ORTHOGONAL PAIRINGS OF EUCLIDEAN SPACES

Sergey Yuzvinsky

I. INTRODUCTION

1.1. By R"” we denote n-dimensional Euclidean space. An orthogonal pairing
is a bilinear map p:R™ X R” — R?, such that ||n(x,y)|| = x| | ¥]. We say that
has type [m,n,p] oris an [m,n, p]-pairing. An orthogonal pairing is non-degenerate
in the sense that w(x,y) = 0 implies either x = 0 or y = 0. In this paper we study
the problems of existence and classification of [m,n,p]-pairings for some positive
integers m, n, p.

1.2. There are many mathematical problems where orthogonal pairings appear.

a) Orthogonal pairings are the main tool for the construction of vector fields
on spheres and projective spaces (see Section 2).

b) The T-algebras of rank 3 constructed by E. B. Vinberg for studying homoge-
neous cones are reduced to orthogonal pairings [15].

¢) Anyquadratic mapping from a sphere to a sphere is homotopic to the quadratic
mapping constructed in a standard way from an orthogonal pairing [16].

d) Any orthogonal (and even any non-degenerate) [m,m,p]-pairing generates
an elliptic linear system of m differential equations of first order with m unknown
functions of p variables [14, p. 273].

1.3. A. Hurwitz [7] and J. Radon [13] gave a complete answer on the existence
question for [m,n,n]-orthogonal pairing: it exists if and only if m = p(n), where
p(n) is the Hurwitz-Radon number equal to 2°") 1 8d(n), where

n=2"16"n,, O=c(n)=<3, d@®») =0, n,odd

The result was proved also by Eckmann [5] with the help of representations
of finite groups and by Atiyah, Bott, Shapiro [2] with the help of classification
of Clifford modules. A classification (trivial) of [m,n,n]-orthogonal pairing is given
in these papers too.

There are only partial results for the general case. Beherend [3] and H. Hopf
[6] have proved in two different ways necessity of the following condition on
m, n, p for existence an orthogonal (or even non-degenerate) [m,n,p]-pairing:
Cj =0 (mod 2), p — m < k < n. If either m or n is <8 the condition is sufficient.
A lot of papers [10], [11], [4] are devoted to necessary conditions for existence
and to constructions of non-degenerate pairings (V. S. Pjasetzky has some m{pub-
lished results on orthogonalization of these pairings). '

1.4. The plan of the paper is the following. In Section 2 we give a necessary

Received March 5, 1980. Revision received May 22, 1980.
Michigan Math. J. 28 (1981).

131



132 S. YUZVINSKY

condition for the existence of such a pairing independent of the Beherend-Hopf
condition and generalizing the Hurwitz-Radon condition. For that we use a standard
procedure, well known in topology. The main subject of Section 3 is algebraic:
we study addition of subsets in the dyadic group as a method for the construction
of pairings. The Beherend-Hopf condition appears unexpectedly again as the
necessary and sufficient condition on cardinalities of subsets. We give also examples
of existence and nonexistence of pairings of some types. In Section 4 we define
an equivalence relation of pairings, find some invariants of the equivalence,
introduce algebras connected with pairing, and classify pairings of low dimensions.

2. NECESSARY CONDITIONS FROM FIBRE BUNDLE THEORY

Let pn:R™ X R” — R” be an orthogonal pairing. Let us fix in R™ an orthogonal
basis {e,,e,,...,e,,_;} and put A;x = n(g;,x),i=0,1,...,m—1,x€ R”. Let us de-
note by S?7* the unit sphere of R” and by S" ' the image of the unit sphere
of R” by action of A,. Since the operator A, is orthogonal S** is embedded linearly
into S”~'. The operators 4,4, ", i =1, ..., m — 1 are defined on S" " and generate
there m — 1 mutually orthogonal vector fields tangential to S?~*. Since the fields
are skew they generate fields tangential to RP”™" defined on RP"™' (which is
linearly embedded into RP?™').

Let us denote by £, the canonical (Hopf) vector bundle on RP*. Using a standard
procedure (see for example [12]) we obtain the following theorem.

THEOREM 1. If there exists an orthogonal [m,n,pl-pairing then there exists
a trivial m-dimensional subbundle (with the base RP"™') in P§,_,.

Now for any positive integer k let us denote by e(i?,) the number of all integers
lsuch that 0 <l=kandl=0,1,2,4(mod 8). Then we have (see [1], [12]).

COROLLARY. Under the conditions of Theorem 1,
(2.1) Ci=0(mod2°" V"), p-m<k=en-1)

Remark 1. 1In order to prove (2.1), Grothendieck operations in K-theory were
used in [1, 12]. Using in the same way the Stiefel-Whitney classes one can obtain
another proof of the Beherend-Hopf condition.

Remark 2. Since the definition of pairing is symmetric in m and n we can
get a new necessary condition from (2.1) by interchanging m and n:

(2.2) C} =0 (mod gelm—Dmk+1y p—n<k=e(m-—1).

Remark 3. Generally speaking conditions (2.1) and (2.2) are independent of
the Beherend-Hopf condition. If n = p then condition (2.2) is equivalent to the
Hurwitz-Radon condition. Therefore it is stronger in that case than the Beherend-
Hopf condition and is sufficient.

Example. For the triplet (10,12,16), the Beherend-Hopf condition, (2.1) and
(2.2) are all true. But even non-degenerate [10,12,16]-pairings do not exist (see
Table II and Remark 3.5 in [11]).
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3. MONOMIAL PAIRING. ADDITION OF SUBSETS IN THE DYADIC GROUP

3.1. Let n:R™ X R"— R” be an orthogonal pairing. We say it is monomial
if there exist orthogonal bases A = {a;}[2,, B= {b,}].,, C = {¢, };-, in the spaces

F=1
R™, R”, R? such that p(A X B) C C U (—C). Such a triplet of bases will be called
multiplicative.

Remark 4. If p = n all pairings are monomial.
3.2. If (A,B,C) is a multiplicative triplet of bases for a monomial pairing
p then two maps are defined:
¢:AXB— C, €e:AXB— {1,—-1},
where 1 (a,b) = €(a,b) ¢(a,d), (a,b) € A X B. The pair (¢,e) is said to be a basic
pairing for ..

THEOREM 2. Let A, B, C be finite sets, :A X B— C, e:A X B— {1,—1} be
maps. The pair (¢,e) is a basic pairing for a monomial pairing if and only if
the following three conditions are true:

3.1) for any a € A (b € B) the map ¢| .5 (®| 4xs) 18 injective,

3.2) ¢(a,,b,) = ¢l(a,,b,) (a; € A, b, € B, i=1,2) implies ¢ (a,,b,) =¢ (a,,b,),
3.3) ¢la,,b,) = ¢la,,b,) impliese(a,,b,) - €(a,,b,) = —€(a,,b,) e(a,,b,).

The proof of the theorem is a direct verification (compare [17, Lemma 1).

3.3. It is natural to begin the construction of monomial pairings with a
consideration of functions ¢ satisfying conditions 3.1 and 3.2. One can get a large
class of examples of such functions from addition of finite subsets of the dyadic
group D, that is, the Abelian group with a countable set of generators of order
two. More precisely, the next lemma is obvious.

LEMMA 1. Let A, B, C be finite subsets of D, A+ B C C. Then the map
¢:A X B— C defined by the formula
¢(a,b) =a+ b, ac A bEB
satisfies the conditions 3.1 and 3.2.

Remark 5. As a matter of fact, addition of subsets of D generates a multiplica-
tion of linear subspaces in the group algebra of D over any field.

Now we will give a complete solution of a question about the sizes of the
sets A, B, C.

Definition. A triplet (m,n,p) of nonnegative integers is said to be pure if either

mn = 0 or m, n < p and the Beherend-Hopf condition is true, thatis C ; = 0 (mod 2),
p—m<k<n.

THEOREM 3. For a triplet (m,n,p) of nonnegative integers the following
conditions are equivalent:

(1) (m,n,p) is pure,

(2) there exist finite subsets A, B, C of cardinalities m, n, p in D such that
A+BcCC.
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First we will prove some lemmas. The proofs of Lemmas 2, 3, 4, 6 are

straightforward and use only simple properties of binomial coefficients; Lemma
8 is the main one.

LEMMA 2. If (m,n,p) is pure then (n,m,p) is pure.
LEMMA 3. If (m,n,p) ispure, m’ =m,n’ <n, p’ =p then (m’,n’,p’) is pure.
LEMMA 4. (m,n,p) is pure if and only if (2m,2n,2p) is pure.

LEMMA 5. If (m,n,p) is pure and t is a positive integer such that m, n, p, < 2*
then (m,2° — p,2° — n) is pure.

Proof. Let us assume to the contrary that p < 2‘ and that an integer r does
exist such that p —n<r<m and Cj_, =1 (mod 2) (if m > 2’ — n one can put

r=2'—n). By a lemma of Beherend (see [3]), r is a partial sum for 2° — n i.e.
t

ifr=2 ;2,2 —n = Zt 8,2 where o, B, = O or 1 then B, = 0 implies o; = 0
oo X4 im0 Pi ir Pi i p i .
It follows that r is a partial sum for » + n — 1 hence C.,,_, =1 (mod 2). Since
r+n—1=<pandp—n<r<mwe have a contradiction.

LEMMA 6. If (m,n,,p,) and (m,n,,p,) are pure then (m,n, + n,,p, + p,) is
pure.

LEMMA 7. If (m,n,p) is pure, k, t are positive integers such that 2° ' < m =< 2/,
n==Fk2 +n,, p==~k2 + p, where0 <n,,p, <2’ then (m,n,,p,) is pure.

Proof. It is sufficient to consider the case when n, > 0. Let us prove first
that m < p,. If m were greater than p,, since p, is a partial sum for p and
p,>p—n=p, —n,;, we would have a contradiction with the purity of (m,n,p).

Let us assume now that a positive integer x does exist such that
pp—n=p—n<x<m and C,, =1 (mod 2).

It is clear that C, = 1 (mod 2), but this again contradicts purity of (m,n,p).

LEMMA 8. If (m,,n,,p,), (my,n,,p;), (m,,n,,p,), (my,n,,p,) are pure then
(m, + m,, n, + n,, p, + p,) is pure.

Proof. Let us assume for definiteness that m, = m,, n, < n,. If either p, < p,
or m, =m, or n, = n, then the lemma follows from Lemmas 2, 3, 4. Therefore
we shall assume that p, > p,, m, < m,, n, < n,. Let us introduce now some nota-
tions which we will use only for this proof. N denotes the set of all nonnegative inte-
gers. If a € N then a(i) is the signs of the binary representation of a that is

I(a) .
a=> a2 where a(i) =0 or 1, i=0,1,..,1(a) — 1, a,, = 1. We call I(a)
i=0
I(a)
a(i). Forr,s € N,

i=0

the length of a, by the height of a we mean the sum h(a) = 2
r—1

O=s<r=1Ila)+1, we put a,=2‘_
a C [s,r) N N and ai) =1, i € a, then we put

. a@)2,a”=a—-a.,ars)=a® —a”. If

a(r,s,a) = 2 a(i)2'.

i€ [rs)NN—a

If b€ N, I(b) =l(a) and b(i) = 1 implies a(i) = 1 then we write b C a. Finally,
ifx € N, 0<x< a, we put
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U,x=min{y € N|y>x,yC a}, D,x =max{y€ N|y<ux,yC a}.

We need the following technical lemma.

LEMMA*. Leta,b,c,d,r€ N,r<l(a),a(r)=1,b6C a,,c+d<a,+ b.Then
Uyec+U,d=2"+0>.

Proof of Lemma*. Let us apply induction on A(b). First let A(b) = 0, that is
b=0,c+ d<a, We denote by s the greatest number from N such that ¢, = a,
and put

A={ieN|s+1=i<r, al)=1, c(i)=0},
d3={iEN|s=si<r, a@)=1, c@)=1}.

Then U,c = a(r,s + 1;A) + 2°, d<a, — C =< a(r,s;d) and U,d =< a(r,s;3). Hence
U,c+ U,d=a(,s+ L;A) + 2° + a(r,s;8) = a(r,s) + 2°< 2"

Now let 2(b) > 0 and the statement be true for numbers of height less than A(b).
For brevity we put C = U, ¢, D = U,d and assume C + D> 2" + b.

Let us consider some particular cases.

1) C(or D) = 2" and consequently D > b. Then
c=D,C=a.,, d=D,D=b and c+d=a,+b.

2) C(or D)>2".Sincea(r)=1,¢c=D,C=2".Weputc,=c— 2, s=1[(b) and
note that U,c, =C—2", U,c, + U,d > 2’ + b,. Since h(b,) < h(b), by induction
¢, +d=a,+ b, and consequently c+d=2"+a,+b6,=2"-2°+a,+ b=a, + b.

3) C, D < 2. Weputt=max{i € N|C(@) = D(@) = 1}. Since C+ D > 2,
C?+D®=2"IfClorD,) =0thenc=D,C=C®~2 +a,,d= D,D=D"+b
andc+d=2"—2"+a,+b=a, + b If C,-D, # 0 then we put ¢, =c — C?,
d, = d — D" and note thate¢,,d, € N, U,¢, = C,, U,d, = D, and

Ue +U,d,>b=2 +b,.

We get ¢, + d, = a, + b, using induction again. The same calculation as in
(2) completes the proof of Lemma®*.

Remark*. As is clear from the proof, the condition a(r) =1 is used only in
the case (2). It is not required if ¢, d < a, (then C, D < a, < 2" and the case (2)
is impossible).

We continue now the proof of Lemma 8. Let us putm = m, + m,, n =n, + n,,
P = p, + p, and assume that there exists a positive integer xsuch thatp —n<x<m
and x C p (compare the proof of Lemma 5). We put /= [(x) and denote by g¢,,
g, such two elements from N thatq; C p;, i =i, 2, q, + q, = x (generally speaking
such a pair is not unique and when this is required we will put an extra condition
on it). Let us consider some particular cases.

D p,t+p,< 2’. This means in particular that one of the integers p, (), p,()
is equal to O and the other to 1 and the same is true for g, (), ¢, (I).
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Moreover

@) ) I+1
Pi—DPs=D;y — Py +P1;— Doy =P, — Ny <x<2 "

from which p{’ — p¥ < 2**' + 2! Consequently p’ — p = 2’ and

Dy — P2 = 2! + D1y~ Py
A) We consider first the case when p,(l) = ¢q,(!) =1 and p, — n, = p,,. In that
case p; —n, <X — Py, =¢, + g, — Py, = g, and
P2~ Ny =P, — Ny — (P — P} <%, — Py,
=G0+t 9~ P1,1=G2,= Q-

S

Since m, + m, > x, either ¢, < m, or g, < m,, which contradicts the purity of either
(my,n,,p,) or (my,n,,p,).

B) Let now either p,(l) = ¢,(!) = 1 or p, — n, <p,,. Since

(po—ny) +(py—ny)) = (p—n)—(p, —p,) <x—(p, — ps)
=X, v Doy~ D1 =DPo,;t sy,

the conditions of Lemma* (taking into consideration Remark*) are true for
a=p,,b=q,,, ¢c=p,—-n,,d=p,—n;, r=1
By that lemma and the purity of (m,,n,,p,), (n,,n,,p,),
m, +m2$21+q2,,s 2I+x,=x

which contradicts the choice of x.

II) p,;, + poy = 2'. In that case p, () = p, (). Since P+ Do, >xandp, — p, <2,
then p¥ —py <2’ This implies p? =py, p, —p, =p,,—p,,- We put
k=max{i € N|i <, p, () = p,() = 1} and put the following extra conditions on
a1, 9,:p;(LR) Cq;,i=1,2,

At first we consider the case k <!~ 1. Thenp,, < 27! and since
m,>x/2=2""m, > Py
By purity of (m,,n,,p,), p, — n, = p,, and therefore
PNy <X—Py;=¢q;, P~ N <X—P;=(,.

The end of the proof is the same as in I, A.

B) Nowletk = ! — 1.If m, < 2*thenm, > x — 2* = max {q,,9,},and since either
P, —n,<gq, or p, —n, <gq, this contradicts the purity of either (m,,n,,p,) or
(my,n,,p,). Therefore we can consider the case when m, > 2" and (by the purity
of (m,,n,,p,)) po — n, = 2% We use induction on A(x). If A(x) = 1 (that is x = 21)
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then (p, — n,) + (p, — n,) < 2I, p, — n, < 2* and we get a contradiction. Now let
h(x) > 1 and the statement be true for all numbers of a smaller height.

Weputp!=p,— 2, m’ =m,— 2" (i = 1,2),x’ = x — 2'. It is easy to verify that
(my,n,,p7), (m5,n,,p0%), (m',n,,p%), (mM,,n,,p%) are pure. On the other hand
x’Cp'=p1+pi,p —n<x’ <m’ =m|+ mfand h(x’) < h(x).By induction we
have a contradiction and the proof of Lemma 8 is finished.

Proof of Theorem 3. Necessity. We use induction on p. If p = 1 the statement
is obvious. Let us assume that it is true for all triplets (m’,n’,p’) where p’ <p
and let A, B, C be such subsets of D of powers m, n, p that A+ BC C. We
can assume that A N BN C 3 0. Let us denote by d,, d,, ... generators of D and
by D, the subgroup of D generated by d, ..., d,, and put N = min{%k|D, D A,B,C}.
Then we put

B, =BNDy.,, Ai=ANDy_,, C;=CN Dy_,, A,=A\A,,
B, = B\ B,, C,=C\C(,

and denote the cardinalities of A;, B;, C; (i = 1,2) by m,, n;, p;. Since D, _, is
a subgroup of index 2 in D,

A,+B,CcC, A,+B,CC,, A, +B,CC, A,+B,C C,.

Since C 30, p,,p, <p and by induction the triplets (m,,n,,p,), (m,,n,,p,),
(m,,n,,p,), (my,n,,pn,) are pure. By Lemma 8 the triplet (m,n,p) is pure.

Sufficiency. Now we use induction on m. If m = 1 the statement is obvious.
Let us assume that m > 1 and for any pure triplet (m’,n’,p’) where m’ < m and
m’, n’, p’ = 2° there exist sets A’, B’, C’ of cardinalities m’, n’, p’ in D, such
thalt A’ + B’ C C'. Let now (m,n,p) be a pure triplet and ¢ the integer such that
2 < m= 2.

1) We assume first that n < 2, p<2’andput m;, =2 —p,n,=m,p, = 2" — n.
By Lemma 5, the triplet (m,,n,,p,) is pure and since m, =< 2" < m, there exist
subsets A,, B,, C, of cardinalities m,, n,, p, in D, such that A, + B, C C,.The
sets A = B,, B=D\C,, C = D\ A, satisfy the statement and lie in D,.

2) In general case there exist nonnegative integers k&, [/ such that n = k2’ + n,,

p =12+ p, where 0 <n,, p,< 2. Let first /> k. We denote by A, B, subsets

of cardinalities m, n, in D,, by a, ..., a, ., elements of D, where 2° ' <k + 1 = 2°,
k

we represent D, as a direct sum D,® D andput B= |J (D,® q,) U (B, ® q,,,).

=1
The cardinality of B is n. Identifying D, with the subgroup D,® 0 of D,,, we
get the set C' = A + B of size less than (& + 1)2° in D,, . If u is the integer
such that 2“7 ' <+ 1=2" if p,>0, 2 '<I=<2"if p,=0 and C is a set of
cardinality p such that C' C C C D,, , we get the desired sets A, B, C.

3) Finally let /= k. By Lemma 7 the triplet (m,n,,p,) is pure and as was
proved in (1) there exist sets A, B,, C, of cardinalities m, n,, p, in D, such that
A + B, C C,. The proof can be easily completed by using a direct sum construction
(compare (2)).
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3.4. Conjecture. Let A, B, C be finite sets of cardinalities m, n, p and ¢
be a map A X B— C satisfying the conditions (1) and (2) of Theorem 2. Then
the triplet (m,n,p) is pure.

The conjecture can be formulated in terms of either graph theory or matrix
theory. It is proved in a lot of special cases but a complete proof is unknown
to me.

3.5. LetA,B,CCDy,A+BCC,¢(a,b)=a+b,a € A, be B. We consider
now the question of existence of a map €: A X B— {—1,1} satisfying the condition
(3) of Theorem 2. For any pair of different elements x, y from D, we denote
by H, , the subgroup of the group G = Dy ® D, which consists of the four elements:
(0,0), (x,0), (0,y), (x,y). We denote by a the set of all cosets in G of all subgroups
H, ,(x,y € Dy,x # y). Finally, for any finite collection of subsets X,, ..., X, of G

k

we denote by A X; their symmetric difference, that is, the set of all elements
i=1

of G which belong to an odd number of sets from the collection X, ..., X,.
THEOREM 4. The following are equivalent:

i) there exists a map €:A X B— {1,—1} satisfying the condition (3) of
Theorem 2,

ii) any finite collection {X,,...,X, } of subsets of G, such that

k
X, CAXB, X;,€a and AX, =09,

i=1
contains an even number of sets.

Sketch of Proof. Using additive notation we can formulate condition 2) of
Theorem 2 as follows

(3.4) 2 e(x)=1

x€H

wheree’: A X B— {0,1}, H C A X B,H € «. Hencei) isequivalent to the solvability

of system (3.4) of linear equations over field F,. The statement directly follows
from standard criteria of solvability.

3.6. Checking condition ii) implies as a rule technical difficulties. We shall
formulate now some new results which nevertheless have been obtained using
that condition.

a) If n =0 (mod 4) then there exists an [2n + 2,2""! + 277° 2"]-pairing (e.g.
[10,10,16]).

b) If n=1(mod4), n=5 then there exists an [2n + 2,2" — 4 - C*"?/?2"]-
pairing (e.g. [12,20,32]).

¢) No monomial [10,11,16]-pairing exists.
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4. CLASSIFICATION OF ORTHOGONAL PAIRINGS

" 4.1. Let p, p’:R™ X R"— R” be two orthogonal pairings. They are said to be
equivalent if there exist orthogonal operators S € O(m), T € O(n), U € O(p) such
that

' (Sx,Ty) = Un(x,y), x€R™ y€ER"

We consider some invariants of a pairing with respect to this equivalence.

4.2. Let p,, p, be pairings of types [m,,n,p,}, [m,,n,p,]. The [m; + m,,n,
14

p; + p,]-pairing p, @ po which is defined by formula

l
(e @ ) ((x,,%,),9) = (0y (6,30 2(%5,%)), BER™, i=1,2yER",

is said to be their left direct sum. It is called trivial if either m, or m, equals O.

The right direct sum p, @ n, (and trivial one) of pairings p,, p, of types

[m,n,,p,] and [m,n,,p,] is defined similarly.

A pairing is called left (right) irreducible if it is not equivalent to any nontrivial
left (right) direct sum and irreducible if it is left and right irreducible.

It is obvious that irreducibility (left, right) is an invariant of a pairing.

Remark 6. Generally speaking the direct sums of equivalent pairings are not
equivalent (see 4.7).

4.3. Let p be [m,n,p]-pairing. We fix an orthonormal basis {e,,...,e, } in R™
and put A;x = p(e,x),x € R", p, = A;A*, 1,7 =1, ..., m. One can easily prove the
following;

a) the operators A; are orthogonal, that is A7 A, = 1,
b) if i #jthen AfA; + A¥ A, = O (compare [8]),

¢) P; is a partially isometrical operator the initial domain of which is ImA;
and the final one is ImA4,,

d) P, is the orthogonal projection at ImA,.

Let us denote by {3 the matrix of order m X m with components P; and call
it the pairing-matrix of p. with respect to the basis {e,,...,e,,}. Of course we can
multiply 8 by any scalar matrix of corresponding order. If R is an invertible
operator on R” then we denote by ¥ the matrix with components RP,-J.R"I. The
following lemmas are obvious.

LEMMA 9. If B, is the pairing-matrix of . in an orthogonal basis {e’,...,e.,}
and R is the change-of-basis matrix then B, = R BR.

LEMMA 10. If p, is an equivalent pairing to n, S, U are the same as in
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the definition of equivalence and B, is the pairing-matrix of ., in the basis
{Se,,...,Se,,} then B, = B".

It follows from these lemmas that the classification of pairings is reduced to
the classification of their matrices with respect to the action of group O(m) X O(p)
described in the lemmas. We get in particular another invariant of a pairing.

THEOREM 5. If pairings p. and p' are equivalent then the trace-operators
E_ P, and 2 P:. are orthogonally equivalent.

m

Remark 7. Since the operator P, is self-conjugated, Theorem 5 gives
i=1
non-ordered row of p numbers which is the same for equivalent pairings. The

trace-operator Z P, does not change on interchanging m and n.
i=1

Remark 8. The matrix 8 defines a self-conjugated operator IT on R"™ where
a structure of tensor product R™ ® R” is fixed. The problem is to classify the
operators with respect to the conjugation by the operators from the subgroup
O(m) ® O(p) of O(mp). I do not know a complete system of invariants for the
conjugation. Some new invariants will be described in 4.7. It is easily to prove
that the orthogonal type of the operator II is defined by its trace, i.e. by the

trace of the trace-operator z P,;.
i=1

4.4. We consider now a case when a complete study is possible: m = 2.

We fix an orthogonal basis in R* and put V =ImA,, W= R?© V. For any
basis {g,,....€,} in R" we shall always take a basis in R” such that its first
n vectors are A,g,, ..., A,8, and we shall always denote a matrix of an operator
by the same symbol as this operator. We can write then

E, (a4
e (5). a-(3)

where E, is the identity matrix of order n X n, A = (a,;;), B = (b;) are matrices
of orders n X n and (p — n) X n. By (b) of 4.3, the operator A is skew-symmetrical
and by choosing a suitable basis in R” we can have its matrix in the following
form:

Qo 19; = —OQyin;_y = 0, a =1,..,4%, 0<e, <1,
4.2) Qi 10i = —Ogini_y = 1, i =k+1,..,k+1 20+ 1) =n,
a,, = 0 otherwise.

v

By orthogonality of the operator A, we can choose a basis in W such that
the matrix B will have the following form:

bzz 1,2i— 1"b2;2, \ l—a,?, i=1,...,k,
(4.3) b 2k +i,20k+1)+i 1,l= 1, ...,n—2(k+l), p—nZn—'zl,

b, otherwise.
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It is easily to verify that the orthogonal type of P,, + P,, is defined by the unordered
row of numbers a,, ..., a,, 0<a;<1,i=1, ..,k and nonnegative integer Il. We
will say that the row {a,,...,a,} is the characteristic of p. and [ is the link coefficient
of .

THEOREM 6. 1) Let n, p be positive integers, n < p. For any unordered row
a of positive integers a,, ...,a,, 0<a,<1, i =1, ..., k, and nonnegative integer
1 such that 2(k +1)<n, p — n=n — 2l, there exists a [2,n,p]-pairing with the
characteristic o« and the link coefficient 1.

2) For the equivalence of two pairings with m = 2 it is necessary and sufficient
that their characteristics and link coefficients be the same.

Proof. 1) The conditions on 2 and ! give the opportunity to define A, B by
the equalities (4.2), (4.3) and then A,, A, by the equalities (4.1). It is easy to
verify that A,(i = 1,2) satisfies the conditions (a) and (b) of 4.3 and therefore
the pairing p defined by formula

i\ e + Npep,y) = (N A + N, A4,)(), AMAER, yER",

is the desired one (compare [17]).

2) The necessity is a corollary of Theorem 5. The sufficiency follows from the
possibility of transforming A, and A, to a canonical form (4.1), (4.2), (4.3) by
a choice of bases in R" and R”.

Remark 9. It follows from Theorem 6 that the set of all equivalence classes of
[2,n,p]-pairings can be realized as a simplex of dimension [(p +1)/2] — [(= + 1) /2]
and the vertices of the simplex correspond to the classes of the monomial pairings.

In particular the classes of [2,2,4]-pairings correspond to the number of the
interval [0,1] (compare 4.6, m = 2). The existence of a continum of these classes
was noted in [15] and [9].

4.5. Here we will define a correspondence between pairings and representations
of algebras.

Let m be a positive integer. We denote by I'(m) the *-algebra over R with
generators p;, i, j=1,..,m, and the following relations: 1) p;p; = pa,
2) PyPup = —PuPu> 3 Py =P b Jo b, 1 =1,..,m,j# L If ¢ is a p-dimensional
symmetrical representation of I'(m) over R and P; = ¢(p;) then by the relations
(1) and (3) P; is an orthogonal projection at a space V(i = 1,...,m), P, is a par-
tially isometrical operator with the initial domain V,; and the final domain
V,(i,j = 1,...,m) and hence all spaces V; have the same dimension, say n. If we fix
now an orthonormal basis e, ..., ¢,, in R™, put w(e;,y) = P,,y,i=1,...,m,y€ V,
and extend p by linearity on R™ then the relation (2) implies that . is an orthogonal
[m,n,p]-pairing. The construction of 4.3 shows that any orthogonal pairing can
be obtained in that way from a symmetrical representation of algebra I'(m).

All algebras I'(m) with m = 2 have infinite dimension. A classification of
symmetrical representations of I'(2) is, as a matter of fact described, in 4.4. For
m = 3 a complete classification is absent.

The problem becomes more perspective if one considers only the monomial
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pairings. Let us denote by I'y (m)*-algebra with generatorsp;, i, j = 1, ..., m, relations
(1)-(3) and an extra relation:

4) for any two elements a, b of the semigroup S spanned at p,(i,j = 1,...,m)
the elements aa™ and bb* commute.

Relations (1)-(4) imply that all self-conjugated idempotents of I'y(m) mutually
commute and for any a € S the element aa™ is a self-conjugated idempotent
(induction on “length” of a).

THEOREM 7. Let p. be a monomial [m,n,p)-pairing, e = {e,,...,e,,} be a basis
in R™ belonging to a multiplicative triplet of bases for p, P, be the elements of
the pairing matrix of p. with respect to e. Then the map ¢ defined on the generators
by formula

‘P(pij)':Pij: i}j=1’---’ m,

extends to a p-dimensional symmetrical representation of the algebra T'y(m). If
. is right irreducible then ¢ is irreducible. If two representations are equivalent
then their generating pairings are equivalent too.

Proof. Itissufficient toprove that for any two operators A, B from the semigroup
o spanned by P,;(i,j = 1,...,m) the operators AA*, BB* commute. Let C = {c,,...,c,}
be a basis in R” belonging to a multiplicative triplet of bases for p together with
e and X be the semigroup of all partially isometrical operators on R” whose matrices
with respect to C have only elements 1, —1, 0. Since P, € X,i,j=1,...,.,m, 0 C 2
and for any A € o the operator AA™ is the orthogonal projection at the subspace
on R” spanned by a subset of C. This implies the statement.

Remark 10. The converse statement is true also: the operators of any symmetri-
cal representation of the algebra I'j(m) give a monomial pairing. It is obvious
to every concrete case below but the general proof which is known to me is very
cumbersome.

4.6. Let us consider cases of small m. We denote by C and H the real *-algebras
of the complex numbers and the quaternions with the usual conjugation and for
any *-algebra F over R we denote F'(k) the complete matrix algebra order k2 with
elements from F with the usual conjugation.

m = 2. The algebra I';(2) has the dimension 6 and is a direct sum of two
symmetrical simple ideals isomorphic C and R(2). The ideals are generated by
the idempotents p,; pys, P1y + Pos — 2D11 P2z~ They give two symmetrical irreducible
representations of I'y(2) and therefore two right irreducible monomial pairings:
the complex multiplication of type [2,2,2] and the trivial pairing of type [2,1,2].
By Theorem 7 any right irreducible monomial [2,n,p]-pairing is equivalent to
one of those two.

m = 3. The algebra I';(3) has the dimension 53 and is a direct sum of six
symmetrical ideals I;({ = 1,...,6) of the following types: I, = H, I, = R(4), I, = C(2),
Jj=38,4,5, I,= R(3). Those ideals are generated by self-conjugated idempotents
g;(i = 1,...,6) which can be expressed in terms of the p; in the following way:

g1 = P12P33> 92 = Qo t P12QoP21 + P13QoPs1 T P23qoPs2»
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where

Qo = P11P22P33 — 91> 93 = P22 P3a€ — P11) — P2sQoPse

+ P12P33(€ — P11) P2y — P139oPs1>
g4 = P11P33(€ — P2z) = P13QoPa1 + P21P3s(€ — Dos) P12 — P23@oPas>
g5 = P11P22(€ — P33) — P12GoPa1 + P31P22(€ — Pa3) P1s — P32oP2ss

where

€ = P1y + P22 + P33 — P11P2z — P11P3s — P22P3s + P11P22Pss>
g6 = P11 (e — P22)(e — Py3) + Poz(e — py1)(e — Pa3) + Pasle — pry)le — pas)
— P12P33(€ — P11) P2y + P13GoPs1 — P21P3s(€ — Poz) Py
+ P23 QoP3z — Pa1P2a(€ — P33) P13 + P32 QoPas-

The irreducible symmetrical representations of the algebra I';(3) defined by
the ideals I, generate (modulo equivalence) four right irreducible monomial pairings
of types [3,4,4], [3,3,4], [3,2,4], [3,1,3] which are restrictions of the quaternion
multiplication R* X R* — R* (the non-equivalent irreducible representations of I, (3)
corresponding to I, I,, I, give equivalent pairings).

m = 4. The algebra I';(4) has an infinite dimension and an infinite series
of mutually non-equivalent finite-dimensional symmetric representations. Yet all
the corresponding pairings are left reducible and some of them are right-reducible.
There are (modulo equivalence) only 10 irreducible pairings. They have the following
types: [4,3,4], [4,4,4], [4,4,7], [4,4,8], [4,5,8] (two pairings), [4,6,8] (two pairings),
[4,7,8], [4,8,8] and all are restrictions of either the quaternion or Cayley multi-
plications.

Remark 11. For bigger m the problem of the classification of the irreducible
monomial pairings is effectively solvable but very cumbersome. Examples (in
particular for type [10,10,16]) show that there exist monomial pairings which
are not restrictions of any pairings of types [m,n,n].

4.7. Here we consider an example of two right reducible non-equivalent
monomial [3,4,8]-pairings whose direct addends are mutual equivalent. There are
(explicit and implicit) series of invariants in the proof.

Let us consider first a general situation. For any positive integers m, p we
denote by M(m,p) the algebra of all matrices of order m X m whose ele-
ments are operators on R”. If A € M(m,p) and A = (A4;,)7;_, then we put
A9 =4 A" = (A,-,-),Am = (Afj). If i = (i,,l,,...,{;) is a sequence of 0, 1, 2 then
we put AV =AWA% | A A matrix A = (4,) is said to be pseudoscalar if
there exist an operator B and numbers «,; € R(i,j = 1,...,m) such that A; = o, B.
The group O(m) X O(p) is naturally embeded in M(m, p) (the tensor product) and
therefore acts on M(m,p) by inner automorphisms. The equivalence of matrices
with respect to this action we shall call simply equivalence and denote by sign
“~” The following two lemmas are obvious.
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LEMMA 11. If A,, A, € M(m,p) and A, ~ A, then for any finite sequence
i = (iy,i5,...,0,) of numbers 0,1, 2, AY ~ AP .

LEMMA 12. If A,, A, € M(m,p), A, ~ A, and A, is pseudoscalar then A,
is pseudoscalar too.

Now we construct the example. Let a:C X C— C be complex multiplication,
I
Bbe a [1,2,2]-pairings, n. = a (-D B, {e,,e,,e;} be an orthonormal basisinR = C ® R*

such that e, = 1, e, = i, S be the operator on R? definited by the following equality:
Se, = e,, Se, = e;, Se; = e,. We put

Ry =pn(Sry), 2x€R?’ yeR?’, Lw=p@pr=p@n.

THEOREM 8. The pairings ., and p., are not equivalent.

Proof. Let B, = (Pkﬁ)i, ;=11 =1, 2, be the pairing matrix of p, with respect
to the basis {e;,e,,e;}. We put X; = (B, B )?B, V" and denote x}, (j,& = 1,2,3,
t = 1,2) the elements of X;. Using the equalities P,,, = P,,,, P;;; * P33, = 0 one
can easily find that x5; = Py, , £, = 0 otherwise and therefore the matrix X, is
pseudoscalar. On the other hand x%, = @,, x2, = @, where the operators @,, @,
are different nonzero projections and the matrix X, is not pseudoscalar. The proof

is completed now by using considerations of 4.3, Lemmas 11 and 12.

Remark 12. The trace-operators of 3, and B, coincide.
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