) must also hold. If 4, >0 we apply to X, (z) the following

THEOREM OF CARLSON-ROSENBLOOM. Let X(z) =14+Xx12+x; 22+ e tx,z°
be a polynomial of degree o such that

(6.5) IX,| =e=* (a=0, o=1)
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and such that
(6.6) max |X,(2)] <™ (0<n).
Z =

Denote by I the number of zeros of X(z) in the angle

pr=argz =gy (0<¢y—p =m/ly, v>1/2).

Define

61 e=xam =3 (IO (0= exp(y(2a+ 9.
Then, if

(6.8) 7 < K,

we have

(6.9) N = ok.

It is clear that if we select in (6.5) and (6.7)

(6.10) a=A, +n,
and in (6.6),
(6.11) N =g

we have, for o large enough
(6.12) e < K

and hence (6.9) follows.

For sake of clarity we observe that », has the same meaning in (6.3), (6.11) and in
the left-hand side of (6.12). In view of our notational convention, the other symbols
7, may have different values.

The arguments of the zeros of X, (z) only differ in sign from the arguments of the
zeros of the corresponding polynomial P,(z). Assertion 2 of Theorem 2 is now
obvious.

With regard to the Theorem of Carlson-Rosenbloom we note that a proof of the
statement given above will be found in [4; pp. 78-82, Th. 3].

As to the substance of the theorem, Carlson announced it (without proof) in 1924
[2]. The first proof to appear in the literature was presented by Rosenbloom in his
remarkable doctoral dissertation [7]. Carlson’s original proof was published in 1948

{31.

7. Proof of assertion IV of Theorem 2. If A; =0 (in this case the arguments of the
zeros are equidistributed) there is nothing to change in the proof of assertion III of
Theorem 2.

If A, >0 we deduce from (4.6)

7.D» (A + )y <logM(ry) < rd*m



56 ALBERT EDREI

and defining, as in §5,
(7.2) It = Pps

the relation (28) follows.
We now apply Jensen’s formula to the polynomials W, (z) defined in (4.8) and use
(4.11). Given B>0, we denote by N, the number of zeros of P,(z) in the disk

(7.3) |z| < pnexp(—B) (neqQ),

and thus find

(7.4) BN” < > log| 2| < (A, +q,)n.
lznjl =pnexp(—B) z"j

Taking A=A, +¢, we obtain assertion IV(i) of Theorem 2.

To obtain assertion I'V(ii) we apply the proof given in this section to X, (z) instead
of W,(z). Assertion IV(ii) is somewhat more precise than assertion IV(i) because the
right-hand side of (6.3) is smaller than the right-hand side of (4.11).

8. Proof of Theorem 3. The functions M, (¢) in (30), M(¢) in (3.1) and
@8.1) M,(t) = max le(2)|

do not coincide. On the other hand, since F(z) is transcendental (by assumption) we
have, in view of Liouville’s theorem
log M (¢
(82) __g—()——> + oo (t-——) +oo)’
log ¢
and taking into account (6) and a fundamental property of the maximum term [6;
p. 8, ex. 54]

. log M, (¢) . log M, (t) . log pu(2)
8. = —_—— = lim —————— = _—
8.3) b=l e~ PR T M) 18 Tog M()
By (8.3) the order of ¢ (z) is exactly A < + oo, By assumption, f(z) has no zeros in the

annulus |z| >R;; hence, by (6), ¢(z) has at most finitely many zeros and is conse-
quently of the form

8.4) v(z) = Y(2)exp(D(2)).

where Y (z) (#0) and D(z) are polynomials. Let d be the degree of D(z). We
cannot have d=0 since, in this case, f(z) would not have an essential singularity at
o. Hence

(8.5) l=d=\< +oo,

and using (8.3) we obtain (31) as well as

(8.6) i 108 # () _

Ky.
{—oo A !
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The above relation and the elementary identity [6; p. 5, ex. 33]

H v(Xx)

®8.7) , logu(rz)—logu(t1)=§ dx (0<t;<t),

f

yield, by a standard tauberian argument [9; p. 47], »(#) ~\«; t* (t—> o), and hence
. logu(?) 1

8.8 lim =22 =,

(8.8) ST A

We now return to the proof in §7, and note that (8.8) enables us to replace (7.1) by

the more precise relation

8.9) pn ~ M N)TV (n — o).

It immediately follows, from elementary considerations, that (8.4) and (8.5) imply
the existence of a sector

(8.10) D={reY:¢, <0 < ¢,, r>0)}
with ¢, —@; >n/(N+¢€) (e>0, € arbitrary) such that
(8.11) |f(z)] <= exp(—KrY) (z€D, r>r,).

By (8.5), assertions (ii) and (iv) of Theorem 2 are applicable to the polynomials
P,(z).

It is now immediate (in view of (8.9)) that for large, suitably chosen values of n,
there will be at least k,n zeros of T,(z), of modulus =«,n'», which fall in the
sector (8.10). Returning to (8.11) we see that the relations (32) must be satisfied. This
completes the proof of Theorem 3. O
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