ON FUCHSIAN GROUPS OF DIVERGENCE TYPE

Ch. Pommerenke

1. INTRODUCTION

Let Γ be a Fuchsian group in the unit disk **D** with identity ι . We assume throughout that 0 is not an elliptic fixed point and denote by ρ the radius of the maximal disk $\{|z| < \rho\}$ that does not contain Γ -equivalent points. We also assume that Γ does not have a compact fundamental domain, so that \mathbf{D}/Γ is an open Riemann surface.

If Γ is of convergence type, that is if $\Sigma_{\gamma \in \Gamma} (1 - |\gamma(0)|) < \infty$, then the Blaschke product

(1.1)
$$g(z) = z \prod_{\gamma \in \Gamma, \gamma \neq 1} \frac{|\gamma(0)|}{\gamma(0)} \gamma(z) \qquad (z \in \mathbf{D})$$

is called the *Green's function* of Γ with respect to 0; the positive harmonic function $-\log|g(z)|$ corresponds to the Green's function on \mathbf{D}/Γ .

Let now Γ be of divergence type; in the terminology of classification theory this means that $\mathbf{D}/\Gamma \in O_G$. We consider analogues of Green's functions; their harmonic counterparts on \mathbf{D}/Γ are, for instance, the Evans function [15, p. 350] and Tsuji's modified Green's function [16, p. 455].

Let $\mathfrak{G}(\Gamma)$ denote the class of all functions $f(z)=z+a_2z^2+\ldots$ analytic in **D** with

(1.2)
$$|f(\gamma(z))| = |f(z)|$$
 for $\gamma \in \Gamma$, $z \in \mathbf{D}$

such that |f(z)| is bounded away from 0 in $\mathbf{D} \setminus \bigcup_{\gamma \in \Gamma} \gamma(D_0)$ for a suitable disk D_0 around 0.

We shall show that the bounds in the last condition are actually only dependent on ρ (see Theorem 3). Every function $f \in \mathfrak{G}(\Gamma)$ is normal, and there is a natural fundamental domain associated with it (see Theorem 2). Perhaps the main result (Theorem 4) is that the functions $f \in \mathfrak{G}(\Gamma)$ that remain bounded at the parabolic vertices satisfy the best possible estimate

(1.3)
$$\log^+ |f(z)| = o\left(\frac{1}{1-|z|}\right) \quad \text{as} \quad |z| \to 1-0.$$

Let $L_0(\Gamma)$ denote the set of all $\zeta \in \partial \mathbf{D}$ for which there exist $\gamma_k \in \Gamma$ with

Received October 1, 1979. Revision received October 16, 1980.

Michigan Math. J. 28 (1981).

$$(1.4) \gamma_k(0) \in \Delta (k = 1, 2, ...), \gamma_k(0) \to \zeta (k \to \infty)$$

for some Stolz angle Δ at ζ (angular limit points, or points of approximation). Constantinescu [3, Section 52] and Tsuji [16, p. 535] have shown that

(1.5)
$$\Gamma$$
 is of divergence type \Leftrightarrow mes $L_0(\Gamma) = 2\pi$.

Beardon and Maskit [1, Theorem 2] have proved that, for finitely generated groups of the first kind, every point on $\partial \mathbf{D}$ belongs to $L_0(\Gamma)$ except for the countably many parabolic fixed points. We shall deduce from (1.3) that $\partial \mathbf{D} \setminus L_0(\Gamma)$ is uncountably dense on $\partial \mathbf{D}$ if Γ is not finitely generated of the first kind (Theorem 5).

2. LEVEL SETS AND FUNDAMENTAL DOMAINS

Let $f \in \mathfrak{G}(\Gamma)$. It follows from (1.2) that, for $\gamma \in \Gamma$,

$$(2.1) \quad (1-|\gamma(z)|^2)|f'(\gamma(z))| = (1-|z|^2)|\gamma'(z)f'(\gamma(z))| = (1-|z|^2)|f'(z)|.$$

Since $(1-|z|^2)|f'(z)|$ is clearly bounded in D_0 and thus in $\bigcup_{\gamma\in\Gamma}\gamma(D_0)$ and since |f(z)| is bounded away from zero in the complement, it follows [9, Lemma] that f is normal in \mathbf{D} ; this means that [7]

$$\sup_{z\in D} (1-|z|^2)|f'(z)|/(1+|f(z)|^2) < \infty.$$

Now let f be an analytic function satisfying (1.2). Then the level set

$$(2.2) H_R = \{ z \in \mathbf{D} : |f(z)| < R \} (0 < R < +\infty)$$

is invariant under Γ . Let G_R be the simply connected component of H_R that contains 0 and let ϕ_R be the univalent function that maps **D** onto G_R such that $\phi_R(0) = 0$, $\phi_R'(0) > 0$. Then

(2.3)
$$\Gamma_R = \{ \phi_R^{-1} \circ \gamma \circ \phi_R : \gamma \in \Gamma, \quad \gamma(G_R) = G_R \}$$

is a group of Möbius transformation of **D** onto **D**, and it follows from Schwarz's lemma that $\{|z| < \rho\}$ does not contain Γ_R -equivalent points. Hence Γ_R is a Fuchsian group in **D**.

THEOREM 1. Let Γ be of divergence type and let f be a non-constant normal analytic function with $|f \circ \gamma| = |f|$ for $\gamma \in \Gamma$. Then Γ_R is of convergence type, and

(2.4)
$$g_R(z) = R^{-1} f(\phi_R(z))$$
 $(z \in \mathbf{D})$

is an inner function. If $f \in \mathfrak{G}(\Gamma)$ then g_R is the Green's function (1.1) of Γ_R .

An *inner* function is an analytic function in **D** that is bounded by 1 and whose angular limit is of modulus 1 almost everywhere.

Proof. It follows from (2.2) and (2.4) that $|g_R(z)| < 1$ for $z \in \mathbf{D}$. Suppose that g_R is not an inner function. Then there is a set $A \subset \partial \mathbf{D}$ with mes A > 0 such that the angular limits $\phi_R(\zeta)$, $g_R(\zeta)$ exist and $|g_R(\zeta)| < 1$ for all $\zeta \in A$.

Let now $\zeta \in A$ and set $S = [0,\zeta)$. Then $\phi_R(S)$ is a curve from 0 to $\omega = \phi_R(\zeta) \in \partial G_R$. We see that $|\omega| = 1$, because $|g_R(\zeta)| < 1$ but

$$|g_R(z)| = R^{-1}|f(\phi_R(z))| = 1$$
 for $z \in \mathbf{D} \cap \partial G_R$.

If $z \in S$, $z \to \zeta$ then $w = \varphi_R(z) \in \varphi_R(S)$, $w \to \omega$ and $f(w) = Rg_R(z) \to Rg_R(\zeta)$. Since f is normal, it follows from a theorem of Lehto and Virtanen [7], [11, p. 268] that f has the angular limit $Rg_R(\zeta)$ at ω . Since f is non-constant and since $|f(\gamma(z))| = |f(z)|$ for $\gamma \in \Gamma$, we therefore see from (1.4) that $\omega \notin L_0(\Gamma)$.

Hence it follows from (1.5) that mes $\phi_R(A) = 0$. Since $|\phi_R(z)| < 1$ for |z| < 1 and $|\phi_R(\zeta)| = 1$ for $\zeta \in A$, an extended form of Löwner's lemma therefore shows that mes $A \leq \text{mes } \phi_R(A) = 0$, which contradicts our assumption.

It is clear that $|g_R \circ \beta| = |g_R|$ for $\beta \in \Gamma_R$. Since g_R is bounded and non-constant, it follows (for instance from (1.5) and Fatou's theorem) that Γ_R is of convergence type.

Let now $f \in \mathfrak{G}(\Gamma)$ and let g_R^* be the Green's function of Γ_R with respect to 0. Since g_R^* is a Blaschke product with the same zeros as g_R , we see that $h_R = g_R/g_R^*$ is also an inner function. The definition of $\mathfrak{G}(\Gamma)$ shows that

$$|h_R(z)| \ge |g_R(z)| = R^{-1}|f(\phi_R(z))| > c_R > 0$$

if $z \notin \beta \circ \phi_R^{-1}(D_0) = \phi_R^{-1} \circ \gamma(D_0)$ for $\beta \in \Gamma_R$; see (2.3). Hence $|h_R|$ is bounded away from zero in **D** because this is trivially true in $\phi_R^{-1}(D_0)$ and therefore in

$$\bigcup_{\beta \in \Gamma_R} \beta \circ \phi_R(D_0).$$

An inner function that is bounded away from zero in **D** is a constant of modulus 1. Since, by (2.4),

$$h_R(0) = g_R'(0)/g_R^{*\prime}(0) = R\phi_R'(0)/g_R^{*\prime}(0) > 0$$

it follows that $h_R(z) \equiv z$ and thus that $g_R = g_R^*$.

The domain F in D is called a fundamental domain of Γ if $F \cap \gamma(F) = \emptyset$ for $\gamma \in \Gamma$, $\gamma \neq \iota$ and if

(2.5)
$$\operatorname{area}\left(\mathbf{D} \setminus \bigcup_{\gamma \in \Gamma} \gamma(F)\right) = 0.$$

As the referee kindly pointed out this condition does not, in general, imply that every point of **D** belongs to $\gamma(\vec{F})$ for some $\gamma \in \Gamma$. Therefore our definition does not quite agree with the usual one; the same remark applies to [12, Theorem 1].

THEOREM 2. Let Γ be of divergence type and let $f \in \mathfrak{G}(\Gamma)$. Then there exists a fundamental domain F of Γ with

$$(2.6) {|z| < \rho/6} \subset F$$

such that f is univalent in F and the image domain f(F) is starlike with

$$(2.7) area (\mathbf{C} \setminus f(F)) = 0.$$

The domain F is the analogue of Green's fundamental domain [12, Theorem 1] for groups of convergence type which is essentially due to Brelot and Choquet [2].

Proof. Let F be the union of all halfopen arcs that begin at 0 and along which

$$(2.8) arg f(z) = const.$$

It is easy to see that F is a domain with $F \cap \gamma(F) = \emptyset$ for $\gamma \in \Gamma$, $\gamma \neq \iota$ and that f maps F one-to-one onto a starlike domain.

By Theorem 1, the function $g_R = R^{-1} f \circ \varphi_R$ is the Green's function of Γ_R . By (2.2) and (2.8), $F \cap G_R$ is the union of all arcs from 0 with arg f(z) = const and $0 \le |f(z)| < R$. Hence $\varphi_R^{-1}(F \cap G_R)$ is the union of all arcs from 0 with arg $g_R(z) = \text{const}$. But this is, by definition, the Green's fundamental domain F_R of Γ_R . Hence we have

$$(2.9) F \cap G_R = \phi_R(F_R) (0 < R < \infty).$$

Using (2.3) we therefore see that

$$\bigcup_{\gamma \in \Gamma} \gamma(F) \supset \bigcup_{\gamma \in \Gamma} \gamma(F \cap G_R) \supset \bigcup_{\beta \in \Gamma_R} \varphi_R \circ \beta(F_R) = \varphi_R(\mathbf{D} \setminus E)$$

where area E=0. Since $G_R=\phi_R(\mathbf{D})$ it follows that

$$\operatorname{area}\left(\mathbf{D} \setminus \bigcup_{\gamma \in \Gamma} \gamma(F)\right) \leq \operatorname{area}\left(\mathbf{D} \setminus G_{R}\right),$$

and this tends $\to 0$ as $R \to \infty$ because f is analytic in **D**. Hence (2.5) is satisfied.

We obtain from (2.9) that, for $0 < R < \infty$,

$$\operatorname{area}(\{|w| < R\} \setminus f(F)) = R^2 \operatorname{area}(\mathbf{D} \setminus g_R(F_R)),$$

and this is = 0 because F_R is the Green's fundamental domain of Γ_R . Hence (2.7) follows. We postpone the proof of (2.6) to the next section.

3. ESTIMATES

For $z \in \mathbf{D}$, let $\rho(z)$ denote the largest number such that

(3.1)
$$\left\{ \zeta \in \mathbf{D} : \left| \frac{\zeta - z}{1 - \bar{z} \, \zeta} \right| < \rho \, (z) \right\}$$

contains no Γ -equivalent points; we set $\rho(z) = 0$ if z is an elliptic fixed point. In particular we have $\rho(0) = \rho$.

THEOREM 3. Let Γ be a group of divergence type and let $f \in \mathfrak{G}(\Gamma)$. Then

(3.2)
$$|f(z)| \ge \frac{1}{4} \min \left(\rho, \min_{\gamma \in \Gamma} |\gamma(z)| \right),$$

$$(3.3) (1-|z|^2)|f'(z)| \le 2 \max(|f(z)|,1) \left(\log^+|f(z)| + \frac{29}{\rho}\right)$$

for $z \in \mathbf{D}$ and also

(3.4)
$$(1-|z|^2)|f'(z)| \leq \frac{12}{\rho(z)} \max(|f(z)|,1).$$

Remarks. 1. The above results hold also if Γ is of convergence type and f(z) = g(z)/g'(0) ($z \in \mathbf{D}$) where g denotes the Green's function (1.1); compare [10].

2. We conclude at once from (3.4) and (3.2) that $\mathfrak{G}(\Gamma)$ is compact with respect to locally uniform convergence.

The proof is based on the theory of (circumferentially) mean univalent functions [6, Chapter 5]. The analytic function h is called *mean univalent* in the domain H if

(3.5)
$$\frac{1}{2\pi} \int_0^{2\pi} n(\operatorname{Re}^{i\theta}, H) d\theta \le 1 \qquad (0 < R < +\infty)$$

where n(w,H) denotes the number of zeros of h(z) - w with $z \in H$.

LEMMA 1. Every function $f \in \mathfrak{G}(\Gamma)$ is mean univalent in every domain $H \subset D$ that does not contain Γ -equivalent points.

Proof. We consider the fundamental domain F of Theorem 2 and set

$$(3.6) H_0 = H \cap \bigcup_{\gamma \in \Gamma} \gamma(F).$$

Then $\{z \in H_0: |f(z)| = R\}$ is the disjoint union of open sets $\gamma_k(C_k)$ with $C_k \subset F$ and distinct $\gamma_k \in \Gamma$. The sets C_k are disjoint because H does not contain Γ -equivalent points. Hence we obtain from (1.2) that

$$\int_{0}^{2\pi} n(\operatorname{Re}^{i\theta}, H_{0}) d\theta = \sum_{k} \int_{0}^{2\pi} n(\operatorname{Re}^{i\theta}, C_{k}) d\theta$$

$$\leq \int_{0}^{2\pi} n(\operatorname{Re}^{i\theta}, F) d\theta \leq 2\pi$$

because f is (strictly) univalent in F. It follows from (2.7) and (3.6) that

$$\int_0^{2\pi} n\left(\operatorname{Re}^{i\theta}, H \setminus H_0\right) d\theta = 0.$$

Hence (3.5) is satisfied.

We need the following results of W. K. Hayman for functions h mean univalent in **D**: If h(s) = s + ... then [6, p. 99]

(3.7)
$$\frac{|s|}{(1+|s|)^2} \le |h(s)| \le \frac{|s|}{(1-|s|)^2},$$

$$|h'(s)| \le \frac{1+|s|}{(1-|s|)^3}.$$

If $h(s) \neq 0$ for |s| < 1 then [6, p. 95]

$$|h'(s)| \le 4 |h(0)| \frac{1 + |s|}{(1 - |s|)^3}.$$

Proof of Theorem 3. (a) Since $\{|z| < \rho\}$ does not contain Γ -equivalent points, the function

(3.10)
$$h(s) = \rho^{-1} f(\rho s) = s + \dots \quad (|s| < 1)$$

is mean univalent in **D**, by Lemma 1. Hence we obtain from (3.7) that, with $z = \rho s$,

(3.11)
$$|f(z)| = \rho |h(s)| \ge \frac{\rho |s|}{(1+|s|)^2} \ge \frac{|z|}{4} \quad \text{if } |z| < \rho.$$

Therefore it follows from (1.2) that, for $\gamma \in \Gamma$,

$$|f(z)| \ge (1/4) |\gamma(z)| \quad \text{if} \quad |\gamma(z)| < \rho.$$

The function 1/f is analytic and bounded in

(3.13)
$$G_1 = \{ z \in \mathbf{D} : |\gamma(z)| > \rho \quad \text{for} \quad \gamma \in \Gamma \}$$

by the definition of $\mathfrak{G}(\Gamma)$. Furthermore $|1/f(z)| \leq 4/\rho$ for $z \in \mathbf{D} \cap \partial G$ by (3.12).

Since $\partial \mathbf{D}$ has zero harmonic measure [16, p. 530] with respect to G_1 , it follows that $|1/f(z)| \le 4/\rho$ for $z \in G_1$. Together with (3.12), this proves (3.2).

(b) Applying (3.8) to the function (3.10) we obtain that

$$(1 - |z|^2)|f'(z)| \le |f'(z)| = |h'(z/\rho)| \le 12$$

for $|z| \le \rho/2$. Hence it follows from (2.1) that

$$(3.14) (1 - |z|^2)|f'(z)| \le 12 \text{for} z \notin G_2$$

where (compare (3.13))

(3.15)
$$G_2 = \{ z \in \mathbf{D} : |\gamma(z)| > \rho/2 \quad \text{for} \quad \gamma \in \Gamma \}.$$

We obtain from (3.11) as in (a) that $|f(z)| \ge 2\rho/9$ for $z \in G_2$. Hence we conclude from (3.14) and [9, Lemma] that

$$(1 - |z|^{2})|f'(z)| \leq 2|f(z)| \left(\log \left| \frac{9f(z)}{2\rho} \right| + \frac{27}{\rho} \right)$$

$$\leq 2|f(z)| \left(\log |f(z)| + \frac{29}{\rho} \right)$$

for $z \in G_2$. Together with (3.14), this proves (3.3).

(c) We fix now $z \in G_2$ and set $r = \rho(z)/3$. The definition of $\rho(z)$ shows that $|\gamma(z)| + \rho \ge \rho(z)$ for $\gamma \in \Gamma$. Therefore we obtain from (3.15) that

$$\left|\frac{z-\gamma^{-1}(0)}{1-\bar{z}\gamma^{-1}(0)}\right|=\left|\gamma(z)\right|\geq \frac{\left|\gamma(z)\right|+\rho}{3}\geq \frac{\rho(z)}{3}=r$$

for $\gamma \in \Gamma$. It follows that

$$h(s) = f\left(\frac{z + rs}{1 + \bar{z}rs}\right) \neq 0$$
 for $s \in \mathbf{D}$.

This function is mean univalent in **D** by the definition of $\rho(z)$ and by Lemma 1. Hence we obtain from (3.9) that

$$(1-|z|^2)|f'(z)|=\frac{1}{r}|h'(0)|\leq \frac{4}{r}|h(0)|=\frac{12}{\rho(z)}|f(z)|,$$

and, together with (3.14), this proves (3.4).

Proof of (2.6). Suppose that $D_1 = \{|z| < \rho/6\}$ does not completely lie in the fundamental domain F. Then D_1 intersects $\gamma(F)$ for some $\gamma \in \Gamma \setminus \{\iota\}$, say at z_1 . We consider the curve $C \subset \gamma(F)$ through z_1 along which $\arg f(z) = \mathrm{const.}$ Since C begins at $\gamma(0)$ and since $|\gamma(0)| > \rho$, there exists $z_2 \in C$ with

$$|z_2| = \rho, \qquad |f(z_2)| < |f(z_1)|.$$

Applying (3.7) to the function (3.10) we obtain from $|z_1| < \rho/6$ that

$$|f(z_1)| \le \frac{|z_1|}{(1-|z_1|/\rho)^2} < \frac{6\rho}{25} < \frac{\rho}{4}$$

whereas (3.11) shows that $|f(z_2)| \ge \rho/4$, in contradiction to (3.16).

4. ESTIMATES FOR THE GROWTH

Every normal analytic function f satisfies

(4.1)
$$\log^+|f(z)| = O\left(\frac{1}{1-|z|}\right) \quad \text{as } |z| \to 1-0$$

as Hayman [5] has shown. The problem whether (4.1) can be improved for functions in $\mathfrak{G}(\Gamma)$ depends on their behaviour at the parabolic fixed points.

Let $f \in \mathfrak{G}(\Gamma)$ and let $\gamma \in \Gamma$ be parabolic with fixed point ζ . It follows from (1.2) and (4.1) by standard arguments that

(4.2)
$$f(z) = w(z)^{-a} \sum_{k=0}^{\infty} c_k w(z)^k, \qquad w(z) = \exp\left(-b \frac{\zeta + z}{\zeta - z}\right)$$

with $c_0 \neq 0$ for suitable b > 0 and $a \geq 0$; the case a < 0 is excluded by (3.2). If a > 0 then

$$\lim_{|z| \to 1 \to 0} \sup_{z \to 1 \to 0} (1 - |z|) \log^+ |f(z)| \ge 2ab > 0$$

so that (4.1) cannot be improved. If a = 0 then f has the finite angular limit c_0 at ζ .

Let $\mathfrak{G}_0(\Gamma)$ denote the class of $f \in \mathfrak{G}(\Gamma)$ that have a finite angular limit at each parabolic fixed point of Γ . The above paragraph shows that $\mathfrak{G}_0(\Gamma) = \emptyset$ if Γ is a finitely generated group of divergence type.

THEOREM 4. Let Γ be an infinitely generated group of divergence type. Then $\mathfrak{G}_0(\Gamma) \neq \emptyset$, and if $f \in \mathfrak{G}_0(\Gamma)$ then

(4.3)
$$\log^+|f(z)| = o\left(\frac{1}{1-|z|}\right) \quad (|z| \to 1-0).$$

This estimate is best possible: For every function η with $\eta(r) \to +0$ $(r \to 1-0)$, there exists a group Γ such that, for all $f \in \mathfrak{G}(\Gamma)$,

(4.4)
$$\log^+|f(z)| \neq O\left(\frac{\eta(|z|)}{1-|z|}\right) \qquad (|z| \to 1-0).$$

The estimate (4.3) can be improved if we make further assumptions about Γ . For instance, if $\rho(z) \ge \rho_0 > 0$ for $z \in \mathbf{D}$, then we obtain by integration from (3.4) that

(4.5)
$$\log^+ |f(z)| = O\left(\log \frac{1}{1-|z|}\right) \quad (|z| \to 1-0).$$

We need two lemmas in order to prove Theorem 4.

LEMMA 2. Let $f \in \mathfrak{G}(\Gamma)$. Suppose that $h = \log f$ is analytic and univalent in some domain $H \subset \partial \mathbf{D}$ with $\partial H \cap \partial \mathbf{D} = \{\zeta\}$ and that

(4.6)
$$h(H) = \{w : \text{Re } w > u_1, \quad v_1 < \text{Im } w < v_1 + \lambda_1\}, \quad \lambda_1 > 2\pi.$$

Then ζ is a parabolic fixed point for Γ and f has the angular limit ∞ at ζ .

Proof. Let A be an analytic arc in H such that

$$h(A) = \{ \text{Re } w = u_0, v_0 \le \text{Im } w \le v_0 + \lambda_0 \} \subset h(H), \quad \lambda_0 > 2\pi.$$

Let F be the fundamental domain of Γ constructed in Theorem 2 and let H_0 be defined by (3.6). Then $\operatorname{mes}[A \cap (H \setminus H_0)] = 0$ by Theorem 2, and $A \cap H_0$ is the disjoint union of open sets $\gamma_k(C_k)$ with $C_k \subset F$ and distinct $\gamma_k \in \Gamma$. It follows that

(4.7)
$$\lambda_0 = \operatorname{Im} \sum_{k} \int_{\gamma_k(C_k)} h'(z) \, dz = \operatorname{Im} \sum_{k} \int_{C_k} \frac{f'(z)}{f(z)} \, dz$$

because $h'(z) = f'(z)/f(z) = \gamma'_k(z)f'(\gamma_k(z))/f(\gamma_k(z))$ by (1.2).

Since $|f(z)| = e^{u_0}$ for $z \in C_k$ and since f is univalent in F, we conclude from (4.7) that the sets $C_k \subset F$ cannot be disjoint because $\lambda_0 > 2\pi$. Hence there exists $z_0 \in C_k \cap C_l$ with $k \neq l$. The points $z_1 = \gamma_k(z_0)$ and $z_2 = \gamma_l(z_0)$ lie in A, and

(4.8)
$$z_2 = \gamma_l \circ \gamma_k^{-1}(z_1) = \gamma(z_1), \qquad \gamma = \gamma_l \circ \gamma_k^{-1} \in \Gamma \setminus \{\iota\}.$$

Let $C_i(j=1,2)$ be the curves in H from z_i to ζ defined by

(4.9)
$$h(C_i) = \{u_0 \le \text{Re } w < +\infty, \text{ Im } w = \text{Im } h(z_i)\}.$$

It follows from (1.2) that $h(\gamma(z)) = h(z) + ib$ for some $b \in \mathbb{R}$. Hence

$$h(\gamma(C_1)) = h(C_1) + ib = h(C_2),$$

by (4.8) and (4.9). Since h is univalent in H we conclude that $C_2 = \gamma(C_1)$. It follows that $\zeta = \gamma(\zeta)$ because C_1 and C_2 both end at ζ .

Since $f(z) \to \infty$ as $z \to \zeta$, $z \in C_1$ and since f is normal, the theorem of Lehto and Virtanen [7] shows that f has the angular limit ∞ at ζ . Hence ζ cannot be a hyperbolic fixed point so that γ is parabolic.

LEMMA 3. Let Γ be of divergence type with Ford fundamental domain F_0 . We denote by l(r) the total length of $L(r) = F_0 \cap \{|z| = r\}$ (0 < r < 1). Let $f \in \mathfrak{G}(\Gamma)$ and set

(4.10)
$$M(r) = \max_{|z|=r} |f(z)|$$

for 0 < r < 1. Then

$$(4.11) 2\pi \int_{\rho}^{r} \frac{dt}{l(t)} \leq \log \frac{4}{\rho} + \log M(r).$$

Proof. Since Γ -equivalent boundary points of F_0 have the same distance from 0, we see that

$$\int_{L(r)} \frac{f'(z)}{f(z)} dz = 2\pi i \qquad (0 < r < 1).$$

Hence we obtain from Schwarz's inequality that

$$4\pi^{2} \leq l(r) \int_{L(r)} \left| \frac{f'(z)}{f(z)} \right|^{2} |dz|$$

and therefore

$$4\pi^2 \int_{\rho}^{r} \frac{dt}{l(t)} = \int \int_{F \cap \{\rho < |z| < r\}} \left| \frac{f'(z)}{f(z)} \right|^2 dx dy.$$

By Lemma 1, (3.2) and (4.10), this is bounded by

$$\int\int_{\rho/4 < |w| < M(r)} \frac{dudv}{|w|^2} = 2\pi \left(\log M(r) + \log \frac{4}{\rho}\right).$$

Proof of Theorem 4. (a) Let $\Gamma = \{\gamma_{\nu} : \nu \in \mathbb{N}\}$ and let Γ_n be the group generated by $\gamma_1, ..., \gamma_n$. Since the Ford fundamental domain of Γ_n contains that of Γ , it has infinite non-euclidean area (because Γ is infinitely generated). Hence Γ_n is of convergence type. Let g_n denote its Green's function (1.1).

We see from Remark 1 after Theorem 3 that the functions

$$(4.12) f_n(z) = g_n(z)/g'_n(0) = z + \dots (z \in \mathbf{D})$$

form a normal sequence. If f(z) = z + ... is the limit of a convergent subsequence it follows from (3.2) that $f \in \mathfrak{G}(\Gamma)$.

Let now ζ be a parabolic fixed point and let γ be a generator of the stabilizer of ζ in Γ . Then $\gamma \in \Gamma_n$ for $n > n_0$. Since the function f_n is bounded and $|f_n \circ \gamma| = |f_n|$, we have as in (4.2) that

$$(4.13) f_n(z) = \sum_{k=0}^{\infty} c_{nk} w(z)^k, w(z) = \exp\left(-b\frac{\zeta+z}{\zeta-z}\right)$$

where b > 0 depends only on γ . The boundary of the horocycle

$$H = \{z : |z - \zeta/2| < 1/2\} = \{z : |w(z)| < e^{-b}\}\$$

has the form $\bigcup_{k=-\infty}^{+\infty} \gamma^k(A)$ for some arc $A \subset \mathbf{D}$. Hence

$$\sup_{z \in H} |f_n(z)| = \max_{z \in A} |f_n(z)| \qquad (n = 1, 2, ...)$$

by (4.13). It follows that f is bounded in H. Hence the angular limit is finite and $f \in \mathfrak{G}_0(\Gamma)$.

(b) Suppose that (4.3) is false. Then [13] there exist $\zeta \in \partial \mathbf{D}$ and c > 0 such that

$$\log f(z) = c \frac{\zeta + z}{\zeta - z} + o \left(\frac{1}{|\zeta - z|} \right) \qquad (z \to \zeta)$$

in every Stolz angle at ζ . Writing $s = (\zeta + z)/(\zeta - z)$ we deduce that

$$(4.14) \qquad \phi(s) = \log f(z) = cs + o(|s|) \qquad \text{as} \quad s \to \infty, \qquad |\arg s| < \pi/4.$$

Hence $\xi^{-1} \varphi(\xi w) \to c$ as $\xi \to +\infty$ locally uniformly in $\{\text{Re } w > 0\}$ and it follows by differentiation that $\varphi'(\xi w) \to c$. Thus we see that

$$(4.15) \phi'(s) \to c as s \to \infty, |arg s| < \pi/4.$$

We obtain from (4.15) by integration that ϕ is univalent in

$$\{\sigma < |s| < \infty, |\arg s| < \pi/4\}$$

for some σ and that the image domain contains some Stolz angle at ∞ and therefore a halfstrip (4.6). Hence it follows from (4.14) and Lemma 2 that ζ is a parabolic fixed point and that $\log f$ has the angular limit ∞ at ζ , in contradiction to the definition of $\mathfrak{G}_0(\Gamma)$.

(c) In order to show that (4.3) is best possible, we construct an increasing sequence of finitely generated Fuchsian groups Γ_n of the second kind. Their Ford fundamental domains F_n are symmetric with respect to **R**; there are finitely many cusps and the arc $(e^{-i\theta_n}, e^{i\theta_n})$ of $\partial \mathbf{D}$ is the only free side of F_n . We also construct a sequence $r_n \to 1-0$ such that, with $l_n(r) = \text{mes}(F_n \cap \{|z| = r\})$,

(4.16)
$$\int_{0}^{r_{n}} \frac{dr}{l_{n}(r)} > \frac{k \eta(r_{k})}{1 - r_{k}} \quad \text{for } k = 1, ..., n.$$

Suppose the constructions have been carried out up to n. Let C_n and C'_n be the circles orthogonal to $\partial \mathbf{D}$ from 1 to $e^{i\theta_n}$ and from 1 to $e^{-i\theta_n}$ and let γ_n^* be the parabolic transformation that satisfies $\gamma_n^*(C_n) = C'_n$ and for which C_n and C'_n are isometric circles. The group (Γ_n, γ_n^*) generated by Γ_n and γ_n^* is Fuchsian [4, p. 56] and of the first kind. Hence $l_n^*(r) = O((1-r)^2)$ as $r \to 1-0$. Thus we can find r_{n+1} with $(1+r_n)/2 < r_{n+1} < 1$ such that

(4.17)
$$\int_{\rho}^{r_{n+1}} \frac{dr}{l_n^{\star}(r)} > \frac{(n+1)\eta(r_{n+1})}{1 - r_{n+1}}.$$

Now we replace C_n and C'_n by circles from $e^{i\theta_{n+1}}$ to $e^{i\theta_n}$ and from $e^{-i\theta_{n+1}}$ to $e^{-i\theta_n}$ with $0 < \theta_{n+1} < \theta_n$. Let γ_{n+1} be the hyperbolic transformation for which these circles are isometric and let $\Gamma_{n+1} = \langle \Gamma_n, \gamma_{n+1} \rangle$. If θ_{n+1} is chosen sufficiently small then (see (4.17))

$$\int_{\rho}^{r_{n+1}} \frac{dr}{l_{n+1}(r)} > \frac{(n+1)\eta(r_{n+1})}{1-r_{n+1}}.$$

Since $l_{n+1}(r) < l_n(r)$, it follows that the inequalities (4.16) hold with n replaced by n+1. This concludes the construction of (Γ_n) and (r_n) .

Now the union Γ of all groups Γ_n has $F_0 = \bigcap F_n$ as its Ford fundamental domain, and since $l(r) \leq l_n(r)$ we obtain from (4.16) that

Let $f \in \mathfrak{G}(\Gamma)$. Then we obtain from Lemma 3 and (4.18) that

$$\log M(r_k) \ge -\log \frac{4}{\rho} + \frac{2\pi k \, \eta(r_k)}{1 - r_k} \qquad (k = 1, 2, ...)$$

so that

$$\log M(r) \neq O\left(\frac{\eta(r)}{1-r}\right) \qquad (r \to 1-0).$$

This proves the final assertion of Theorem 4 because of (4.10).

5. THE ANGULAR LIMIT POINTS OF Γ

Let $L_0(\Gamma)$ be the set of angular limit points of Γ ; see (1.4).

THEOREM 5. Let Γ be a Fuchsian group that is not both finitely generated

and of the first kind. Then $\partial \mathbf{D} \setminus L_0(\Gamma)$ has uncountably many points on each arc of $\partial \mathbf{D}$.

Proof. By conjugation, we may assume that 0 is not an elliptic fixed point of Γ and, by (1.5), we may assume that Γ is of divergence type. It follows then that Γ is infinitely generated. By Theorem 4, there exists a function $f \in \mathfrak{G}_0(\Gamma)$ and this function satisfies (4.3).

Since f is normal, it therefore follows from a result of Lohwater and the author [8, Theorem 3] that the set A of points where f has a finite or infinite angular limit has uncountably many points on each arc of $\partial \mathbf{D}$.

Let $\zeta \in L_0(\Gamma)$ and choose $\gamma_k \in \Gamma$ as in (1.4). If $f(z_1) \neq 0$ then

$$|f(\gamma_k(0))| = |f(0)| = 0, |f(\gamma_k(z_1))| = |f(z_1)| \neq 0$$
 $(k = 1, 2, ...)$

by (1.2). Since both $\gamma_k(0)$ and $\gamma_k(z_1)$ lie in some Stolz angle at ζ , we see that f cannot have an angular limit at ζ . Hence $A \cap L_0(\Gamma) = \emptyset$ and the assertion follows.

Remark. The set $\partial \mathbf{D} \setminus L_0(\Gamma)$ is Γ -invariant. Equivalence classes of points in $\partial \mathbf{D} \setminus L_0(\Gamma)$ were called ideal boundary points of \mathbf{D}/Γ by Constantinescu [3, p. 49]. It follows from Theorem 5 that, if \mathbf{D}/Γ is infinitely connected or of infinite genus, then there are uncountably many ideal boundary points in this sense. It is, however, easy to construct a Riemann surface of infinite genus (a semi-infinite string of tori) that appears to have only one ideal boundary point in an intuitive sense. Thus it seems that Constantinescu's definition is too general.

Purzitsky [14] has studied the unexpected difficulties that arise in connection with ideal boundaries for infinitely generated Fuchsian groups.

REFERENCES

- 1. A. F. Beardon and B. Maskit, Limit points of Kleinian groups and finite sided fundamental polyhedra. Acta Math. 132 (1974), 1-12.
- 2. M. Brelot and G. Choquet, Espaces et lignes de Green. Ann. Inst. Fourier (Grenoble) 3 (1951), 199-263.
- 3. C. Constantinescu, Über die Klassifikation der Riemannschen Flächen. Acta Math. 102 (1959), 47-78.
- 4. L. R. Ford, Automorphic functions, Chelsea, New York, 1951.
- 5. W. K. Hayman, Some remarks on Schottky's theorem. Proc. Cambridge Philos. Soc. 43 (1947), 442-454.
- 6. ——, Multivalent functions, Cambridge Univ. Press, Cambridge, 1958.
- 7. O. Lehto and K. I. Virtanen, Boundary behaviour and normal meromorphic functions. Acta Math. 97 (1957), 47-65.
- 8. A. J. Lohwater and Ch. Pommerenke, On normal meromorphic functions. Ann. Acad. Sci. Fenn. Ser. A I No. 550 (1973), 1-12.
- 9. Ch. Pommerenke, Estimates for normal meromorphic functions. Ann. Acad. Sci. Fenn. Ser. A I No. 476 (1970), 1-10.
- 10. —, On normal and automorphic functions. Michigan Math. J. 21 (1974), 193-202.

- 11. ——, Univalent functions, Vandenhoeck & Ruprecht, Göttingen, 1975.
- 12. ——, On the Green's fundamental domain. Math. Z. 156 (1977), no. 2, 157-164.
- 13. ——, On the growth of normal analytic functions, J. Analyse Math. 36 (1979), 227-232.
- 14. N. Purzitsky, Fricke polygons for infinitely generated fuchsian groups, preprint.
- 15. L. Sario and M. Nakai, Classification theory of Riemann surfaces. Springer, New York, 1970.
- 16. M. Tsuji, Potential theory in modern function theory, Maruzen, Tokyo 1959.

Technische Universitat Berlin Fachbereich 3-Mathematik Strasse de 17 Juni 135 1 Berlin 12, WEST GERMANY