SPLITTING THE PL INVOLUTIONS OF NONPRIME
3-MANIFOLDS

Paik Kee Kim and Jeffrey L. Tollefson

INTRODUCTION

We describe four basic operations (I-operations) involving the connected sum
construction with which PL involutions of 3-manifolds can be built up from
involutions of simpler 3-manifolds. The main result (Theorem 1) is that every
PL involution of a compact 3-manifold arises from involutions on its prime summands
by repeated application of these four I-operations. It is well-known that every
compact 3-manifold can be uniquely expressed (up to order) as the connected sum
of prime 3-manifolds in normal form. Thus the study of PL involutions of compact
3-manifold is now reduced to problems involving PL involutions of prime 3-manifolds.

Section 1 is devoted to the descriptions of the I-operations and stating the
main results. An application of Theorem 1 to double-coverings of S® branched
over a link is also given here. Theorem 1 has also been applied to P® # P2 to
show that there exist exactly seven distinct nonconjugate involutions on
P® # P® (see [5]). Section 2 contains the proof of Theorem 1. Finally, in Section
3, we prove a basic lemma for splitting 3-manifolds with involution along disks
and suggest a further reduction for PL involutions of compact irreducible 3-manifolds
with boundary with respect to the multi-disk sum operation.

1. STATEMENT OF RESULTS

We work exclusively in the PL category throughout this paper. All orientable
3-manifolds are assumed to be oriented. We let M~ denote the 3-manifold obtained
from an oriented 3-manifold M = M™ by reversing its orientation. Recall that
the connected sum M, # M, of two connected 3-manifolds M, and M, is obtained
by removing the interior of a closed 3-cell from the interior of each and identifying
the resulting 2-sphere boundaries by a homeomorphism (orientation reversing if
both M, and M, are oriented). A compact 3-manifold M is said to be prime if
it cannot be written as a connected sum of two 3-manifolds, each distinct from
S2. Recall that S® is the identity element for this operation. According to the
unique decomposition theorem of Kneser [7] and Milnor [11] (see Hempel [4]),
every compact 3-manifold can be written uniquely (up to order) as a connected
sum of prime 3-manifolds in normal form (in the normal form S' X S? is allowed
to appear as a summand only when M is orientable). It follows that a compact
3-manifold can be built up in an essentially unique way from prime 3-manifolds.
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Our goal (Theorem 1) is to show that every involution of a compact 3-manifold
can be built up in a canonical fashion from involutions on prime 3-manifolds.
There are four basic operations used to build involutions by forming an equivariant
connected sum of two 3-manifolds with involution. For the description of these
I-operations we introduce the notation M, # M, to denote the 3-manifold obtained
from two connected 3-manifolds M, and M, by removing the interiors of two disjoint
3-cells from each and identifying the resulting 2-sphere boundaries to obtain
a connected 3-manifold homeomorphic to either M, # M, # (S' X S?) or
M, # M, # N (here N is used to denote the non-orientable 2-sphere bundle over
Sh).

Consider given involutions A, and A, on the 3-manifolds M, and M,, respectively.
In the first and third I-operations we construct involutions #, on M, # M, # M}
and k, ¥ h, on M, -JT# M, using 3-cells for the connected sum operation which
are disjoint from their image under the corresponding involution. For the other
two I-operations we choose components of the fixed point sets of #, and A, and
use invariant 3-cells meeting these preferred components for the connected sum
construction. We obtain involutions %, # A, on M, # M, and 2* on M, # S°.

Operation I-1. Let M, be a prime 3-manifold and let A, be the identity map.
Choose a pair of disjoint closed 3-cells (C,,k,(C,)) in M, and one 3-cell C, in
M,. Now take two copies of M, and form M, % M, % M; by sewing M, — G,
to M, — C, with a homeomorphism f : C, — 3C, and then sewing the second
M.—-C, to M, # M,) — h,(C,) with fh,:0h,(C,) - 8C,(e = + or — as h,
preserves or reverses the orientation in the oriented case). We let &, denote the
involution agreeing with A, on M, — (C, U A,(C,)) and interchanging the two
copies of M, via the identity map.

Operation I-2. Let F, and F, be given components of Fix(k,) and Fix(h,),
respectively, having the same dimension. Choose an invariant closed 3-cell
C, C M, meeting F, (for i = 1 and 2). Let f:8C, — dC, be a homeomorphism
such that fh,|dC, = h,f. Let h, # h, denote the involution induced by h, and
h, on M, # M,, where the connected sum is formed by identifying M, — C1 to
M, — C,2 via f.

Operation I-3. Let (C,,h,(C;) be a pair of disjoint 3-cells in AZ, for
i =1, 2. Let f: aC, —» 9C, be a homeomorphism with which we can form
M, # M, by removing the interiors of the four given 3-cells, sewing aC, to 4C,
with f and sewing oAk, (C,) to dh,(C,) with A, fh,. Then h, and h, define an invo-
lution on M, # M, which we denote by A, # h,.

Operation I-4. Let F, and F be given components of Fix (h,) having the same
dimension (perhaps F, = F'}). Let C,, C/, be disjoint invariant 3-cells in M, meeting
F,, F'!, respectively. Let A, be a standard involution of M, = S® such that Fix (4,)
has the same dimension as F, and F' . Choose a pair of disjoint invariant 3-cells
C, and C) in M,. Let f : 8C, — 3C, and f’ : aC/,— aC’, be homeomorphisms
such that fh,|8C, = h,f and f'h,|0C, = h,f’. Form M, # S by sewing the
two pairs of invariant 2-sphere boundaries together using the maps f and f’ and
let A* denote the involution defined on M, # S° by A, and A,.

There are several choices involved in each of these I-operations and their effect
on the resulting involution will be examined in the Appendix. We are now in
a position to state our main theorem.
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THEOREM 1. Every PL involution of a compact 3-manifold M is equivalent
to an involution built up from a collection of involutions on prime summands
of M by performing a sequence of I-operations.

In case no summand of the 3-manifold is a 2-sphere bundle over S*, this splitting
theorem can be expressed very nicely.

COROLLARY 1. Let M be a nonprime, compact 3-manifold with no 2-sphere
bundle summands. If h is an involution of M then M and h can be viewed as
M=M % .. % M,and h = h, % ... % h,, where each h; is an involution on
M, = A, # Q; % A; arising from operation I-1 (thus Q, is a prime 3-manifold).

COROLLARY 2. Let h be an involution on a nonprime, compact 3-manifold
M that has no 2-sphere bundle summands and for which no two prime sum-
mands are homeomorphic. Then there exists a splitting M = M, % ... % M, and
h = h, % ... # h, where each h; is an involution on the irreducible 3-manifold M,.

COROLLARY 3. Let h be an orientation-reversing involution on a connected
sum M of lens spaces. Then h = h, % ... % h, and M = M, % ... % M, where
each h; is an involution on M; = A, # Q, ¥ A; arising from operation I-1, each
Q; is either p° or S®, and the A, are connected sums of lens spaces.

Proof. Since alens space L(p,q), p > 2, does not admit an orientation-reversing
involution [8], this follows directly from Theorem 1.

Given a link L in S we can apply Theorem 1 to compare the primeness of
L with that of the unique 2-sheeted covering space of S* branched over L, denoted
by M(L). Recall that a link L is splittable if there exists a 3-cell D in S® such
that LN D =@, DN L # @ and (S — D) N L # @. The link is said to be
prime if for each 3-cell D in S® such that 4D meets L transversally and in two
point, either D N L or (S* — D) N L is an unknotted arc in D or (S®> — D),
respectively. It is well-known for a nonsplittable link L that if M(L) is prime
then L must also be prime [15]. We show that the converse to this also holds.

COROLLARY 4. Suppose that L is a nonsplittable link in S°. Then the 3-mani-
fold M(L) is prime if and only if L is a prime link.

Proof. Suppose that M (L) is not prime. The nontrivial covering transformation
h of the branched covering space p: M(L) » S® is an involution of M(L) with
p (Fix (h)) = L. It follows from Theorem 1 that there exists a 2-sphere S not bounding
a 3-cell in M(L) such that either A(S) = S and S meets Fix(h) transversally
or else A(S) N S = @. Since L is nonspittable, we cannot have A(S) N S = @.
Thus A£(S) = S and S must meet Fix(h) in exactly two points. Therefore it
follows that p(S) is a 2-sphere splitting L into two nontrivial links.

2. CONNECTED SUM SPLITTING

The object of this section is the proof of Theorem 1. Our first goal is to prove
the existence of suitable 2-spheres along which we can equivariantly split compact,
nonprime 3-manifolds with involutions.

Suppose that £ is a simplicial inveolution of a triangulated 3-manifold M. Consider
a surface F properly embedded in M as a subcomplex. We move F into what
we call h-general position by the following isotopy. First move F into general
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position with respect to Fix(h). Then, by using only isotopies that keep Fix(h)
constant, we move ¥ — (F N Fix(h)) into general position with respect to
h(F)— (h(F) N Fix (h)). This can be done using the usual methods of shifting subcom-
plexes into general position. Finally we subdivide M such that F U A(F) and
h are simplicial. Observe that there are no isolated points in F N A(F) since
F is in general position with respect to Fix (k).

Given such a surface F' in h-general position, we define the complexity c(F)
as the sum of the number of components in (F N A(F)) — Fix (k) together with
the number of components in F N Fix (k). If F is invariant and in general position
with respect to Fix(h) we set ¢(F) = 0. A closed disk E contained in A(F) is
said to be innermost if E N F C oF and 0FE — (E N F) C 3aM. Two surfaces
F and G in M are said to be parallel if there exists an embedding of F X [—1,1]
in Msuchthat F=F X {1} and G = F X {—1}.

LEMMA 1. Let h be an involution of a compact 3-manifold M that is not
irreducible. Then there exists a 2-sphere S in M not bounding a 3-cell such that
either h(S) N S = @ or h(S) = S and S is in general position with respect to
Fix (h).

Proof. If oM contains a 2-sphere component then we may take S to be a
boundary component in M of a regular neighborhood of such a 2-sphere component
of M. Thus let us assume that M has no 2-sphere boundary components. Let
3 denote the collection of all 2-spheres S in M such that (i) S does not bound
a 3-cell and (ii) either S is in A-general position or S is invariant and in general
position with respect to Fix (k). Clearly = 7# . Choose a 2-sphere S from = having
minimal complexity among all members of =. If ¢(S) = 0 then we are done. Thus
we will be finished if we show that ¢(S) > 0 implies the existence of another
2-sphere S” € X with ¢(S”) < ¢(S).

Suppose ¢(S) > 0 and let E denote an innermost disk in A(S). Then J = 9E
is a simple closed curve separating S into two open disks E, and E,. Since S
- does not bound a 3-cell, it follows that at least one of the 2-spheres E, U E
and E, U E does not bound a 3-cell. Let S’ = E; U E denote one of the 2-spheres
which does not bound a 3-cell. If A(S’) = S’ then S’ € = and ¢(S’) = 0 (t is
elementary to check that S’ is in general position with respect to Fix(h)). If
h(S’) # S’ then we want to move S’ by a small isotopy so as to shift
it into A-general position and obtain ¢(S’) < ¢(S).

Let U be a small regular neighborhood of E in M such that U N S is a regular
neighborhood of J in S. Choose a disk E’ close to E in U such that

i) E' N S=09E’;
(i) E’ N k(S) = J N Fix(h);
(iii) in E;, 0E’ U J bounds an annulus A pinched along J N Fix(k) (that

is, A is homeomorphic to the quotient space of J X I obtained by identifying
{y} X Ito a point for each y € J N Fix(h));

(iv) the interior of the 3-cell in U bounded by E U A U E’ is disjoint from
S U h(S). Define S” to be the 2-sphere E’ U (S’ — (A U E)), which is isotopic
to S’. The 2-sphere S” may fail to intersect Fix (h) transversally along some points
of J N Fix(h). If this occurs then we merely equivariantly push S” away from
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h(S”) near those points where S” is tangent to Fix (k) (the construction of this
isotopy moving S’ to S” is referred to as an a-operation in [6]).

Observe that we have constructed a new 2-sphere S” in h-general position
such that S” does not bound a 3-cell. Furthermore, since the intersection of S
and A(S) has been simplified along J and has not been added to elsewhere, we
have ¢(S”) < ¢(8S). In view of our choice of S with minimal complexity, this completes
the proof of the lemma.

Let A be an involution of a connected 3-manifold M. Suppose there exists a
2-sphere in M such that A(S) N S = @ and M — S is connected.

LEMMA 2. (a) If S is parallel to h(S) then either M is a 2-sphere bundle
over S* or there exists an invariant 2-sphere in M parallel to S.

(b) Suppose that S is not parallel to h(S) and M — (S U h(S)) is not connected.
If h interchanges the two components of M — (S U h(S)) then there exists a 2-sphere
S’ in M defining a splitting M = A # B % A’ in which h interchanges A and
A’ and B is an invariant 2-sphere bundle over S containing S.

(c) Suppose that S is not parallel to h(S) and M — (S U h(S)) is connected.
Then there exists either a nonseparating, invariant 2-sphere in M which is in gen-
eral position with respect to Fix(h) or a separating 2-sphere S’ in M such that
h(S’) N S’ = @ and the 2-spheres S and h(S) lie in different components of M — S’.

Proof. (a) Since S is parallel to 2 (S) we have M separated into two components
by S U A(S), say M, and M,. Assume M, is a component homeomorphic to
S? x I. If h interchanges M, and M, then M is obviously a 2-sphere bundle
over S'. On the other hand, if A(M,) = M, then it follows from [9], [10], [12]
and [15] that there exists an invariant 2-sphere S’ in M, parallel to a
boundary component of M, .

(b) Let M’ be a component of M — (S U Ah(S)) and choose an arc vy in ¢/(M’)
joining S to A(S) such that vy meets S U A(S) only at its endpoints. Consider
the 2-sphere boundary S’ of a regular neighborhood of S U A(S) U v in ¢l(M’).
Then S’ U A(S’) splits Minto three components 4, B, and A’ such that 4 interchanges
A and A’, leaving B invariant. We finish by capping the 2-sphere boundaries
corresponding to S’ and 2(S’) to obtain the 3-manifolds A, B, and A’, respectively,
such that M = A # B # A’, where B is a 2-sphere bundle over S' containing
S.

(c) First suppose that Fix(h) # . Choose an arc vy in M — h(S) joining S
and Fix(h) such that y N (S-U Fix(k) U A(y)) = dy. Let N be an invariant
regular neighborhood of S U A(S) U v U A(y) in M such that dN meets Fix(h)
in_ general position. Then AN consists of three components, two of which are
interchanged by A. The remaining component S’ of dV is the desired nonseparating
invariant 2-sphere.

Now suppose that Fix(h) = ). There exists a noncontractible loop ¥ in
M — h(S) such that y N S consists of a single point and A(y) N v = @. Let S’ de-
note the boundary of a regular neighborhood of S U v such that A(S") N S = Q.
It follows that S’ separates M in such a way that S and A (S) fall into opposite
components. This completes the proof of the lemma.
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Proof of Theorem 1. Let h be an involution of a compact nonprime 3-manifold
M. We show that A can be decomposed into involutions of prime 3-manifolds from
which we can recover 2 by repeated application of the four operations described
in Section 1. Recall that the number of pairwise disjoint and nonparallel 2-spheres
not bounding 3-cells in M is bounded (see [4], Lemma 3.14). Thus, the maximal
collections of certain types of such 2-spheres which we consider below are always
finite sets.

Step 1. Let Q be a maximal collection {S,} of invariant 2-spheres in M such
that U S; does not separate M and each S; is in general position with respect
to Fix (h). Define M’ to be the compact 3-manifold obtained by splitting M along
the 2-spheres U S; and capping the resulting 2-sphere boundary components with
3-cells. Let A’ denote the involution defined on M’ by extending the involution
induced by & on the split M over the added 3-cells by coning. Observe that we
can recover M and A from M’ and A’ by reattaching the handles we cut along
U S; by means of operation I-4. Now M’ and A’ have the property that every
invariant 2-sphere in M’ which is in general position with respect to Fix(h')
separates M’.

Step 2. Consider a maximal collection @ of pairwise disjoint

I
et —
Q
| S——
oo
Ll ot

2-spheres in M’ such that
@ »'(C) = C;
(ii) no two C/s are parallel,
(iii) each C; does not bound a 3-cell,
(iv) C,is disjoint from 2, and
(v) each C, is in general position with respect to Fix (2’).

It follows from the maximality of Q that each C, separates M’. Split M’ along

U C,; to obtain a collection { R! of compact 3-manifolds. If we cap the 2-sphere
i=1
boundary components arising from the cuts along U C; with 3-cells, we obtain

n

3-manifolds Ri} such that M’ = R, # ... # R,, where the sum is formed
i=1
by identifying the manifolds R} back along the Cs.

Case 1. h’ interchanges the sides of some C;. Choose an invariant regular
neighborhood U of C, in M’ such that U is disjoint from Q. Observe that U is
homeomorphic to 8> X I. Let A and A’ denote the two components of cI/(M’ — U)
which are interchanged by A’. Cap the 2-sphere boundary components of A,
A’ and U corresponding to 8 U with 3-cells to obtain A, A’ and U, respectively,
where U is homeomorphic to 83, Then M "= A # U # A’, where the sum is
formed by reattaching A, A’ and U back together as they were. Thus, in this

case, B’ is an involution of M’ arising from an involution of S® by operation
I-1.

Case 2. h’ does not interchange the sides of any C;. Then each R is invariant
under A’ and A’ | R} can be extended to an involution g; of R; by coning over
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the 3-cells attached along the 2-spheres {C;} (note that this coning over a 3-cell
attached to an invariant 2-sphere introduces at least one fixed point for g;). Since
we now have the splitting M’ = R, % ... # R, and b’ = g, # ... % g,, it follows

that A’ can be obtained from R,-,g,-} by n — 1 applications of operation I-2.
i=1

Step 3. We now examine the involution g = g, of R = R,,, to look for a further
splitting (1 = 2 =< n). We note that every invariant 2-sphere in R in general
position with respect to Fix(g) bounds a 3-cell. From the previous steps we have
some invariant 2-spheres in R from Q) and ® which now bound 3-cells. We shall

avoid intersecting these with any new 2-spheres used in our further splitting
of R.

m-—1

Consider a maximal collection I" = {(Di,g(Di)} of pairs of 2-spheres in

i=1

R such that
(G) gD) N D;=Q,
(ii) no two D,s are parallel,
(iii) D, is not parallel to g(D;) if i # j,
(iv) D, does not separate R but D; U g(D,) does separate R,

m-—1

v) U (D; U g(D,)) separates R into exactly m components, and
i=1
m-—1

i) I (D; U g(D))) is disjoint from Q and ®.

i=1

We emphasize that in this step we allow D; and h(D,) to be parallel when
these 2-spheres cobound a manifold N(=~ S X I) and N N Fix(k) # @ (in this
case, although there exists an invariant 2-sphere S in N (see Lemma 2(a)), this

S cannot be contained in Q since S is not in general position with respect to
Fix (h)).

Case 1. g interchanges the sides of R — (D; U g(D;,)) for some i. It follows
from Lemma 3 that either M’ = B or we can write M’ = A # B # A’ where
B is an invariant 2-sphere bundle over S' and g interchanges A and A’. Hence
the involution g arises by applying operation I-1 to the involution induced on
B by g. Moreover, since g is obviously fixed point free, it follows that the collection
@ from Step 2 must be vacuous and hence M’ = R.

Case 2. g does not interchange the sides of R — (D; U g(D,)) for any i. Split

m—1

R along U (D; U g(D,)) to obtain the collection | M; of 3-manifolds. Cap
i=1 i=1

the 2-sphere boundaries of each M| coming from I' with 3-cells to obtain the

3-manifolds {M;} such that R = M, # ... # M,,, where M, is joined to M,,,

m?

along the 2-spheres D; U g(D,). Since each M} is invariant under g, we have
involutions h; defined on M; (i = 1,...,m) by g such that g = h, % ... ¥ h,,.
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Consequently, we can obtain the involution g of R by applying operation I-3

(m-1 times) to {M,., h,.}
i=1

It remains to show that each involution A; of M, is one of the desired type
arising from operation I-1. If M, is prime there is nothing to show, so suppose
that M, is not prime. It follows from Lenima 1 that there exists a 2-sphere S
in Mi such that S does not bound a 3-cell and either A,(S) N S =@ or S is
invariant and in general position with respect to Fix(k;). We may also assume
that S is disjoint from Q@ U ® U T since all the 2-spheres in these sets now
bound 3-cells. It follows from the maximality of ) and ® that S cannot be invariant.
Thus 4;(S) N S= @. Let us first suppose that S does not separate M,. It follows
from the maximality of I' that S U A,(S) loes not separate M;. It then follows
from Lemma 3 (c) and the maximality of § and ® that there exists a separating
2-sphere S’ in M, such that 8’ N A,(S’) = @ and S and A(S) fall into opposite
components of M; — S’ (we may assume that S’ is disjoint from Q@ U & U T).
Hence we may as well assume that S itself originally separated M,.

At this point we find ourselves with a 2-sphere S in M, such that S separates
M;, h(S) N S =@, and S does not bound a 3-cell. If we split M, along S U A(S)
and cap the resulting 2-sphere boundaries, we obtain M, = A # @ # B where
h; interchanges A and B and leave @ invariant. We will be finished if we show
that the 2-sphere S can be chosen such that @ is prime, since it then follows
that A, arises from operation I-1.

If Fix(h;) # @ then choose an arc v in M; — A, joining S and Fix(k,) such
that v N (S U Fix(h;) U A,(y)) = dv. Let N be an invariant regular neighborhood
of S U h;(S) U vy U h,(y) in M, such that 8N meets Fix(k;) in general position
(we may also assume N is disjoint from Q@ U ® U I'). Then dN consists of three
components, two of which are interchanged by A;. The remaining component S’
is an invariant 2-sphere which separates M; into two components, one of which
contains both A and B. By the maximality of ®, the closure of other component
of M, — S’ is a 3-cell and hence @ is homeomorphic to S°.

Suppose then that Fix(h;) = @ and assume that S has been chosen such that
@ has the fewest number of nontrivial summands among all such @ arising in
this way. If @ is not prime then, using the argument employed to select S in
M;,, we can find a separating 2-sphere = in @ which does not bound a 3-cell,
such that #;(Z) N £ = @; we may further assume that X is disjoint from and
not parallel to any element of Q U ® U ' U {S,A,(S)}. If = separates S from
h;(S) then 2 U h;(2) clearly defines a splitting M; = A’ # @’ # B’ in which
h;interchanges A’ and B’, leaving @’ invariant, and where @’ is a proper summand
of @. Since this contradicts our choice of S we must have S and 4,(S) in the
same component of M, — =. We can choose an arc J in @ — A,(Z) joining S
and = such thatJ N (S U A,(J) U A,;(Z)) = dJ. Let K denote a regular neighborhood
of SUJU X in Q such that A,(K) N = @. We may assume as usual that
K is disjoint from Q U ® U TI. Let X’ denote the boundary component of K
contained in the component of @ — (S U Z) which contains J. This 2-sphere
3’ defines a splitting M, = A’ # @’ # B’ in which A, interchanges the summands
A’ and B’, leaving @’ invariant. Again, @’ is a proper summand of @, contradicting
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our choice of S. Hence @ must be a prime 3-manifold. This completes the proof
since all involutions in this last step arises from an application of operation I-1.
We have shown that the involution 4 arises by repeated applications of operation
I-1, followed by applications of operation I-3, then operation I-2, and finally operation
I-4. Moreover, the collection of 2-spheres @ U ® U T' U {Z,h(Z)} used in the
construction of A was chosen with the 2-spheres pairwise disjoint.

3. FURTHER SPLITTING ALONG DISKS

We have seen in Section 2 that an involution of a compact 3-manifold can
be decomposed into involutions of 2-sphere bundles over S* and of compact irreducible
3-manifolds. If these latter irreducible 3-manifolds have boundary, one may wish
to further decompose the involution by splitting along disks. The purpose of this
section is to suggest that a further splitting along disks is possible and to provide
the necessary tool (Lemma 3) for carrying out such a program.

Given two disjoint, compact 3-manifolds M and M’ (with nonempty boundaries)
we can form a multi-disk sum of M and M’ by identifying disks on oM with
corresponding disks on oM’, allowing at most one disk in each component of oM
and dM’. An irreducible 3-manifold is m-prime if it is not a 3-cell and every
multi-disk sum decomposition of M contains a 3-cell summand. In [2], J. Gross
proves that every compact, oriented, irreducible 3-manifold with nonvacuous
boundary has an essentially unique multi-disk sum decomposition into m-prime
3-manifolds. It is easy to see that there exist infinitely many m-prime 3-manifold
which contain nonseparating, properly embedded disks. This is in contrast to the
connected sum operation in which the only prime 3-manifolds containing
nonseparating 2-spheres are 2-sphere bundles over S'. Thus by splitting along
disks, one could decompose an involution of a compact, irreducible 3-manifold
with boundary even further than into the m-prime summands, although the
uniqueness of the decomposition would be lost. The following lemma provides
the necessary disks for a splitting. The final reduction could be phrased in terms
of either m-prime 3-manifolds or 3-manifolds in which every properly embedded
disk splits off a 3-cell.

LEMMA 3. Let h be an involution on a compact 3-manifold M. Suppose that
there exists a properly embedded disk D in M such that oD lies in a given component
B of 0M and oD does not bound a disk in B. Then there exists a disk S properly
embedded in M with the properties

(i) aS C B,
(ii) aS does not bound a disk in B, and

(iii) either h(S) N S = @ or h(S) = S and S is in general position with respect
to Fix (h).

Proof. Let X denote the collection of all disks D properly embedded in M
with the following properties:

(1) aD C B,
(2) aD does not bound a disk in B, and



268 PAIK KEE KIM and JEFFREY L. TOLLEFSON

(3) D is either invariant and in general position with respect to Fix(A) or
D is in h-general position.

Clearly X # . In what follows we show that whenever D € X and c(D) > O,
there exists another disk D’ in = such that ¢(D’) < ¢(D). Thus if we choose a
disk D in X having the smallest possible complexity, it follows that ¢(D) = 0;
that is, D satisfies the conclusion of the lemma.

Suppose that D € X and c(D) > 0. Let E be an innermost disk in A(D).
Such an E always exists and we have two cases to consider.

Case1l. E C Int(h(D)). In this case we can use an a-operation (as in the
proof of Lemma 1) to obtain the desired disk D’.

Case 2. E is not contained in Int(k(D)). We may assume that E N D is an
arc contained in dE. We use a B-operation from [6] to obtain the desired disk
D’ in this case and thus complete the proof.

APPENDIX

We have shown that every PL involution of a compact 3-manifold arises from
involutions on its prime summands by repeated application of the four operations
defined in Section 1. There are several choices involved in each of these I-operations
and we examine their effect on the resulting involution. This is done in Theorem 2
and in the examples followed by its proof.

In order to state Theorem 2 we need some additional notation. Let A, and
h, be given involutions on the 3-manifolds M, and M,, respectively. Let
C, C M,, C, C M, denote closed 3-cells as used in the I-operations. Another
3-cell C! C M, with 8C, N 4C, = @ is said to be of the same type as
C. (i = 1, 2) if either C; and C/ are both disjoint from A4,(C; U C}) or both 3-cells

are invariant under A; and meet the same component of Fix (h;). We let z (h,,h,)

denote the set of all homeomorphisms f’ : 3C; — 3aC;, where the C) range over
all 3-cells in M, having the same type as C; and f’'h,|dC, = h,f’ whenever C,

and C, are invariant under h, and h,, respectively. For f, f' € 2 (h,,h,) we
say that f ~ [’ if
(i) there exists a 3-cell D, C M, of the same type as C; such that C; U C! C D,,

(ii) there exists a homeomorphism k; : D, — D, that commutes with A; whenever
D, is invariant such that &;|dD, is the identity and &,(C;,) = C} (i = 1,2), and

(iii) f’ and &,fk;'|aC’, are isotopic as maps of pairs
(3C1, Fix(h,) N aC%)— (3C%, Fix(h,) N 3C,).

Let [ ] denote the equivalence class of f with respect to the equivalence relation

on 2 (h,,h,) generated by the relation ~. Since one can always find a disk D;
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satisfying condition (i) the set 2 (h,,h,)is decomposed into at most four equivalence

classes. To write them, we let p:dC, — 9dC, be a homeomorphism isotopic to the
identity which reverses the orientation on dC,; N Fix (2,) (when this set is nonempty)
and we let r : 3C; — 3C, be an orientation-reversing homeomorphism constant
on dC, N Fix(h,). We also assume that p and r each commute with A,|dC,. All
equivalence classes are given by [f], [fr], [fp] and [frp], where often some
of these coincide.

The set we are really interested in is the set of all triples (A,,h,;[f]), where
[ € 2 (h,,h,) and A; is an involution of M;. Consider the equivalence relation

on this set generated by (h,,h,; [ f1) ~ (g, h, 81" ,8:h.85"; (8, F(g:|19C,)*]), where
&8:: M,— M., is a homeomorphism (i = 1,2). Let {h,,h,;[ f]} denote the equivalence
class containing (A,,A,;[ f]). Corresponding to a given pair of involutions 4,, A,
there clearly exist at most four such equivalence classes and at most two whenever

aC, N Fix(h,) = @.

For pairs of sewing maps used in operation I-4, we say that (f,f') ~ (k,k’)
if one of the following holds:

@) [f] = [k] and [f'] = [R'), GD) [fr] = [k] and [f'r'] = [k'],
(iii) [fp] = [k] and [f'p"] = [k'] (r' and p’ are homeomorphisms of dC; serving
the same purpose as r and p, respectively). The relation generates an equivalence
relation on the set of all eligible pairs of sewing maps and we write [f,f’] for
the equivalence class containing (f,f’). Analagous to the notation established for
use with the first three I-operations, we consider the equivalence relation generated
by

(hyshys [HF]) ~ (8 R 81" 82ha85" 18.F(8.10C,) 7Y, gof (£.10C) 1),

where g; : M; — M; is a homeomorphism for i = 1, 2. Under this equivalence
relation the set of all triples (h,,h,; [f,f']), where A; is an involution of M,

and f, f' € z (h,,h,) is a suitable pair of the I-4 operations decomposed into

at most two equivalence classes. We write {A,,Ah,; [f,f']} for the equivalence
class containing (h,,h,; [£,f']).

We can now indicate the dependence of the I-operations on the various choices
we made during their description. Any variable which is not specifically mentioned
in the next theorem does not influence the equivalence class of the constructed
involution.

THEOREM 2. (i) The equivalence class of the involution ﬁl constructed in
operation I-1 depends only on the (oriented) homeomorphism type of M, and the
equivalence class {h,,1; [f]}.

(ii) The equivalence class of h, % h, constructed in I-2 depends only on the
components F,, F, and on the class {h,,h,; [ f]}.

(iii) The equivalence class of h, % h, built in I-3 depends only on the class
{hy,hy; [f])
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(iv) The equivalence class of h{ built in I-4 depends only on the components
F,, F} and the class {h,,h,; [, f']1]}.

The equivalence class of an involution which results from a sequence of
Ioperations is independent of the choice of the 3-cells used for the connected
sum operations. Since we can choose these 3-cells to be pairwise disjoint, we have
the following useful result (also see the proof of Theorem 1).

COROLLARY 5. The equivalence class of an involution built up by a sequence
of I-operations is independent of the order of the sequence as long as all the I-1
operations are performed first.

Thus the I-operations provide a well-defined procedure for building involutions.
From the splitting theorem (Theorem 1) we see that every involution of a compact
3-manifold can be constructed in this way by a sequence of I-operations. In the
following we give five examples which illustrate the nontrivial effects of changing
the variables involved in the I-operations. The first example concerns the choice
of the preferred components of the fixed point-sets.

Example 1. Let h denote the unique orientation-reversing involution of real
projective 3-space p® (see [8]). The fixed point set of A has two components, an
isolated point and a projective plane. We can build an involution 2 # A of
p° # p® using operation I-2, by removing the interior of an invariant 3-cell neighbor-
hood of the isolated fixed point from each copy of p® and then identifying along
the resulting invariant 2-spheres. The resulting involution has a fixed point set
homeomorphic to the disjoint union of two projective planes. On the other hand,
we can build an involution & # A of p® # p® by removing the interior of an
invariant 3-cell meeting the p® component of Fix(k) in a disk from each copy
of p? and then identifying along the resulting 2-sphere boundaries. This second
construction gives an involution with two isolated points and a Klein bottle for
a fixed point set. A similar example using operation I-4 is easily obtained.

In the next example we see the effect of changing the isotopy class of the
sewing map f between the 2-sphere boundaries dC, and 9C,.

Example 2. Consider oriented lens spaces M, = L(2,1) = p® and M, = L(4,1).
Recall that L(4,1) does not admit an orientation-reversing homeomorphism
(e.g. see [4]). Let h, denote the free involution of M, that has L(4,1) as an orbit
space. Choose 3-cells C, C M,, C, C M, and a homeomorphism f : 3C, — 8C,
which is orientation-reversing with respect to the induced orientations. Also, let
r: aC, — 9C, be any orientation-reversing homeomorphism of the 2-sphere 9C,.
Apply operation I-1, using the above maps and 3-cells, to build an involution A
on M = M, # M, % M, corresponding to {%,,1; [ f]1}. The orbit space of % is homeo-
morphic to M, # M,. Now let 2~ denote the involution on M’ = M, 4 M 4 M, corre-
sponding to {h,,1; [ fr]} which results if we substitute fr for f in the above con-
struction. The orbit space of A~ is homeomorphic to M, # M, which is not
homeomorphic to M, # M,. However, since M, admits an orientation-reversing
homeomorphism the 3-manifolds M and M’ are homeomorphic but the involutions
h and A~ are clearly not equivalent.

If we use operation I-3 instead of I-1, then we can build involutions £, # h, and
h, # hy on M, # M, and M, # M, corresponding to {h,,h,;;[1]} and
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{h,,h,; [r]]}, respectively. These two involutions also have distinct orbit spaces
M, # M, and M, ¥ M, .

In the third example we examine the effect of changing the involution &, by
conjugating it with a homeomorphism g of M,. This example is essentially the
previous example viewed from a different perspective and one should notice here
the role of the attaching map f when the involutions are replaced by their conjugates.

Example 3. As in the beginning of Example 2, let M, = P? M, = L(4,1)
and h, be a free involution of M, with orbit space L(4,1). Let g be the orientation-
reversing involution of M, as described in Example 1. After perhaps replacing
g by some conjugate of g, we can find a closed 3-cell C; C M, such that C,
and A,(C,) are disjoint and both are invariant under g. Clearly g|dC, reverses
the orientations of the 2-spheres dC,. Apply operation I-1 to build the involutions
hon M, # M, % M, (using f: 8C, —» 8C,), h~ on M, % M, % M, (using
fg:9C, — 3C,) and g 'hg on M, # M, # M, (using f: aC, — 4C,). An equiva-
lence between A~ and g 'hg is easily defined by piecing together a homeo-
morphism M, # M, # M, - M, % M, # M,, using g on the M, summand
and the identity on the M, summands. By example 2, the involution £ is not in the
same equivalence class as A~ and g 'hg. Thus the two classes {h,1; [f]} and
{h,1; [gf]} = {g hg,1; [ ]}, with all other variables the same, yield nonequivalent
involutions under operation I-1. This type of example can easily be modlfled to
apply to operation I-3.

The next example concerns operation I-4, where a pair of independent sewing
maps are used, and the effect of reversing the isotopy class of only one sewing
map.

Example 4. Let h, = h, be the involution of M, = M, = S° with a 2-sphere
for the fixed point set. Choose invariant closed 3-cells C,, C; C M, and
C,, C, C M, that are pairwise disjoint and each meets the corresponding
fixed point set in a disk. Choose a pair of orientation-reversing homeomorphisms
f:0C, = aC,, f':9C’,— aC, and apply operation I-4 (using k,, A, and (f,f’)) to
build the involution A* on M, # M, =~ S8' X S? having a fixed point set homeo-
morphic to S* X S'. On the other hand, let p: dC; = 3dC, be a homeomorphism iso-
topic to the identity, such that p commutes with 4,|dC, and p|(@C, N Fix(h,))
is orientation-reversing. Apply I-4 again (this time using A,, &, and (fp,f’)) to
build an involution A** on M, # M, = S' X S? where A}* has a Klein bottle
for a fixed point set.

Example 5. Let L be a link in S® with the property that we can form the
composition L - L [3] in two distinct ways to obtain links L, and L, with the
property that no homeomorphism of S carries L, onto L,. Let 4 denote the nontriv-
ial covering transformation of p : M(L) — S°, the two-sheeted covering of S°®
branched along L. We can apply operation I-2 to build an involution A # A
of M(L) # M(L) in two ways; one with p(Fix(h # h)) = L, and the other
with p(Fix(h # h)) = L,. Obviously, those two involutions are not equivalent.
This type of example also exists for operation I-4 and here we can additionally
alter the number of components of Fix(2*) by the choice of the preferred compo-
nents of Fix (h).

Proof of Theorem 2. We continue the notation used in defining the I-operations.
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Thus we have an involution A; of the 3-manifold M;, the special 3-cells
C; C M, and a homeomorphism f : dC, — 3C, (orientation-reversing in the oriented
case).

(i) Let & denote the involution of M = M, # M, # M obtained by operation
I-1 using h, and f. Consider a second homeomorphism f’: dC, — 9C, isotopic
to f and let 2’ denote the involution of M’ =~ M obtained by operation I-1 when
f’ is substituted for f. We want to define an equivalence between these two
involutions. Choose a product neighborhood U = 4C, X [0,1] for 0C, = aC, X {0} .
in (M, — &,) which is disjoint from A,(U). Let H, : 3C, — 3C, be an isotopy
from H, = f~'f’ to H, = identity. Define the homeomorphism g: M’ — M
by letting g|(M’' — (U U h,(U))) = identity, g|U(x,t) = (H,(x),t) € U and
g|h,(U) = h,gh7"|h,(U) and observe that 2 = gh’ g . Hence isotopic sewing maps
f and f’ in operastion I-1 produce equivalent involutions.

Now consider homeomorphisms %; : M; —» M,, for i = 1, 2, and compare the

above involution A of M with the involution £ A %,  of M" = M, # M, # M,
obtained by I-1 using kA, k', k. fRT, k,(C,), k,(C,) in place of h,,f, C,, C,,
respectively. Define the homeomorphism g : M” — M by letting g(x) = k&, (x) for
x € M, andg(x) = k,(x) forx € M,.Thenghg ' = E,h, %k, andthus the equivalent
triples (h,,1;[f]) and (k,h k7', 1;[k,fk;']) determine equivalent involutions.
Furthermore, we can also conclude that A is independent of the choice of the
3-cells C, and C,. This is because a change of 3-cells from C; to C! is accomplished
by means of a homeomorphism k;: M; —» M, that commutes with A;, carries C,
to C! and which defines a new sewing map k,fk;' (up to isotopy). This last
observation completes the proof that 4 depends only on the homeomorphism class
of M, and the equivalence class {&,,1; [ f]].

(ii) In this case the 3-cells C, and C, are invariant under the given invo-
lutions and we have fh, = h,f. Let h, # h, denote the involution obtained by
operation I-2 using h,, h,, f, C, and C,. Consider a second homeomorphism
f':0C, — 3C, such that f'h, = h, f’ and f’ is isotopic to f as maps of pairs

©C,, 3C, N Fix(h,)) — (3C,, 9C, N Fix (h,)).

Denote by (A, # h,)’ the involution on M’ = M, # M, obtained by applying
I-2 as before but with f’ substituted for f. Find an invariant product neighborhood
U = aC, X [0,1] of aC, = aC, X {0} in (M, — C,) such that the product
structure has the property that A,|U(x,t) = (a(x),t) for a = h,|dC, (see [6]).
Since f'f’ is a homeomorphism of the 2-sphere dC, that commutes with « and is
isotopic to the identity, it is easy to find an isotopy H, : aC, — 0C, from
H, = f7'f’ to H, = identity such that oH, = H,a for each ¢ (also see [1}).
Define a homeomorphism g : M’ — M by letting g(x) = x for x € U and
gx,t) = (H,(x),t) for x € U. Observe that (b, % h,)’ = g '(h, # h,)g. The
remainder of this case is very similar to Case (i) and we leave the details to
the reader.

(iii) This case is also similar to Case (i) and will be omitted.

(iv) Again, this case is very close to Case (ii) except for showing that the
equivalent triples (hy,hy; [£,£'1), (hy,ho; [rf,r’ '] and (A, hy; [of, 0 1) give rise
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toequivalent involutions. Herer : dC,— 6C,,r’ : 3C, — dC’,areorientation-reversing
homeomorphisms constant on the fixed-point sets and p:dC, — 9C,, p' : 9C,— 9C,,
are isotopic to the identity but reverse the orientation on the fixed-point sets.
We will treat only the case where the fixed-point set of A, is a circle as the
other two cases are similar. We view S° as {(z,,2,):|z,|* + |2,]* = 1} C C?
and let A,(z,,2,) = (—2,,2,). We also use the involutions g(z,,2,) = (3,2,) and
g'(2,,2,) = (Z,,%,). Choose the 3-cells C, and C} in S? to be regular neighborhoods
of (0,1) and (0,—1), respectively, such that each is invariant under the involutions
h,, g and g’. Observe that r = g|dC, and r’ = g|adC, are orientation-reversing
and constant on the fixed points of A,. Also note that p = g’|aC, and p’ = g’|9C,
are orientation-preserving and interchange each pair of fixed points. As in Case
(ii), we can construct equivalences between the three involutions which arise by
operation I-4 when we use the triples (A,,h,; [f,f']), (h,,gh,g™"; [gf,&f’]) and
(hy,8'h,g' "' [g'f,g'f']). However, since g and g’ each commute with A, it follows
that up to equivalence, a unique involution corresponds to the equivalence class
{h,,h5; [f,f'1}. This completes the proof of Theorem 2.
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