A VANISHING THEOREM FOR CERTAIN RIGID CLASSES

Connor Lazarov

Let V be a flat n-dimensional vector bundle and X a linear vector field on
V which preserves the canonical flat foliation of V. Off a singular set of V, the
flat foliation and X determine a codimension n — 1 foliation and this new foliation
has yielded interesting non-vanishing results for exotic classes [3], [6]. But these
foliations cannot detect rigid exotic classes because a rigid class is also an exotic
class for the codimension n flat foliation, and classes for this foliation vanish
for trivial reasons. It is then reasonable to expect that if one takes an appropriate
family of more than one linear vector field preserving a flat foliation one would
arrive at a new foliation, readily computible in terms of linear data, with some
nonzero rigid classes; the above vanishing of rigid classes for trivial reasons no
longer holds. '

The purpose of this paper is to show that if we take a family of commuting
linear vector fields preserving a flat foliation then all rigid classes for the new
lower codimension foliation still vanish. This is a companion theorem to those
of Pittie [8, the first half of Theorem 2] and Bott-Haefliger [2], all of which
assert that all rigid classes for a large family of homogeneous foliation must
vanish.

1. DEFINITIONS AND STATEMENT OF THEOREM

For a discussion of exotic classes, see [1]. We will call a foliation flat if there
is a locally flat basic connection on the normal bundle to the foliation. This is
equivalent to having a basic connection V on the normal bundle and a covering
family of local framings {s,} of the normal bundle for which Vs, = 0. Let us
call such a family a family of locally flat framings. A vector field X preserves
a foliation F' if [X,Y] is tangent to F whenever Y is tangent to F. Let X preserve
a flat foliation. We will say X is linear if there is a family {s,} of locally flat
framings for which L,(s,) = A, s, where A, is a constant matrix. Here L, is the
Lie derivative and L (s) is the matrix of sections obtained by lifting s to a matrix
of vector fields §, applying L,, and projecting back to the normal bundle. This
is well defined since X preserves the foliation. Finally we will say that a family
of vector fields {X,,...,X,} is transverse to a codimension n foliation if at each
point this family and the tangent space to the foliation span a codimension n — &
subspace. A family of commuting vector fields {X,,...,X,} which preserves a
codimension n foliation and which is transverse to this foliation determines a
codimension n — & foliation; the tangent space to the original foliation and to
{X,,...,X,)} is clearly integrable. Our main theorem is then:
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THEOREM 2. Let F be a codimension n flat foliation of a manifold M and
let {X,,...,X,} be a family of commuting linear vector fields which preserves F
and which is transverse to F. Then allrigid exotic classes for the resulting codimension
n — k foliation vanish.

Remarks. (1) There is a common situation which gives rise to such data. Let
G be a connected subgroup of SL(n), I a co-compact discrete subgroup, K a maximal
compact subgroup of G. G/ K X, R" = Vis a flat vector bundle and so has a canonical
flat foliation. The leaves come from G/K X point via identifications. Let
Xy, ... X, be mutually commuting matrices in gl(n) which also commute with each
element of g (the Lie algebra of G). Assume x,, ..., x, are independent and transverse
to g. The one parameter groups x;(f) give rise to linear vector fields on R" (via
the standard action). Since each x; commutes with g, the x;(f) commute with G
and so also give rise to vector fields X; on V which are linear. Then, off a singular
subset S of V, {X,,...,X,} is a family of commuting linear vector fields which
preserve F and is transverse to F|V — S.

More specifically, let G = X,SL(2), K = X,S02),I' =T, X ... XTI, where
I, =m,(2,), 3, a surface of higher genus. Then V will be G/K X, R*". We choose,
similar to [3],

X, = 2 (x;+y, ) 0 X, = EA (x—+y,a)

ay; ay;

For generic choice of { \}} the singular subset Swill be small,and on G/ K X (V — S)
we have a situation as described in Theorem 2.

(2) Thereis asimilar theorem for foliations of G X G/Por G/K X, G/Pinduced
by projection to G/P, where (G,P) is a parabolic pair. In [2], [8] it is shown
that all rigid classes are zero. There is some intersection of this result and our
main theorem. For example, take G = G = SL(n), P the subgroup fixing a ray
in R”, then we get a foliation of G X G/P =I'\\G X G/P with vanishing rigid
classes. This also falls in the framework of our situation. If we take the radial
vector field on R”, we get a linear vector field on G X R*"=T\G X R", and
the induced foliation on I'\\G X 8""! is the same foliation. There may be more
intersection of the two theorems.

In the remainder of this section we recall some notation. Let V', V° be two
connections on a vector bundle E over a manifold M. From [1] we have

MVLVOS) = m A FQ )}

where Q, is the curvature of ¢tV' + (1 — #)V° on E X [0,1], f is an Ad invariant
polynomial function on matrices, w, is integration over the fiber [0,1], and
MVYLVO(f) is a differential form on M. From [1], p. 69 we have the map
\*:H*(WO,)— H* (M) defining the exotic classes of a codimension n foliation
of M and in [4] we have a description of the Vey basis for H* (WO,) and the
definition of rigid classes. A class h; ... h; ¢, (J multi, {; <... <) in the Vey
basis is rigid if i, + |J| > n + 1.
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2. PROOF OF MAIN THEOREM

Let (, ) be a Riemannian metric on M chosen so that X}, ..., X, are orthonormal
and orthogonal to T(F). Let w; be the one form (,X;) and let D be a flat basic
connection on v(F) relative to which the X; are linear. Define a new connection
on v(F') by

k

(1.1) Vys= > o(Y)Ly(s) + Dys

i=1

where Y, is the component of Y orthogonal to {X,,...,X,}. Let E be the resulting
codimension n — k& foliation tangent to F and {X,,...,X,}. Let Ah;c;, I = (iy,...,i,),
J = (j,...,J,) be an element of the Vey basis for H* (WO, _,). Let h,c,(E) be the
corresponding DeRham class of E and let A,c,(V) be the differential form

MV, V) e,) ... MV, V) e,) e,(V)

where V# is any Riemannian connection on v (F).
THEOREM 1. h,c,(V) represents h,c,(E).

Remark. The proof of this theorem will come in the next section. It is also
true (and the proof is identical) that A,c,(E) is represented by the differential
form

}\(DB,DR)(ciz) )\(DB,DR)(c,-r) AV, VR)(c,-l) c; (V)

where D? is any basic connection for E on v(E) and D¥ is a Riemannian connection
on v(E). The chosen form of the theorem is for notational convenience.

LEMMA (1.2). Each dw; is in the ideal of forms which vanish on E.

Proof. We must show dw,(Y,Z) =0 when Y and Z are tangent to E. By
construction v, (X)) = 3; andw (Y) 0if Yistangent to F. Take i = 1 for convenience.
Extend Y and Z to vector flelds dw,(Y,Z) = Yu,(Z) — Zo,(Y) — o, ([Y,Z]).
If both Y and Z are among {X,,...,X,} then 0, (Y) and w, (Z) are constant, [Y,Z] =0
and so dw,(Y,Z2) =0. If Y = X, and Z is tangent to F then w,(Y) is constant,
o, (Z) =0, [Y,Z] is tangent to F so »,([Y,Z]) =0 and again dw,(Y,Z) =0. If
Y and Z are tangent to F'sois [Y,Z] and thus w,([Y,Z]) = 0. Also w,(Y) = 0,(Z) =0
and so dw,(Y,Z) = 0.

Proof of Theorem 2. Let s be a locally flat framing of v(F) relative to

which all the X, act linearly. Thus Ds = 0. We compute the curvature matrix
k

do +1/2[w,0] of V relative to 5. Let @ = Vs = >, ® Ly (s). Let 4, be the

i=1
constant matrix of Ly (s) relative to s. Then the matrix of L« X](s) relative to

sis £[A;,A;], thus [A,,A ] = 0. Now

[w,0] = [z w;A,, 2 ijj:I = 2 w,w; [A4,A;] =0.
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k

Thus the curvature matrix is do = 2 dw;A;. Then
i=1

gl-36

Now, if A;c; is a rigid class for E then i, + |J| >n — & + 1. Consider the
differential form A, (dw,)®! ... (dw,)**. One of the o’s, say a,, is not zero.

d (b, (Ao (dwy)*2 ... (dw,)™) = + A (do,)* ... (do,)™
+ > Ry By by 0,0 (V) (dey) T (dey) R L (do,)
(V)= D b(de) A ... A (de,).
ay+...tag=|J|

Now, if h;c; is a rigid class for E then i, + |J| >nr — k + 1. Consider the
differential form A;(dw,)** ... (dw,)*. One of the o’s, say «,, is not zero.

d(h,u;)1 (do)* (dw, )2 ... (dw,)™) = £ by (dw,)* ... (dw,)"

+ >tk by by o0 (V) (o) T (dw,) L (do,).
Let us examine c,-j(V)(dml)"‘l"l (dwz,)% ... (dw,). Since

(0 —D+oa,+...+a,=]|J| -1, Lt(g—1D+op+ .. +a,=i+][J] -1
Since we have a rigid class,

L+ || >n—-k+1, it —1D+o+..+a,>n—Fk

From the form of c,-j(V) and Lemma (1.2), c,}_(V)(dml)"‘l‘l(dmz)“2 . (dw,)™ is in
the n — k + 1 power of the ideal of forms which vanish on E. Thus

Ci (V) (d‘wl)“l"l (dwy)™2 ... (dw,)® = 0.

Hence A,c;(V) is exact and so by Theorem 1, A,c,(E) = 0.

3. PROOF OF THEOREM 1
From the definition of exotic classes, h;c,(E) is represented by
MD®Z,D®)(c;) ... \(D®,D®)(c; ) c,(D?)

where D? and D% are basic and Riemannian connections on v(E). We wish to
replace D® and D® by V® by V¥ (connections on v (F)).

Let D be the connection on the bundle X, + ... + X, defined by
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DX,=0,i=1, ..,k

Use the metric to decompose v(F) as v(E) + (X, + ... + X,). Relative to this
decomposition we can construct the connections D” + D and D¥ + D. The latter
is, of course, Riemannian. Let f be an Ad invariant, homogeneous polynomial
of degree [.

Note that f(V) lies in the I*" power of the ideal of forms defining E. From
the definition of ), it follows that \(D? + D, D® + D)(f) = MD®,D®)(f). The crucial
step in the proof of this theorem will be to show that MV,D% + D)(f) plus an
exact form lies in the *" power of the ideal of forms defining E.

Proof of Theorem 2 from This Crucial Step. Let V¥ = D® + D. Apply Stoke’s
theorem to the connections V, D? + D, V¥ and the polynomial c, to conclude that
MV, VE)c,) — MD® + D,V®)(c) — ANVD®+ D)) is exact. Multiply by c,(V)
and use Bott vanishing for E to conclude N(V,V®)(c;) ¢, (V) — MD?, D®)(c;) ¢, (V)
is exact. Then ¢,(V) — ¢,(D?) = d\(V,D? + D)(c,) and so (using Bott vanishing)
ANV, VE e e, (V) — ND?, DR)(c)cJ(D ) is exact. This proves the theorem for a
single i. For more than one i replace each X\ (D® D¥ )(c )} by )\(V vE )c; ) one at
a time by a similar argument. A standard argument shows that V7 can be replaced
by any Riemannian connection.

Now we prove the crucial step with a sequence of lemmas.

LEMMA (2.1). There is a basic connection D on v(F) forr which DX, =0,
i=1, ...,k

Proof. Let D’ be any connection on v(F) for which D’X,=0. Let
Y=Y, + Y, be orthogonal decomposition of Y according to T'(M) = T(F) + v(F).
Dys = [Y,,s] + DY, s yields the desired connection.

Now define V as in (1.1) except take the D to be as in (2.1).
LEMMA (2.2). \(V,D® + D)(f) is in the I'* power of the ideal defining E.

Proof. First, we need only consider polynomials f(A) = Trace (A’) since these
generate all polynomials.

Next, for any two connections V and V°, let 6 and 6° be local connection matrices
and let p=0—0°,0=dp + [p,0°],Q,=d6° + 1/2[6°6°].p, ©, and Q, are ten-
sorial [5, p. 75]. A direct computation shows

(2.3) MY, VO = D) by, Trace (2 674 QF)

i+j+k=1-1

where the b’s are constant. For our connections V and D? + D it will be sufficient
to show Trace (p*** A ©7 A Qf) is in the I power of the ideal of E.

From [7] we can choose local coordinates {u,,...,u,,X,,...,X;,¥1,...,¥,_z)} such
that

(@ y, = ... = y,_, = constant define the leaves of E.
() ¥,

v = Yp_p = %, = ... = x, = constant define the leaves of F.
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(c) X; — a/0x, is tangent to F.

Let v,=9d/dy, — 2 <4d4/dy,,X;>X;. Then the orthogonal projection of
J

{v1see0s Uy X1y...,X,} onto v(F) is a local framing which respects the decompo-
sition v(F) = v(E) + (X, + ... + X,).

Let 8 and 6° be local connection matrices for V and D” + D relative to this
framing. Direct computation shows that for Y tangent to E, Vv, is a linear
combination of X, ..., X, and VX, = 0 for all i. Thus,

( )
(')
BO

where A is an (n — k) square matrix of forms all of which are in the ideal of
' 0
0 o’
shows that 6" is in the ideal of E. Thus 6° is of the form (2.4) (with B =0).
Thus, p, 8° and also © and Q, are of the form (2.4). So p™*' A 87 A Q% is of the
form g g with A in the I power of the ideal of E. Thus applying trace

we have the desired result.

E. 6%is a direct sum .02 = 0 from the definition of D and direct computation

The crucial step then follows from the next lemma.

LEMMA (2.5). Let V be a conngction as in (1.1) except the D can be any basic
connection for F. Then N(V,D® + D)(f) + exact is in the I™ power of the ideal
defining E.

Proof. Let V°be the V of the previous lemma (DX, = 0). By Stoke’s theorem,
it is sufficient to show A (V,V°)(f) is in the [** power of this ideal. Use the
local coordinates of the previous lemma. Take the local framing of v(F)
given by {d/dy,,...,8/8¥,_4,X:,...,X,} mod T(F). Direct computation shows
Vy 8/3y; = Vy X, = 0 for Y tangent to E. Of course the same is true of V°.
Thus in the expansion (2.3) of \(V,V°)(f) the forms 6, 8° p and hence © and
Q, are matrices all of whose entries are in the ideal of E. Now the lemma follows
as in (2.2).
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