ON FUCHSIAN GROUPS OF DIVERGENCE TYPE

Ch. Pommerenke

1. INTRODUCTION

Let ' be a Fuchsian group in the unit disk D with identity .. We assume
throughout that 0 is not an elliptic fixed point and denote by p the radius of
the maximal disk {|z]| < p} that does not contain I'-equivalent points. We also
assume that I' does not have a compact fundamental domain, so that D/I is
an open Riemann surface.

If T is of convergence type, that is if = c.(1 — |v(0)]) <o, then the Blaschke
product

0
1.1 gz =2z ] Ol

) (z€D)
e o) T

is called the Green’s function of T" with respect to 0; the positive harmonic function
—log| g(2)| corresponds to the Green’s function on D/T.

Let now I' be of divergence type; in the terminology of classification theory
this means that D/T € O,;. We consider analogues of Green’s functions; their
harmonic counterparts on D/I" are, for instance, the Evans function [15, p. 350]
and Tsuji’s modified Green’s function [16, p. 455].

Let G (') denote the class of all functions f(z) = z + a,2” + ... analytic in D
with

1.2) [fy@)| =|f@)| for ~€E€T, z€ED

such that | f(2)| is bounded away from 0 in D\ U v(D,) for a suitable disk

vyer
D, around 0.

We shall show that the bounds in the last condition are actually only dependent
on p (see Theorem 3). Every function f € &(I') is normal, and there is a natural
fundamental domain associated with it (see Theorem 2). Perhaps the main result
(Theorem 4) is that the functions f € & (I') that remain bounded at the parabolic
vertices satisfy the best possible estimate

(1.3) log™ | f(2)| =o( ) as |z|->1-0.

1—|z]

Let L,(I') denote the set of all { € D for which there exist vy, € I" with
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1.4) wOea (k=12.), v0->{ (¢k->x

for some Stolz angle A at { (angular limit points, or points of approximation).
Constantinescu [3, Section 52] and Tsuji [16, p. 535] have shown that

(1.5) I is of divergence type < mes L,(I') = 2.

Beardon and Maskit [1, Theorem 2] have proved that, for finitely generated groups
of the first kind, every point on 4D belongs to L,(I') except for the countably
many parabolic fixed points. We shall deduce from (1.3) that dD\\ L, (I') is uncount-
ably dense on oD if I' is not finitely generated of the first kind (Theorem 5).

2. LEVEL SETS AND FUNDAMENTAL DOMAINS

Let f € & (). It follows from (1.2) that, for y € T,
21) A - [v@II)IF ) =0 = [2]*)]v @ F @) =1 - [2)) G

Since (1 — |z|?)| ' (2)| is clearly bounded in D, and thus in |J v(D,) and since

i vyE
| £(2)| is bounded away from zero in the complement, it follows [9, Lemma] that

f is normal in D; this means that [7]
sup (1 — 2| ) F' @I/ A + | F@)*) <.
Now let f i)e an analytic function satisfying (1.2). Then the level set
(2.2) H,={z€D:|f(2)| <R} (0 <R < +x)

is invariant under I'. Let G, be the simply connected component of Hj that contains
0 and let ¢ be the univalent function that maps D onto Gy such that ¢;(0) = 0,
¢ £(0) > 0. Then

(2.3) I'p= {¢;1°'Y°¢R:'Y €T, ~v(Gg)=Gg}

is a group of Moébius transformation of D onto D, and it follows from Schwarz’s
lemma that {|z] < p} does not contain I'p,-equivalent points. Hence I';, is a Fuchsian
group in D.

THEOREM 1. Let T be of divergence type and let f be a non-constant normal
analytic function with | foy| = | f| for v € I. Then I’y is of convergence type, and
(2.4) &r(2) = R7 f(dr(2)) (z € D)

is an inner function. If f € & () then gy is the Green’s function (1.1) of Ty

An inner function is an analytic function in D that is bounded by 1 and whose
angular limit is of modulus 1 almost everywhere.



FUCHSIAN GROUPS 299

Proof. It follows from (2.2) and (2.4) that |g;(2)| < 1 for z € D. Suppose that
Zr is not an inner function. Then there is a set A C dD with mes A > 0 such
that the angular limits &;(), g5 (0) exist and |g, ()] <1 for all { € A.

Let now { € A and set S= [0,{). Then ¢,x(S) is a curve from 0 to
o = dgp({) € 0G,. We see that |w| = 1, because | gz ()| < 1 but

€)= R f(dr2)| =1 for 2z €D N 3Gy.

If z€ S, z— { then w = dz(2) € dz(S), w— o and f(w) = Rg(z) = Rgr(0).
Since f is normal, it follows from a theorem of Lehto and Virtanen [7], [11,
p. 268] that f has the angular limit Rg,({) at w. Since f is non-constant and
since | f(v(2))] = | f(2)] for v € T, we therefore see from (1.4) that o & L,(I).

Hence it follows from (1.5) that mes ¢z(A) = 0. Since |r(2)| <1 for |z] <1
and |$(0)| = 1 for { € A, an extended form of Lowner’s lemma therefore shows
that mes A = mes ¢,(4) = 0, which contradicts our assumption.

It is clear that | gzoB| = | gx| for B € I';. Since g is bounded and non-constant,
it follows (for instance from (1.5) and Fatou’s theorem) that I';, is of convergence
type.

Let now f € &(I') and let g; be the Green’s function of T',, with respect to
0. Since g} is a Blaschke product with the same zeros as g, we see that h, = g,/8x
is also an inner function. The definition of &(I') shows that

|he(2)| = |gr(@)| = R7| f(dr(2))| > c; >0

if 2 & Bodgr (D,) = bz oy(D,) for B € T'y; see (2.3). Hence |A,| is bounded away
from zero in D because this is trivially true in (b,}l (D,) and therefore in

U Bo br(D,).

Bel'p

An inner function that is bounded away from zero in D is a constant of modulus
1. Since, by (2.4),

hp(0) = g4(0) /g% (0) = Rb,(0) /g5’ (0) >0

it follows that A,(z) = z and thus that g, = g5.

The domain F in D is called a fundamental domain of T if FN v(F) =@
fory €T, v # v and if

(2.5) area (D\ U~ (F)) =0.

~ET

As the referee kindly pointed out this condition does not, in general, imply that
every point of D belongs to y(¥) for some y € I'. Therefore our definition does
not quite agree with the usual one; the same remark applies to [12, Theorem
1].
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THEOREM 2. Let T be of divergence type and let f € &(I'). Then there exists
a fundamental domain F of T’ with '

(2.6) {lz] <p/6} C F
such that f is univalent in F and the image domain f(F) is starlike with
2.7) area (C\\f(F)) = 0.

The domain F is the analogue of Green’s fundamental domain [12, Theorem
1] for groups of convergence type which is essentially due to Brelot and Choquet

[2].

Proof. Let F' be the union of all halfopen arcs that begin at 0 and along
which

(2.8) arg f(z) = const.

It is easy to see that F is a domain with F N y(F) =@ for vy € T, ¥ # . and that
f maps F one-to-one onto a starlike domain.

By Theorem 1, the function g, = R™' fo, is the Green’s function of I';. By
(2.2) and (2.8), F N Gy is the union of all arcs from 0 with arg f(z) = const
and 0 <|f(2)] <R. Hence b (FN Gg) is the union of all arcs from 0 with
arg gx(2) = const. But this is, by definition, the Green’s fundamental domain Fj
of I'y. Hence we have

2.9 FNGy=0dg(Fy) (O<R<o).

Using (2.3) we therefore see that

U~Y®E D UYFNGR) D |J ¢xoB(FR) = ¢z(D\E)

yET vyEr BETR
where area £ = 0. Since Gy = ¢,(D) it follows that
area(D\ U ‘y(F)) =< area (D\ Gy),
~ET

and this tends — 0 as R — o because f is analytic in D. Hence (2.5) is satisfied.

We obtain from (2.9) that, for 0 < R < oo,‘

area({Jw| < R} \\ f(F)) = R? area (D\\ g5 (F)),

and this is = 0 because F}, is the Green’s fundamental domain of I';. Hence (2.7)
follows. We postpone the proof of (2.6) to the next section.
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3. ESTIMATES

For z € D, let p(z) denote the largest number such that

<p(2)}

contains no I'-equivalent points; we set p(z) = 0 if z is an elliptic fixed point.
In particular we have p(0) = p.

THEOREM 3. Let T be a group of divergence type and let f € &(I'). Then

— 2

(8.1) {ge D:

1
(3.2) | f(2)] = " min (p, meip lv ))),

29
(3.3) (1 —|2|*)| ' )] = 2 max (| f(z)[,l)(log+|f(z)| + —)
p

for z € D and also
R 12
(3.4) 1 — |z|°)| f’ (2)) = ——max (| f(2)|,1).
p(2)

Remarks. 1. The above results hold also if I' is of convergence type and
f(z) = g(2) /g’ (0) (z € D) where g denotes the Green’s function (1.1); compare [10].

2. We conclude at once from (3.4) and (3.2) that & (') is compact with respect
to locally uniform convergence.

The proof is based on the theory of (circumferentially) mean univalent functions

[6, Chapter 5]. The analytic function 2 is called mean univalent in the domain
H if

1 (% .

(8.5) — n(Re® H)do = 1 (0 <R < 4x)
2w ),

where n(w,H) denotes the number of zeros of h(z) — w with z € H.

LEMMA 1. Every function f € &(I) is mean univalent in every domain H C D
that does not contain I'-equivalent points.

Proof. We consider the fundamental domain F of Theorem 2 and set

(3.6) Hy=Hn U v(&F).

~yET

Then {z € H,:| f(z)| = R} is the disjoint union of open sets v,(C,) with C, C F
and distinct v, € I'. The sets C,, are disjoint because H does not contain I'-equivalent
points. Hence we obtain from (1.2) that
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2% 2
S n(Re”,H,)do = > S n(Re®,C,)do

/] k (3]

IA

2
S n(Re®,F)d6 < 2«
0
because f is (strictly) univalent in F. It follows from (2.7) and (3.6) that

27
X n(Re®, H\ H,)do = 0.

o

Hence (3.5) is satisfied.

We need the following results of W. K. Hayman for functions 2 mean univalent
in D: If h(s) = s + ... then [6, p. 99]

3.7) bl e = —
a+ |.5'|)2 1 - |s|)2
(3.8 | (s = — 5]
. SN =
a-|sp?

If h(s) # O for |s| < 1 then [6, p. 95]

1+ |s|

(3.9) Rh'(s)| =4|h(0 .
76 = 41AO1 T o5

Proof of Theorem 3. (a) Since {|z| < p} does not contain I'-equivalent points,
the function
(3.10) h(s) =p 'flps) =s+ ... (Js| < 1)

is mean univalent in D, by Lemma 1. Hence we obtain from (3.7) that, with
z = ps,

(3.11) @l =olhe = —2E L e <o
1+ |s))®> 4

Therefore it follows from (1.2) that, for y € T,

(3.12) [fR) =@1/4) |vER)| if |y <p
The function 1/f is a}malytic and bounded in

(3.13) G, ={z€D:|y()|>p for ~vyeT}

by the definition of & (I'). Furthermore |1/f(2)] =4 /p for z € D N G by (3.12).
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Since dD has zero harmonic measure [16, p. 530] with respect to G,, it follows
that |1/f(z)| = 4/p for z € G,. Together with (3.12), this proves (3.2).

(b) Applying (3.8) to the function (3.10) we obtain that
A= @I =|f @) =|n"(/p)] =12
for |z| = p/2. Hence it follows from (2.1) that
(3.14) 1—-z]))|f @) <12 for z¢&G,
where (compare (3.13))
(8.15) G,={z€D:|y(@)|>p/2 for ~€eT}.

We obtain from (3.11) as in (a) that | f(z)| = 2p/9 for z € G,. Hence we conclude
from (3.14) and [9, Lemma] that
27 )
+ —
P

29
= 2|f(2)|(10gl f@)|+ T)

9f (2)

2p

1= 12|)f @) = 2If(z)l(log

for z € G,. Together with (3.14), this proves (3.3).

(c) We fix now 2z € G, and set r = p(z) /3. The definition of p(z) shows that
|v(2)] + p = p(2) for v € T. Therefore we obtain from (3.15) that

z—~""(0)

|y ()| + p _ p(@)
1—zy7H(0) B

3 3

=y (2)| = r

for vy € T. It follows that

z2+rs

h(s)=f( )#O for s € D.

1+ Zrs

This function is mean univalent in D by the definition of p(z) and by Lemma
1. Hence we obtain from (3.9) that

) 1 4 12
1= 1291 f @) =— | (0] =—[rO)] = ——| ()],
r r p(2)

and, together with (3.14), this proves (3.4).

Proof of (2.6). Suppose that D, = {|z] < p/6} does not completely lie in the
fundamental domain F. Then D, intersects v(F) for some y € '\ {1}, say at z,.
We consider the curve C C y(F) through z, along which arg f(z) = const. Since
C begins at y(0) and since |y(0)| > p, there exists z, € C with
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(3.16) |2;] = p, | F(22)] < | flz))].

Applying (3.7) to the function (3.10) we obtain from |z,| < p/6 that

|2, | 6p P
< ———

(2)] =—— 21—
e = e~ "4

whereas (3.11) shows that | f(z,)| = p/4, in contradiction to (3.16).

4. ESTIMATES FOR THE GROWTH

Every normal analytic function f satisfies

“4.1) log+|f(z)|=0( ) as|z|]>1-0

1 - ||
as Hayman [5] has shown. The problem whether (4.1) can be improved for functions
in & (I') depends on their behaviour at the parabolic fixed points.

Let f € G (') and let v € I' be parabolic with fixed point {.'It follows from
(1.2) and (4.1) by standard arguments that

(4.2) fi@)=w()™" 2 c,w(z)®, w(z) =exp (—b L z)
k=0

{— 2

with ¢, # 0 for suitable b > 0 and a = 0; the case a <0 is excluded by (3.2). If
a > 0 then

llnln sup (1 - |z])log™| f(z)] =2ab>0

so that (4.1) cannot be improved. If @ = 0 then f has the finite angular limit
¢, at .

Let &,(I') denote the class of f € G(I') that have a finite angular limit at
each parabolic fixed point of I'. The above paragraph shows that &,(') =@ if
I' is a finitely generated group of divergence type.

THEOREM 4. Let T be an infinitely generated group of divergence type. Then
S, (T) #@, and if f € &,(T) then

4.3) log™ | f(2)| = o( ) (Jz|—> 1 - 0).

1 - |z

This estimate is best possible: For every function v with n{r)—> +0 (r— 1 — 0),
there exists a group T such that, for all f € &(I),
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n{lz])
1-—|z|

(4.4) log* | F(2)] # o( ) (jz|— 1 — 0).

The estimate (4.3) can be improved if we make further assumptions about
I'. For instance, if p(z) = p, > 0 for z € D, then we obtain by integration from
(3.4) that

(4.5) log* | f(2)| = O (log ) (|z|— 1 - 0).

1 -z

We need two lemmas in order to prove Theorem 4.

LEMMA 2. Let f € &(I'). Suppose that h = log f is analytic and univalent in
some domain H C aD with oH N aD = {{} and that

(4.6) hH)={w:Rew>u,, vy<Imw<uv, +\,}, A > 2w,

Then { is a parabolic fixed point for I and f has the angular limit © at ¢,
Proof. Let A be an analytic arc in H such that

hiA) = {Rew=uy,vo=Imw=v,+N,} C h(H), \,>2m.
Let F be the fundamental domain of I' constructed in Theorem 2 and let H, be

defined by (3.6). Then mes[A N (H\\ H,)] = 0 by Theorem 2, and A N H, is the
disjoint union of open sets v, (C,) with C, C F and distinct v, € TI. It follows that

4.7) Xo =Im > X B ()dz=Im > S r ) dz
k Cp f(2)

vr(Ch) k

because A’ (z) = f/(2)/f @) = v, (2) ' (v, (@) /f (v, (2)) by (1.2).

Since | f(2)] = e"° for z € C, and since f is univalent in F, we conclude from
(4.7) that the sets C, C F cannot be disjoint because A\, > 27. Hence there exists
z, € C, N C, with k& # I. The points 2, = v,(2,) and z, = v,(z,) lie in A, and

(4.8) 2, =707, () =v(), v=vevi'€\{i}).
Let C;(j = 1,2) be the curves in H from z; to { defined by
(4.9) h(C;) = {up=Rew <+, Imw =Imh(z)}.
It follows from (1.2) that A(v(z)) = h(2) + ib for some b € R. Hence
h(v(C))) = h(C,) + ib = h(C,),

by (4.8) and (4.9). Since £ is univalent in H we conclude that C, = v(C, ). It follows
that { = y({) because C, and C, both end at (.
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Since f(z) > o as z— {, z € C, and since f is normal, the theorem of Lehto
and Virtanen [7] shows that f has the angular limit © at {. Hence { cannot
be a hyperbolic fixed point so that v is parabolic.

LEMMA 3. Let T’ be of divergence type with Ford fundamental domain F,.
We denote by I(r) the total length of L(r) = Fy N {|z] =r} (0 <r<1). Let f € &(I)
and set

(4.10) M(r) = max | f(z)|

for 0 <r<1. Then

"o dt 4
(4.11) . 2% X —— < log — + log M (r).
o L) P

Proof. Since I'-equivalent boundary points of F, have the same distance from
0, we see that

S ') _
dz = 2wi o<r<i).
L{r) f(2)

Hence we obtain from Schwarz’s inequality that

4w < I(r) S @ |dz |
L(r) f(2)
and therefore
r dt ’ 2
4x® S — = S S G, dxdy.
p L@ Fn{p<|zl<r} f(2)

By Lemma 1, (3.2) and (4.10), this is bounded by

dudv 4
X S = 2 (log M(r) + log —) .

p/4<|w]|<M(r) |w] > P

Proof of Theorem 4. (a) Let T = {v,:v € N} and let I', be the group generated
by vys --.» ¥, Since the Ford fundamental domain of T, contains that of I, it has
infinite non-euclidean area (because T is infinitely generated). Hence T, is of
convergence type. Let g, denote its Green’s function (1.1).

We see from Remark 1 after Theorem 3 that the functions

(4.12) f.2)=g,)/g,0)=z+.. (2€D)

form a normal sequence. If f(z) = z + ... is the limit of a convergent subsequence
it follows from (3.2) that f € &(I).
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Let now { be a parabolic fixed point and let v be a generator of the stabilizer
of {inT. Theny € T, for n > n,. Since the function f, isbounded and | f,ovy| = | f..|,
we have as in (4.2) that

> +
(4.13) f.(2) = 2 c,,kw(z)k, w(z) = exp(—b c+e )
k=0

{— 2
where b > 0 depends only on v. The boundary of the horocycle

H={z:]z— (/2] <1/2} = {z:|w(2)| <e”°}

+oo

has the form | ~*(A) for some arc A C D. Hence

k=—o
sup | £, ()] =max |f. ()] (n=12..)
by (4.13). It follows that f is bounded in H. Hence the angular limit is finite

and f € G,(I).

(b) Suppose that (4.3) is false. Then [13] there exist { € oD and ¢ > 0 such
that

log f(2) = c— % + ( - ) (1 0)
ogf\iz)==¢ o Z2—>
{—z 1L — 2|

in every Stolz angle at {. Writing s = ({ + 2) /({ — z) we deduce that
(4.14) o (s) =log f(z) = cs+ o(]s]) as s— oo, larg s| < w/4.

Hence £ '¢(fw) — ¢ as £ — +o locally uniformly in {Re w > 0} and it follows
by differentiation that ¢’ (Ew) — c. Thus we see that

(4.15) o' (s)—> ¢ as §— o, larg s| < w/4.
We obtain from (4.15) by integration that ¢ is univalent in
{o < |s| <, |arg s| < w/4}

for some o and that the image domain contains some Stolz angle at « and therefore
a halfstrip (4.6). Hence it follows from (4.14) and Lemma 2 that { is a parabolic
fixed point and that log f has the angular limit « at {, in contradiction to the
definition of &, (I).

(c) Inorder toshow that (4.3) is best possible, we construct an increasing sequence
of finitely generated Fuchsian groups I',, of the second kind. Their Ford fundamental
domains F, are symmetric with respect to R; there are finitely many cusps and
the arc (e *°~,e”") of aD is the only free side of F,. We also construct a sequence
r,— 1 — 0 such that, with [, (r) = mes(F, N {|z]| =r}),
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(4.16)

= dr kq(r,)
S L for k=1,...,n.

>

o (1) 1—-r,

Suppose the constructions have been carried out up to n. Let C, and C/ be
the circles orthogonal to D from 1 to e~ and from 1 to e ®~ and let v* be
the parabolic transformation that satisfies v}, (C,) = C, and for which C, and
C, are isometric circles. The group (T',,v. ) generated by ', and v is Fuchsian
[4, p. 56] and of the first kind. Hence {3 (r) = O((1 — r)?) as r— 1 — 0. Thus
we can find r,,,, with (1 +r,)/2 <r,,, <1 such that

(4.17)

S’"“ dr (n+ Dn(r,.,)
> .

P l:(r) l_rn+1

Now we replace C, and C’, by circles from e+t to €° and from e *°»*! to
e~ with 0 <9,,, <#6,. Let~,,, be the hyperbolic transformation for which these
circles are isometric and let ', ., = (T ,,v,..1 ). If 0,,,, is chosen sufficiently small
then (see (4.17)) '

S"nu dr (n + 1)’1’](7‘,,.,.1) /
> .

p ln+1(r) 1—-r..

Since I, ,(r) < 1,(r), it follows that the inequalities (4.16) hold with n replaced
by n + 1. This concludes the construction of (I',) and (r,).

Now the union I' of all groups I', has ¥, = () F, as its Ford fundamental

domain, and since I/(r) < [, (r) we obtain from (4.16) that

(4.18)

I(t) 1-r,

e dt En(r,)
S t > k=12..).

p

Let f € &(I'). Then we obtain from Lemma 3 and (4.18) that

4  2mkn(r,)
log M(r,) = —log — + ————  (k=1,2,...)
P 1-r,
so that
[ @)
log M (r) # 0(1“ ) (r— 1 —0).
- r

This proves the final assertion of Theorem 4 because of (4.10).

5. THE ANGULAR LIMIT POINTS OF I

Let L,(I') be the set of angular limit points of I'; see (1.4).
THEOREM 5. Let I be a Fuchsian group that is not both finitely generated



FUCHSIAN GROUPS 309

and of the first kind. Then D\ L,(I') has uncountably many points on each arc
of aD.

Proof. By conjugation, we may assume that 0 is not an elliptic fixed point
of I and, by (1.5), we may assume that I" is of divergence type. It follows then
that I" is infinitely generated. By Theorem 4, there exists a function f € &, (I
and this function satisfies (4.3).

Since f is normal, it therefore follows from a result of Lohwater and the author
[8, Theorem 3] that the set A of points where f has a finite or infinite angular
limit has uncountably many points on each arc of aD.

Let { € Ly(I') and choose v, € T as in (1.4). If f(z,) # O then

[F O] =|fO]=0, [flwD]=1fE)#0 (k=12,..)

by (1.2). Since both «,(0) and v,(z,) lie in some Stolz angle at {, we see that
f cannot have an angular limit at {. Hence A N L,(I') = @ and the assertion follows.

Remark. The set aD\ L, (I') is I'-invariant. Equivalence classes of points in
dD\ L, (') were called ideal boundary points of D/T" by Constantinescu [3, p.
49]. It follows from Theorem 5 that, if D/T is infinitely connected or of infinite
genus, then there are uncountably many ideal boundary points in this sense. It
is, however, easy to construct a Riemann surface of infinite genus (a semi-infinite
string of tori) that appears to have only one ideal boundary point in an intuitive
sense. Thus it seems that Constantinescu’s definition is too general.

Purzitsky [14] has studied the unexpected difficulties that arise in connection
with ideal boundaries for infinitely generated Fuchsian groups.
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